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Abstract: Thermal Barrier Coatings (TBCs) have good performance in heat insulation during service
on turbine blades. However, the accumulated residual stress will form cracks, which can easily lead
to coating failure. To ensure safe operation, it is necessary to find a method that can evaluate the
health of the coating. In this paper, a non-destructive evaluation technique based on Multi-Scale
Enhanced-Faster R-CNN (MSE-Faster R-CNN) is proposed. Firstly, the Visual Geometry Group
Network19 layer (VGG-19) was adopted as the baseline network to find the candidate crack Region of
Interest (ROI). Considering the influence of the crack on the surroundings, the ROI was expanded to
obtain the context information. Secondly, a multi-scale Faster R-CNN detector was used to refine the
candidate regions, and provided a comprehensive feature for better crack detection. Finally, a fusion
lifetime prediction model was proposed to estimate the remaining lifetime of the TBC. Extensive
experiments were conducted to evaluate the performance of the proposed method. The results
demonstrated that the proposed method can accurately locate (0.898) and detect (0.806) the cracks in
different scales, and the lifetime estimation result reached the best level (Root Mean Square Error
(RMSE) = 2.7); there wasas also an acceptable time cost (1.63 s), and all detection conditions of the
error rates were below 15%, achieving the best results among the state-of-art methods.

Keywords: thermal barrier coatings (TBCs); crack detection; infrared thermography; non-destructive
evaluation; Multi Scale Enhanced-Faster R-CNN (MSE-Faster R-CNN); lifetime estimation

1. Introduction

The working temperature of a gas turbine is rising continuously due to the continuous
pursuit of performance. A common way to deal with this situation is to spray Thermal
Barrier Coatings (TBCs) on the turbine blades, so that the components can bear a large
temperature gradient when exposed to heat flow [1,2]. During long term service, cracks are
one of the most common and serious defects in TBCs [3]. Since TBC is a multilayer structure
including top-coating layer, transition layer and the substrate, under high temperature
and harsh working conditions, the thermodynamic performance of different layers become
inconsistent, especially though a mismatch of thermal expansion coefficients. Such mis-
match between the layers will induce residual stress, which is considered to be the major
cause of the cracks [4]. The thermal insulation performance of the TBC will significantly
be reduced by a large sized crack or the penetration crack. When growing to a certain
extent, a crack will cause the coating to reach spallation, which makes TBC totally fail and
thus creates serious security problems. Therefore, implementing TBC crack detection is of
great importance.

The main crack detection methods include manual detection, ultrasonic detection, laser
scanning detection, infrared image-based detection, etc. [5]. Traditional manual detection
requires professional staff to shut down the gas turbine regularly and observe whether the
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TBCs have cracks. This approach has many disadvantages such as being expensive, subjec-
tive, and inefficient. Alternatives such as ultrasonic detection, laser scanning detection and
infrared image-based detection are regarded as non-destructive evaluation methods [6,7].
However, due to the limitations of the working environment, ultrasonic and laser detection
is difficult to use for on-line monitoring. In contrast, infrared image detection has relatively
low requirements for the working environment [8,9]. In the neighborhood of 1500 ◦C, the
infrared thermal imager only needs a heat shield to run successfully. Hence, studies of
infrared detection technology have garnered increasing attention [10–13].

Infrared image processing methods for detection of coating defects usually have four
steps: image pre-procession, image segmentation, feature extraction, and classifier con-
struction [14]. Image pre-procession methods are mostly for improving image quality by
image de-noising and enhancement [15,16]. Image segmentation methods collect infor-
mation and characteristics from the image, and divide the image into Regions of Interest
(ROIs) and background. Researchers usually start ROIs extraction by either applying a
kind of designated threshold, or edge detection by analyzing the local gradients [17,18].
Feature extraction and classification methods of images are also extensively studied [19–22].
However, traditional image processing methods are used for surface cracks detection. It is
generally agreed that stress accumulation during service will form several micro-cracks
at the interface, and then expand to form a dominant interface crack, which may grow
vertically to the surface and eventually cause spallation [4,23]. In addition, the growth of
thermally grown oxide will also bring residual stress, resulting in horizontal cracks and
spallation in the coating [24,25]. Therefore, it is possible to have both surface cracks and
internal cracks in the TBCs. However, the characteristics of surface cracks and internal
cracks are very different. Surface cracks generally have a certain linear feature while the
features of internal cracks are very fuzzy. Moreover, there are plenty of pores in the coating.
The size and shape of a small internal crack is so close to the pore, that it will show a very
similar effect on the temperature distribution. Such pores will bring many false alarm
points in internal crack detection and thus make traditional image processing methods
less accurate.

Due to the limitations of traditional image processing methods and the advantages
of the powerful decoupling feature extraction ability of deep learning, methods based
on deep learning are considered a promising solution to this problem. Recently, vari-
ous deep learning models, such as Convolutional Neural Network (CNN), Region-CNN
(R-CNN), Faster R-CNN and You Only Look Once (YOLO) [26–29], have received much
attention. Effective feature representation and recognition can be obtained through these
deep learning methods by automatic learning, and the process of using complex feature
extraction algorithms as well as crack identification are eliminated. However, these deep
learning methods often have high requirements for the quantity and quality of training
data. CNN and R-CNN will generate a large number of candidate regions when selecting
candidate regions, which will seriously increase the data. In reality, collecting a large
number of labeled coating crack datasets is time-consuming, and to our knowledge, there is
no public available dataset on internal cracks in the coating. Transfer learning can transfer
the network weight trained from other similar datasets to the target network, which can
train the parameters faster and better without having to train from scratch, and can solve
the problem of lack of data to a certain extent. Compared with YOLO, the Region Proposal
Network (RPN) structure of Faster R-CNN can make the positive and negative samples
more balanced, so as to obtain a abetter training effect. YOLO uses a one-stage detector,
which mixes the work of positioning and classification. There are no special parameters for
candidate regions which would make the training more difficult. The two-stage detector of
Faster R-CNN can avoid this problem, thus increasing the training and testing accuracy.

For the above reasons, in this paper, an internal crack detection scheme based on Multi
Scale Enhanced-Faster R-CNN (MSE-Faster R-CNN) is proposed. Visual Geometry Group
Network (VGG-19) was adopted as the baseline network to find the candidate crack Region
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of Interest (ROI). Then, the ROI was expanded to obtain the context information. Through
a multi-scale Faster R-CNN detector, the state of the candidate region can be determined.

This manuscript summarizes the results in the following way. Firstly, the architecture
and principle of MSE-Faster R-CNN is presented. Secondly, the dataset preparation and
augmentation, as well as the experimental settings are introduced. Thirdly, the performance
of MSE-Faster R-CNN in different crack scales is tested and discussed as well as compared
to other state-of-art methods. Finally, an information entropy fusion lifetime estimation
model is applied using the crack detection experimental results.

2. Principle of the Crack Detection and Lifetime Prediction Model
2.1. Architecture of MSE-Faster R-CNN

Figure 1 depicts the overall structure of MSE-Faster R-CNN. The MSE-Faster R-CNN
consists of two modules: the Regional Proposal Network (RPN) and the Multi-scale Fast R-
CNN detector (see Figure 1). RPN is a fully convolutional network for efficiently generating
region proposals with a wide range of scales and aspect ratios. Region proposals are
rectangular regions which contain candidate cracks. MSE-Faster R-CNN detector is used
to refine the proposals. The RPN and the MSE-Faster R-CNN detector share the same
convolutional layers, allowing for joint training. The MSE-Faster R-CNN runs through the
CNN only once for the entire input image and then refines crack proposals. Due to the
sharing of convolutional layers, it is possible to use a deep CNN network for generating
high quality crack proposals. As a small size structure, the crack can easily lose detail in
the process of feature extraction. Considering that the detailed information of the low-
level convolution output is more abundant than that of the high-level convolution output,
VGG-19 [30] is selected as the pre-training network, and three segments of convolution
layers are selected and max-pooled to obtain feature maps of different scales.
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Figure 1 shows the flow of internal crack detection using MSE-Faster R-CNN. The
input image is firstly sent to the vgg-19 network for feature extraction. Different scales of
feature maps are obtained after convolution, max-pooling and Relu activation layer. These
feature maps are then input into the RPN network. Several ROIs, which are rectangular
anchor frames selected by NMS that may be crack areas, will be obtained. Considering
that the crack will have a significant temperature effect on the surrounding area, the ROIs
regions are expanded in this paper, as Figure 1 shows. By fusing the expanded feature maps
with different scales, the feature expression ability of the network can be strengthened.
This enhanced and fused feature map will be input to the convolution layer and the three
fully connected layers. The final crack diagnosis result and anchor frame position will be
obtained through softmax classification and L1-smooth regression discriminant function.

However, since the crack has characteristics of various shapes and sizes, when the
input image scale is large, the resolution of the feature image becomes smaller after multiple
down-sampling. Although the ROI becomes larger, the detailed features will be lost, and the
utilization of semantic information obtained by multi-scale receptive field is low. To solve
the above problem, this paper enhances the fusion of multi-scale feature images. The high-
dimensional convolution features are refined and input into the low-dimensional feature
map. Then the features are fused to avoid misleading the positioning and recognition
tasks caused by a large number of complex context relations. Thus, the useful information
around the object is significantly enhanced. In this way, the structure can integrate the
features of receptive fields from different sizes, increase the receptive field and make full
use of the contextual semantic information of the object, thus improving the sensitivity to
the internal cracks in the coating.

2.2. Operation of MSE-Faster R-CNN Crack Detector

The MSE-Faster R-CNN detector takes multiple ROIs as input. For each ROI (see
Figure 1), a fixed-length feature vector is extracted by the ROIs pooling layer from the
convolutional layer. The final feature vector is fed into a sequence of fully connected
(FC) layers. The outputs of the detector through the Softmax layer and the bounding-box
regressor layer include (1) Softmax probabilities which estimate over the crack class and
the background class and (2) the crack bounding-box.

As many bounding-boxes overlap highly with each other, non-maximum suppression
(NMS) is applied to merge bounding-boxes that have high Intersection-over-Union (IoU).
After NMS, the remaining bounding-box is ranked based on the crack probability score,
and only the top oneis used for detection.

For training RPNs, each proposal is assigned a binary class label which indicates
whether the proposal is a crack or just background. A positive training example is desig-
nated if the proposal overlaps with a ground-truth box with an IoU more than a predefined
threshold (0.7), or if it has the highest IoU with a ground-truth. A proposal will be assigned
as a negative example if its maximum IoU is lower than the predefined threshold (0.3) for
all ground-truth boxes.

Following the multitask loss in Faster R-CNN network, the RPN is trained by a
multitask loss, which is defined as [28]:

L({pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, pi

∗) + λ
1

Nreg
∑

i
pi
∗Lreg(ti, ti

∗) (1)

where i is the index of an anchor. The multi-task loss has two parts, a classification com-
ponent cls and a regression component reg. In Equation (1), pi is the predicted probability
of the anchor being a crack while pi

* is the true category of the anchor. The ground-truth
label is 1 if the anchor is positive and 0 if the anchor is negative. ti is a vector representing
the 4 parameterized coordinates of the predicted bounding-box; and ti

* is the vector of the
ground-truth box associated with a positive anchor. The classification loss Lcls is normalized
by Ncls and the regression loss Lreg is normalized and weighted by a balancing parameter λ.
In this paper, considering a large number of small pores in the coating model, λ is set to 6.
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Such a balancing parameter setting will increase the influence of diagnostic error, so as to
minimize the influence of pores. The Ncls term in (1) is normalized by the mini-batch size.
Bounding-box regression aims to find the best nearby ground-truth box of an anchor box.
The parameterization of the 4 coordinates of an anchor is described as follows [27]:

tx =
(x− xa)

wa

ty =
(y− ya)

wa

tw = log
w
wa

th = log
h
ha

(2)



tx∗ =
(x ∗ −xa)

wa

ty∗ =
(y ∗ −ya)

wa

tw∗ = log
w∗
wa∗

th∗ = log
h∗
ha∗

(3)

where x, y, w, and h denote the bounding-box’s center coordinates, width, and depth,
respectively. x, xa and xa* are for the predicted box, anchor box and ground-truth box,
respectively. Similar definitions are also applied for y, w and h.

The bounding-box regression is achieved by using features with the same spatial size
on the feature maps. A set of bounding-box regressors is trained to adapt for varying size
of cracks. The adjusted bounding-box scale is more suitable for crack detection.

VGG-19 is used for generating candidate crack regions for the RPN. It is pre-trained in
the ImageNet Dataset. Since the RPN and MSE-Faster R-CNN detector can share the same
convolutional layers, these two networks can be trained jointly to learn a unified network
through the following 4-step process: first, training the RPN; second, training the detector
network using proposals generated by the trained RPN; third, initializing RPN training by
the detector network but only training the specific layers; and finally, training the detector
network using the new RPN’s proposals.

2.3. Fusion Lifetime Prediction Model

Reference [31] established a lifetime prediction model of coatings corresponding
to crack length based on the assumption that interfacial oxidation is the major factor
controlling the lifetime of coatings. In service, the residual stress in the ceramic layer
increases with the number of thermal cycles. The accumulation of residual stress caused by
oxidation promotes the length of cracks in the coating, and finally leads to the failure of
the coating.

In the real operation of a gas turbine, there are many sources of uncertainty in residual
lifetime prediction, such as measurement error, randomness of load, change of working
conditions, etc., so it is necessary to quantify and manage these uncertainties. Relevance
Vector Machine (RVM) based on sparse Bayesian learning is a very suitable algorithm
for residual lifetime prediction. It retains the idea of kernel mapping of the Support
Vector Machine (SVM) and adopts some strategies to reduce the number of correlation
vectors compared with SVM, which greatly reduces the prediction time while ensuring
the prediction accuracy. Moreover, compared with traditional neural network and SVM,
RVM can obtain probability output and better represent the uncertainty of residual lifetime
prediction, so this paper uses RVM as one of the residual lifetime prediction methods.

The steps of RVM are as follows:
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1. Input vector set (porosity, crack length, location, coating temperature) and target
vector set (remaining useful lifetime RUL) are respectively formed for the data of each
input image;

2. The radial basis function (RBF) was used as the kernel function, and the parameter
of RBF was optimized by the five-fold cross validation method, with the objective of
minimum mean square error;

3. RVM regression model was established by using the optimal parameter on each input
image, and the optimal remaining lifetime value of the current image was obtained
by prediction.

4. The average value of the remaining lifetime in a period of time was counted and the
RUL value of the transition fragment was replaced by the mean value;

The training of RVM can be completed by repeating 2–4 until it stops meeting certain con-
vergence criteria, that is, when the change of mean square error is within the pre-set threshold.

Due to the complex relationship between condition monitoring data and remaining
lifetime, it is difficult to determine which prediction method will perform better in a specific
situation. Therefore, a feasible way to fuse the lifetime prediction results under different
conditions is to fuse multiple methods. Compared with a single prediction method, the
fusion of multiple prediction methods can effectively improve the accuracy and robustness
of prediction.

In this paper, a RUL prediction fusion method based on information entropy is pro-
posed, and the RUL prediction results using evidence theory regression, support vector
machine and neural network are fused according to this method. The basic principle of the
fusion method based on information entropy is that for each prediction method member, if
the variability of the prediction error sequence is large, its corresponding weight should be
set relatively small during synthesis. The specific calculation process is as follows [31].

emt =


1,
∣∣∣∣ rult − rulmt

rult

∣∣∣∣ ≥ 1;∣∣∣∣ rult − rulmt

rult

∣∣∣∣, ∣∣∣∣ rult − rulrt

rult

∣∣∣∣ < 1
(4)

In Equation (4), rult represents the ground truth RUL value of TBC at time t, rulmt
represents the RUL value of TBC estimated by the physical model, and rulrt is the RUL value
of TBC estimated by RVM model. For each prediction method, calculate the prediction
relative error (emt) at all N monitoring points, obtain the sequence composed of relative
error, and normalize it, to obtain pmt:

pmt =
emt

∑N
t=1 emt

, t = 1, 2, · · · , N (5)

Then, the information entropy of the relative error sequence of the physical model
prediction method, hm is calculated as follows:

hm = −kh

N

∑
t=1

pmtlnpmt (6)

where kh is a constant greater than 0 and hm ≥ 0. Then, the coefficient of variation of the
prediction method dm is calculated. Since 0 ≤ dm ≤ 1, according to the principle that the
information entropy of the prediction relative error sequence is opposite to the variability,
the variability coefficient dm can be denoted as:

dm = 1− hm (7)
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Finally, the weight of the physical model prediction method wm can be calculated by
the following equation:

wm =

(
1− dm

dm + dr

)
(8)

Similarly, the parameters of the lifetime prediction method of RVM (ert, prt, hr, dr and
wr) can also be calculated. The final lifetime prediction result can be obtained by weighted
sum of the predicted results [32]:

RUL = wmrulm + wrrulr (9)

3. Data Preparation and Experiments Setup
3.1. Dataset Description

It is extremely difficult to produce different geometrical parameters of internal cracks
using a large number of real coating samples. The coating samples obtained by real
experiments often have low precision, low efficiency and high cost. The reason is that in the
real experiment, the internal cracks should be added in the coating manufacturing stage.
Once the internal cracks are generated in the coating, it is difficult to modify the parameters
of the crack. Therefore, a large number of workpieces are needed to generate cracks of
different lengths or positions. In addition, it is difficult to control the crack parameters
accurately in the real experiment since the procedure is inside the coating. If a numerical
TBC and crack model can be established, it will be very convenient to test and develop the
performance of the crack detection scheme. Reference [32] developed a 3D finite element
heat transfer model to evaluate surface crack depth using lock-in infrared thermography.
Similarly, in this paper, microstructure reconstruction software was developed by our
team to establish the TBC model [33,34] with a variety of sizes and locations of internal
cracks (see Appendix A). The material of the TBC is 8% mol yttria-doped zirconia (8YSZ).
Nickel base alloy is used as substrate material. There is a 10 µm thick bonding layer
over the substrate, which is composed of thermally grown oxides (TGO). Table 1 lists
the calculation parameters of the model. The initial thermal excitation comes from the
air temperature at the top of the coating and the substrate temperature. By applying the
calculation parameters, calculation boundaries, flow and thermal boundaries as well as
the evolution equation of the temperature fields given in reference [35], the steady-state
temperature distributions of the TBC can be then calculated. It should be noted that the
numerical coating model is based on the assumption that the pore distribution of the
coating remains unchanged in a period of time (This is normal in reality, since the pore
location of the coating are determined at the time of manufacture. Only in some cases, such
as corrosion, can this characteristic be changed). The dataset contains 245 infrared images
of TBCs with resolution of 360 × 360 pixels and 116 images with resolution of 720 × 300.
The porosity is set from 1% to 25% (step size = 1%) [36]. The crack width is set at 4 µm and
12 µm and the crack length is set from 10 µm to 260 µm (the crack with a width of 4 µm
cannot be set longer than 80 µm). Ellipsoid cracks are selected as the morphology and the
locations of cracks are set randomly.

Table 1. Calculation parameters of the numerical model.

Parameter Value

Air thermal conductivity/W·m−1 ◦C−1 0.0807
8YSZ thermal conductivity/W·m−1 ◦C−1 2.43

Topcoat temperature/◦C 1212
Substrate temperature/◦C 844

Horizontal velocity of upper boundary fluid/m·s−1 23

3.2. Dataset Augmentation and Experimental Setup

Deep learning target detection always needs a large number of images to prevent
model over-fitting. Since there is no public infrared image data set of high-temperature
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TBCs, and the simulation samples are relatively limited, a series of operations were carried
out to expand the dataset. The size of the dataset can be augmented through certain
geometric transformations and size transformations of the image, such as rotation, flip,
clipping, scaling transformation, and so on. Clipping did not work well since the method
of crop and mix often does not meet the characteristics of coating heat conduction, and
will make the infrared image very unnatural. Although the scale of coating cracks may
change, the pores of the coating are often fixed, so changing the scale to enhance the data
is also ineffective. Rotation and flip are adopted and proved useful in this paper. The
original image dataset is enhanced to 1083 images. In order to make full use of the dataset,
a 5-fold cross validation is conducted. The specific steps are as follows: the initial sampling
is divided into 5 sub samples, a single sub sample is retained as the data of the validation
model, and the other 4 samples are used for training. The cross validation is repeated
5 times, and each sub sample is verified once. The results of 5 times in total are used to
obtain the estimation result.

The code is implemented in the TensorFlow framework. TensorFlow is an end to
end software library developed by the Google brain team for machine learning. It con-
tains various open source tools and libraries, enabling developers to build and deploy
applications supported by deep learning. Adaptive momentum (ADAM) is chosen as the
optimizer. Adam is an adaptive moment estimation gradient descent algorithm. Its super
parameters are well interpretable, and can generate adaptive learning rates for different
network parameters, so that the gradient update is more stable and natural, and efficient
convergence can be achieved. The mini-batch size of the RPN stage and classification stage
is 8. The initial learning rate of the first 35,000 iterations is 0.0001 while the learning rate
of the subsequent 5000 iterations is 0.001 to increase the training speed. The maximum
iterations are set to 40,000. The momentum is 0.9 and the weight decay is 0.0001.

In the stage of RPN, various shape and scale parameters of anchors are set, as well
as the thresholds of anchors and true cracks to select positive and negative samples. In
training the RPN network, when the overlap between the ground truth and the anchors
meets the conditions, the anchors can be used to train the RPN network. Figure 2 shows
the training curve of the MSE-Faster R-CNN. In this figure, Loss_cls represents the loss of
classification, which refers to the difference between the predicted class and the actual class
through the Softmax layer. Loss_bbox represents the loss of crack location, which refers
to the difference between the predicted anchor location and the actual anchor location
during the training stage by calculating the most fit anchor box after NMS. In the training
phase, these two loss functions are minimized to achieve higher accuracy. From the figure
it can be seen that both the loss of classification and the loss of regression converge after
40,000 iterations, decreasing from 90% of the initial iteration to less than 15%.
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4. Experiments Results and Discussions
4.1. Evaluation Criteria

In this paper, the performance of crack detection is evaluated by calculating the
detection accuracy (Da). It is calculated by Precision and Recall. The equations are:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

Da = (1 + k) · Precision · Recall
k Precision + Recall

(12)

In Equations (10) and (11), TP, FP, and FN are the proportions of crack detection
that are considered true positives, false positives, and false negatives, respectively. In
Equation (12), it can be seen that k controls the weight of Precision and Recall. When k is
set as a high value, it indicates that Precision is more important in diagnostic performance,
and vice versa. Here k is set as 1 to indicate that the Precision and Recall are looked as of
equivalent importance.

Another measure to evaluate the performance of the algorithm is the location accuracy
(La). Crack position is an important parameter to judge the health of a coating. It is defined
as following:

La = 1−

√(
xd−xg

)2
+
(

yd−yg

)2

√
(xv−xo)

2 + (yv−yo)
2

(13)

In Equation (13), xd and yd are the X coordinate and Y coordinate of the detection crack
center point, respectively; xg and yg are the X coordinate and Y coordinate of the ground
truth crack center point, respectively. For normalization, xv and yv denote coordinates of
the vertices of the coating piece, while xo and yo denote coordinates of the center of the
coating piece. A large value of La means that the center point of the detected crack is close
to the ground truth, and vice versa.

4.2. Experiments and Discussions of Baseline Network Models

In this section, Alexnet [37], VGG-16, VGG-19, Resnet-50 [38] and Resnet-101 network
are used as benchmark feature extraction networks. These networks are popular transfer
learning models. Alexnet has the least network layers and Resnet-101 has the most layers.
Faster R-CNN is used as target detection model for the experiment.

According to Table 2 (Numbers in bold format are the best results, the same as below),
under the test of the same dataset and target detection model, VGG-19 network can achieve
0.814 positioning accuracy and 0.733 detection accuracy, both of which are the highest values
among the baseline networks. The accuracy of Alexnet is the lowest. This may be because
the number of layers of Alexnet network is shallow, and the number of convolution cores
is relatively small, which limits its deep feature expression ability. For the task of internal
crack detection required by the expression ability of highly abstract features, Alexnet has
difficult in achieving satisfactory results. It can also be seen that the detection accuracy
of VGG-16 is slightly lower than that of VGG-19, because VGG-19 has more parameters,
and the same trend can also be obtained in Resnet-50 and Resnet-101. Integrating the
positioning accuracy and detection accuracy, VGG-19 is selected as the benchmark model.

4.3. Large Scale Crack Detection Experiments and Discussion

In the real gas turbine operation process, it is difficult to detect cracks on global scope
due to the limitation of shooting resolutions. Under such conditions, if the detection of large
cracks (between 100 µm to 260 µm) can be realized on global scope, it can effectively avoid
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the occurrence of major risks. Therefore, in this section, the detection of cracks between
100 µm and 260 µm in a large coating model will be discussed.

Table 2. Accuracies of different baseline network models.

Models Location Accuracy Detection Accuracy

Alexnet 0.711 0.662
VGG-16 0.781 0.729
VGG-19 0.814 0.733

Resnet-50 0.732 0.725
Resnet-101 0.778 0.732

Figure 3 shows the detection results for different coating porosity and length of large
scale cracks. The upper row is the temperature distribution of the coating with internal
cracks. The temperature distribution here is intercepted by the numerical model in the
state of heat exchange convergence, that is, it can be regarded as the final image surface
temperature distribution. The temperature legend attaching the input image is generated
based on the maximum and minimum temperature of the color temperature map, which
will make the quality of the image reach the best possible level. The middle row is the
feature visualization result, which maps the features in the convolution process to the pixel
space to realize visualization, so as to observe the abstract process more intuitively. Since
the model network is deep, an obvious convolution characteristic diagram is given. The
correlation between the convoluted object and the convolution kernel can be calculated by
the convolution kernel. The stronger correlation between the corresponding parts and the
convolution kernel, the greater the convolution result will be. It can be seen from the figure
that the deeper convolution layer makes the crack contour information fuzzy, but it can
still show the area where the crack appears well. The bottom row is the detection results.
The results show that cracks have been correctly detected with bounding boxes by using
the detection scheme.
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Figure 4 presents the confusion matrix of large-scale crack detection using the proposed
algorithm. The confusion matrix is an analysis tool to measure the classification and
prediction ability of the model. The rows of the confusion matrix represent the real value
of each class and the columns represent the actual number of the predicted value of each
class. The form of the confusion matrix is:

C = C
[
cij
]
, i, j = 1, 2, . . . , K (14)Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 21 
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In Equation (14), C is the confusion matrix, K is the total classification number, cij
represents the number of prediction results of classifying the class i samples represented
by row i into the class j samples represented by column j. Therefore, the main diagonal
elements (i = j) in the confusion matrix indicate that the classification is correct, and other
non-main diagonal elements are miss-predictions. From the figure it can be seen that the
overall accuracy of the proposed method is 84.95%. With the increase of crack length, the
detection accuracy increases; especially when the crack length is more than 260 µm, the
accuracy is more than 92%. This is because the longer crack has a greater influence on the
whole region, which is more easily captured by the RPN network of MSE-Faster R-CNN in
the training stage and regressed in the L1 smooth stage.

4.4. Small Scale Crack Detection Experiments and Discussions

During the real monitoring, it is also necessary to observe the coating status of the
local area at a high resolution. At this time, the shooting range will be narrowed. This
requires the detection scheme to realize the diagnosis of small cracks with high accuracy.
This section will describe such experiments.

Figure 5 shows the surface temperature maps and the detection results of TBCs
obtained under different coating porosity, length and position of small scale cracks. The
crack length changes from 10 µm to 40 µm. The positions of cracks are at the center, upper
left, upper right and bottom right of the image. The middle row is the feature visualization
map. It can be seen that compared with Figure 4, the feature visualization effect of this
figure is weakened, which shows that the detection accuracy of the algorithm is reduced in
the case of small cracks, but it can still accurately identify the cracks. Through the proposed
scheme, all the cracks are detected and located accurately with the anchor boxes. This is
because MSE-Faster R-CNN has good global feature decoupling. After the convolution
kernel fusion of different scales is introduced, some low activation neurons are successfully
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removed, and thus the feature extraction ability of the model is improved. Despite the
similarities between small internal cracks and pores, there are still some differences. Pores
are typically isotropic and have more uniform effects on the global, while cracks are
anisotropic and have greater effects on the local. If MSE-Faster R-CNN can distinguish the
differences between the two kinds of “holes” then this problem can be effectively solved.
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Figure 6 demonstrates the confusion matrix of the small scale crack detection. In
general, the accuracy of crack detection is decreased compared with that of large cracks,
from 84.4% to 81.74%. The detection accuracies are relatively high when there is no crack or
the crack length is 40 µm, which are all around 85%. When the crack is 20 µm and 30 µm,
some crack samples are easily confused with the nearby classes. Their accuracies are both
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less than 80%. The reason is as aforementioned in Figure 6: Small internal cracks are easily
confused with pores due to their similarities in morphology. The change of temperature
caused by a 10 µm crack is relatively weak. A similar conclusion can be drawn from another
phenomenon; that is, compared with the results in Figure 5, the probability of confusion
happening in a neighbor crack class is increased, but it is more difficult to confuse with
further crack categories.
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4.5. Comparative Analysis with Different Crack Detection Algorithms

To comprehensively evaluate the crack detection performance of MSE-Faster R-CNN,
four other detection methods are used for comparison. In this part, VGG-19 network is set
as the benchmark network, while Faster R-CNN, YOLOv4, Single Shot MultiBox Detector
(SSD) [39], MMTL-NET [40], SegNet [41], and MSE-Faster R-CNN methods are used as
target detection models for experiments. The location accuracy of different kinds of cracks
is listed in Table 3. Among the methods, the proposed scheme has the best result (0.898).
This shows that MSE-Faster R-CNN outperforms the original Faster R-CNN, and can better
ensure the safety and economy of gas turbine operation. YOLOv4 is another state-of-art
deep network, and it outperforms YOLOv3 with respect to detection accuracy as well as
speed. It has a better result than Faster R-CNN (0.819). Unlike Faster R-CNN, YOLOv4
is a one-stage detector which also uses max-pooling and a mish activation to improve
the accuracy. However, the feature extraction network of YOLOv4 is so deep that the
information will be lost during training. The multi-scale model proposed in this paper
fuses the convolution kernels of different visual fields, which enriches the diversity of
features. Thus, the accuracy of the proposed method is higher than YOLOv4. The accuracy
of the SSD algorithm is not as good as the previous deep learning algorithms (0.783). This
might be because SSD are not sensitive enough to detect internal cracks. MMTLNET is a
transfer learning network with adversarial training for 3D whole heart segmentation and it
can extract multi-modality features and obtain the final segmentation results by fusing MRI
and CT images. However, when the intersections of two or more foreground objects are not
obvious like the pores and tiny cracks, its accuracy will be greatly reduced. Like the results
shown in the last column, the accuracy of detection of small scale cracks decreases 0.2.
Similar results also appear on SegNet, which is a state-of-art surface crack segmentation
method, as discussed in the introduction. It can also be seen that when the crack length
increases, the accuracy of each algorithm increases. This may be because the crack length
and opening and closing degree in the large-scale crack dataset are more obvious than
those of small-scale cracks.
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Table 3. Algorithms comparison in crack location accuracy.

Class\Method Proposed Faster R-CNN YOLOv4 SSD MMTLNet SegNet

Non-crack 0.915 0.822 0.825 0.819 0.754 0.726
Large-scale cracks 0.923 0.850 0.861 0.830 0.780 0.731

Small-scale cracks 0.848 0.763 0.767 0.714 0.552 0.509
Average 0.898 0.819 0.823 0.782 0.698 0.650

Table 4 shows the comparison of crack detection accuracy of various algorithms. The
conclusion is close to Table 3: the algorithm proposed in this paper still achieves the
best performance (0.806). It can be seen that the detection accuracy of each algorithm
has decreased compared with the positioning accuracy, which is also consistent with the
conclusions in Table 2. In addition, the detection results of large-scale crack data set are
better than small-scale cracks, which is still in line with the previous conclusions.

Table 4. Algorithms comparison in crack detection accuracy.

Class\Method Proposed Faster R-CNN YOLOv4 SSD MMTLNet SegNet

Non-crack 0.821 0.747 0.764 0.783 0.665 0.626
Large-scale cracks 0.864 0.814 0.802 0.726 0.699 0.638

Small-scale cracks 0.712 0.650 0.668 0.677 0.640 0.606
Average 0.806 0.739 0.747 0.732 0.673 0.627

4.6. Experiments and Analysis of Coating Lifetime Estimation

As a durable part of the turbine blade, its economy should be considered in the real
service process. The service lives of turbine blades can be greatly prolonged by removing
coating and re-spraying. Therefore, it is also of significance to accurately estimate the TBCs
lifetime to determine the operation decisions for gas turbines without causing irreparable
damage to the hot components.

In order to quantitatively evaluate the deviation between the predicted results and the
ground truth, the Root Mean Square Error (RMSE) is adopted: which is defined as:

RMSE =

√
1
n

n

∑
i
(Ri − Pi)

2 (15)

In Equation (15), n is the total number of predictions, Ri is the real RUL of the ith
sample. It is given by the finite element simulation results on the numericial model. Pi is
the predicted RUL of the ith sample using the lifetime prediction methods.

The physical model, RVM model and information entropy fusion model are compared
by predicting the RUL of the TBC. Table 5 lists the comparison of RUL prediction results
using single method and weighted fusion algorithms. It can be seen that the fusion method
based on information entropy has the best effect, which is superior to the other two methods
in terms of the RMSE. The time cost of using the single detection method is shorter than that
of the fusion method. However, all the time consumption periods for these methods are less
than 2 s, which is acceptable for on-line monitoring of coatings with a low sampling rate.

Table 5. Comparison of RMSEs of different lifetime prediction methods.

Methods RMSE Time Cost

Single-Physical model 8.7 0.95 s
Single-RVM 3.3 1.26 s

Information Entropy 2.7 1.63 s
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The lifetime estimation result calculated by the fusion model is depicted in Figure 7.
The result reveals that the effect of crack length on coating lifetime is nonlinear. When
the crack length is between 20 µm and 200 µm, the coating lifetime fraction does not
increase significantly, but when the crack length is above 220 µm, the coating lifetime has
entered a sharp downturn, which reflects that the crack length has an exponential effect
on the internal stress. This conclusion is basically consistent with the detection accuracy
given by Figure 5 since when the crack length is more than 220 µm, the detection accuracy
also sees a great improvement. The error rate of different porosities and temperature
legends in variation of crack lengths is also described in the figure. The temperature legend
represents the range of the whole picture. When the temperature legend is set larger and the
shooting range remains (as is the case in this study), its resolution will be lower, providing
disturbance for lifetime prediction. The temperature legend in this lifetime prediction
experiment is set between 1020 ◦C and 1080 ◦C initially, and expanded to between 940 ◦C
and 1080 ◦C. The porosity is set at 25% initially, and decreased to 5% by the end. From
the figure it can be seen that all detection conditions of the error rates are below 15%. The
distribution of error rates is nearly random but generally the error rate of changing porosity
is lower than that of changing temperature legend. That is probably because a larger legend
will decrease the quality of an infrared image. An appropriate setting legend will make
the contrast of the image placed in the best position, which will make it easier for the
trained MSE-Faster R-CNN detector to capture the features reflecting the cracks, so that the
detection accuracy will be higher.
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5. Conclusions

To solve the problem that the existing crack detection methods have poor generaliza-
tion ability and low accuracy for internal cracks, a detection scheme based on MSE-Faster
R-CNN was proposed. Firstly, VGG-19 was employed as the baseline network to select
crack candidate regions. Secondly, a novel design of MSE-Faster R-CNN detector was
utilized to conduct feature fusion, classify the state of the candidate region and measure
the crack position and length. The performance of the method was validated by different
scales of numerical dataset. The following conclusions can be drawn:

1. By comparing different state-of-art methods, experimental results showed that the
internal crack detection by the proposed scheme had best performance at both large
and small scale. The accuracy can reach 0.898 in location detection and 0.806 in crack
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detection. The proposed scheme can distinguish the differences between the small
internal cracks and pores, but the detection error rate also increases.

2. Based on the localized diagnosis of cracks and the fusion lifetime estimation algorithm,
the coating lifetime can be preliminarily evaluated by the crack detection results. The
fusion lifetime estimation result with different crack lengths had acceptable RMSE (2.7)
as well as time cost (1.63 s).

3. In future, further research should be promoted to detect other characteristics of
internal cracks, such as density, morphology, crack orientation, etc. Current research
mainly focuses on the diagnosis of a single crack. In reality, there may be multiple
cracks at the same time. Due to the heat flow coupling effect between the cracks, this
effect will have a complex impact on the temperature distribution. Current research
regards the crack shape as an ellipse and regards crack orientation as almost straight,
but in reality, there are other crack growth patterns and orientations. Such different
growth patterns and orientations will have significant effects on the temperature
distribution. In addition, the proposed scheme should be tested and improved using
real data to validate the feasibility. Although transferring learning is used, which is
helpful to the results, the existing datasets still need to be expanded at different scales.
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Appendix A

Table A1. The list of abbreviations.

Abbreviations Full Name

TBC Thermal Barrier Coating
VGG-19 Visual Geometry Group Network-19 layer

ROI Region of Interest
R-CNN Region-Convolutional Neural Network
RMSE Root Mean Square Error
YOLO You Only Look Once
RPN Region Proposal Network

MSE-Faster R-CNN Multi Scale Enhanced-Faster R-CNN
FC Fully Connected

NMS Non-Maximum Suppression
IoU Intersection-over-Union

RVM Relevance Vector Machine
SVM Support Vector Machine
RUL Remaining Useful Lifetime
RBF Radial Basis Function

ADAM Adaptive momentum
SSD Single Shot MultiBox Detector
TGO Thermally Grown Oxides

The reconstructed TBC model.
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The reconstructed theoretical model of TBCs is compared with the real structures
obtained from the 2D Scanning Electron Microscope (SEM) images in the existing litera-
tures [42–44]. A lot of such images in copious literatures are obtained and analyzed as the
basis of the numerical reconstruction. Here, briefly take Figure A1 for example. Meanwhile,
typical parameters like porosity, crack shape and crack length are extracted from the real
structures and used to the reconstruction of TBCs.
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Figure A1. The reconstructed model with pores and crack generated by regulating characteristic
parameters extracted from the real structures.

When generating a TBC from the real structure images, the porosity and information
of pore shape and number can be measured by an image analysis technique based on image
processing software ImageJ [33,34]. Then the mean pore size and pore size distribution can
be calculated (see Figure A2). The calculated pore size distribution of the top coat prepared
vs. numerical reconstructed model are shown in Figure A3. It can be seen that the pore
size distribution in reconstructed model fit well with that in real coating structure within a
certain allowable error range.
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