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Abstract

:

Remarkable progress in the Internet of Things (IoT) and the requirements in the Industrial era have raised new constraints of industrial data where huge data are gathered by heterogeneous devices. Recently, Industry 4.0 has attracted attention in various fields of industries such as medicines, automobiles, logistics, etc. However, every field is suffering from some threats and vulnerabilities. In this paper, a new model is proposed for detecting different types of attacks and it is analyzed with a deep learning technique, i.e., classifier-Convolution Neural Network and Long Short-Term Memory. The UNSW NB 15 dataset is used for the classification of various attacks in the field of Industry 4.0 for providing security and protection to the different types of sensors used for heterogeneous data. The proposed model achieves the results using Cortex processors, a 1.2 GHz processor, and four gigabytes of RAM. The attack detection model is written in Python 3.8.8 and Keras. Keras constructs the model using layers of Convolutional, Max Pooling, and Dense Layers. The model is trained using 250 batch size, 60 epochs, 10 classes. For this model, the activation functions are Relu and softmax pooling.
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1. Introduction


The combination of Industrial Internet of Things applications and the manufacturing field acts as a big opportunity to enhance the base of the customer. Production-oriented applications, generally, improve the manufacturing process and reduce implementation complexity. They also enhance organizational communication and collaboration inside the company [1]. Likewise, the deployment of automated wireless communication technologies can ensure effective communication at any time and location, facilitating an industrial firm’s successful growth and development. The importance of those networks based on the Internet of Things (IoT) in Industrial IoT applications is discussed in this section. Industrial organizations, on the other hand, continue to use conventional methods for continually improving industrial efficiency in tandem with adaptation in supervision, management, and control. This drives a tendency to look into new perspectives in industrial processes, as well as intellectual disciplines, to better understand the difficulties ahead [2]. As a result, the agile manufacturing applications, which allow information interchange, are in conflict with various businesses. There may also be challenges in bringing Industry 4.0 applications to industries. The examination of the elements that cause these issues allows businesses to better govern the transformation process. It also makes the transition easier. There are several solutions to analyze the criteria available in the literature. For this type of investigation, the decision-making procedures based on multiple criteria are useful [3]. The research related to Industrial IoT, also known as Industry 4.0, is generally undertaken in the field of manufacturing in developed countries, as the following conception was conceived in the world’s leading industrial economies [1]. The goal of this study is to assess the application of advanced digital technologies in Industrial Domains and in transition nations in the context of Industrial IoT, where a lot of attacks occur on the Industrial networks where security plays a crucial role. This assessment contains the security approach in comparison with the sophisticated digital technologies using a set of criteria. Meanwhile, the industrial sector has a gradual increase in the number of edge and control devices where various security and privacy issues have surfaced, posing a significant threat to the IIoT’s security and credibility [4]. Intruders may be able to take advantage of these edge and control devices. A hacked IoT device might send fake data to cloud servers or allow unwanted access to sensitive corporate papers, financial projections, and company data. This could result in equipment failure, as well as economic damage. One of the biggest issues in the smart industry is ensuring cybersecurity in the IIoT. It comprises protection from malicious software, prevention from unauthorized access, and communication and physical privacy protection. By installing modern and comprehensive security procedures, the IIoT’s security, privacy, and trustworthiness may be improved. Deep learning (DL) techniques for designing and developing solutions related to cybersecurity have gained a lot of interest in recent years from both industry and academics. DL techniques have a lot of potential for producing improved results from industries’ huge data [5]. Therefore, developing more safe and robust attack detection techniques for the IIoT continues to be a challenge. The remaining paper is composed of the following sections: Section 2 presents the related work. Section 3 presents the proposed hybrid CNN-LSTM model. Section 4 presents the results and discussion part, while Section 5 which is the Conclusions part.




2. Background and Related Work


The authors [6] outlined the number 9 cornerstones of Industrial IoT as well as their associated problems. Big Data Analytics, Intelligent Robotics, Simulation, Longitudinal, and Combined Directional systems, etc. The researchers discussed the issues and challenges associated with Industry 4.0: Automation and self-managing systems must be present in adaptive production systems, contrasting the lack of knowledge of robotics in today’s systems. Indian women’s network procedures should be sufficient in terms of speed [7]. It is difficult to keep track of data and ensure that they are accurate. The system should be constructed in such a way that it can handle its manufacturing process. Defending against a cyber-attack requires security measures. The authors in [8] developed a theoretical framework for analyzing Industrial IoT adoption patterns. They conducted a study in 92 industrial sectors to assess the adoption of Industry 4.0 front-end and base technologies. The usual categorization of IT security goals is divided into confidentiality, integrity, and availability. The CIA-triad in [9] is the name given to these three categories. Only authorized users have access to certain information, ensuring confidentiality. Integrity refers to the intact information and consistently refers to an underlying occurrence or fact. When authorized users have instant access to information, availability is met in [10]. In recent years, science has progressed beyond additional IT security goals or standards, such as authenticity, accountability, and transparency, defined by the CIA-triad. This interconnection of cyber and physical systems, however, raises security and privacy concerns [11]. As a result, the initial step in maintaining security and privacy is to determine the vulnerabilities being faced. The authors of [12] suggested a zone partitioning-based anomaly detection mechanism for industrial cyber-physical systems based on the creation of a zonal functional model. Intrusion responses for industrial control systems were proposed by researchers in [13]. The authors came up with a supply chain in the field of Industrial IoT. The pros and cons of Industrial IoT concern supply chain, storage, and transportation [14]. The authors of [4] came up with an approach using a Convolutional network for detection of attack known as DoS, and it is 92.9% accurate. The authors in [11] demonstrated a deep learning-based sequential long short-term memory (WDLSTM) network with the CAIDA dataset [11] for anomaly detection, with 96.7% accuracy. A convolutional network is employed for feature extraction from large data for intrusion detection, and the KDD CUP 99 is used for the classification of attacks in the suggested technique. Compared with existing systems, the proposed method demonstrated improved performance. A migration deep learning-based detection threat for IoT-connected smart cities was introduced in [15]. The researchers used the famous and initial dataset known as KDD CUP 99 to assess the performance of the model. The results of the experiments confirmed the improved accuracy, as well as the detection time for detecting malware attacks in the industrial field. A combined approach based on an improved genetic algorithm and deep belief networks was introduced in [16]. The genetic algorithm for determining hidden layer neurons and the deep belief networks are used to classify the attacks more accurately and efficiently. The proposed approach was evaluated using the NSL-KDD dataset, an attack detection system that works in the IIoT network. The authors created a deep neural network based on the Gaussian Bernoulli Restricted Boltzmann Machine (GBRBM) (DNN). This method turned fault detection into a challenge for classification [17]. A combined technique for binary classification was used to combine the deep network and the k-Nearest Neighbors algorithm (kNN). The CICIDS and NSL-KDD datasets were used to test the researchers’ model for failure detection by using a bidirectional long short-term memory approach [18]. The Table 1 is showing comparison of attacks with different datasets.




3. Proposed Hybrid Model CNN-LSTM


Research works lag in terms of intrusion detection, according to the survey [18], since research models are targeted at detecting single attacks. There are few research models aimed at detecting repeated attacks, and the system’s computing cost is quite high, making it inappropriate for a wide range of applications. This suggested research focuses on Convolutional Neural Networks (CNN), which have gained popularity in recent years. A deep learning classifier Convolutional Neural Network (CNN) is used for the classification of data that excels in managing a variety of database collections [19]. IDS based on CNN have only recently evolved, and their performance outperforms that of existing detection approaches. The proposed study model integrates the recurrent neural network (RNN) model-based Long Short-Term Memory (LSTM) to produce remarkable performance in identifying a wide range of network anomalies and malicious assaults, even though convolutional performs better. Figure 1 depicts the current hybrid CNN-LSTM prototype. A suitable dataset is selected, from which original and valuable features can be extracted by deleting redundant features and replacing them with improved ones using a deep learning LSTM model. The Intrusion Detection System can be used for classification and detection of assaults after the model has been trained using CNN and a corresponding weight set has been obtained. A well-known data classification model that excels at handling a wide range of database resources. The performance of convolutional network-based intrusion detection systems has recently improved, and it currently beats earlier detection methods [20]. Although convolutional performs better, the suggested research model employs LSTM, an RNN diversification, to produce greater performance in the detection of attacks. As illustrated in Figure 1, the proposed model is divided into the following phases: data collection, Feature extraction, and Improved features; then the training can be performed by the convolutional network, and attack detection. The collecting of network vital data is an important step in this procedure. After collecting the intrusion dataset, the preprocessing is conducted following the data cleaning steps such as dealing with the missing and filling values along with the noisy data. Afterwards, features which are relevant can be extracted as per the requirement. The following step is used to make the training set, feature set, and testing set. The training model will obtain fine-tuned data using one or many convolutional layers, connection weights of the neuron, and outputs (see Figure 2). Finally, the identification step works with the data trained, and obtained information is merged for weight production, and the training period is employed for threat identification. The input layer with a matrix set   p 0     q 0   and an output layer with a group of neurons for each label makes up the network structure. This research focuses on creating features that can be tweaked to capture the attacks and how they are effective in detecting in the industrial sector. Even though the feature can be any created signature based on any physical measurements, the proposed attack detection framework employs three types of features to capture both time and space attributes of physical systems: physics, learning, and statistics-based features. This is utilized in calculations involving space. The following study is used to calculate multiple and univariate characteristics, as well as independent (univariate) data. To capture the dynamics of the entire system or temporal holdings, the characteristics are computed on a sliding window [21]. Assume that m physical measurements exist:    a 1  ;  a 2  ; …  a m   . There are three measurement parameters, such as actuator, sensor, and perhaps periodically control change limitations, and the sliding window’s width can be taken as s. This process is used to collect critical information from nodes, as well as infectious node identification.Long Short-Term Memory is used in the following step to learn all the patterns through the network [22]. The LSTM model, which is based on a recurrent neural network, uses time stamps to generate the output. However, using LSTM alone to identify network intrusion is unsuccessful due to a problem with gradient vanishing that prohibits it from learning information for a long period. However, the efficiency of the LSTM is far better for short periods, and the system’s complexity is drastically decreased. A string of inputs is passed to the connected hidden layers, which produce the desired outputs in a traditional LSTM. Bidirectional LSTM models were eventually developed, which used two hidden layers to process input strings in both forward and backward orientations (see Figure 3).



These parameters have an impact on data transmission and retrieval through the network. The input features are labeled in the training phase, and a neuron-based feature matrix is assigned to each element in the input level. The connection weights of a neuron and matching weight matrix for such a convolutional layer can be constructed after the inputs have been processed. The configuration has p convolutional layers, with vector layers denoted by f, output neurons denoted by q, and the weight function denoted by w. The weight functions for the output layer q can be computed as in Equation (1):


   w y  =   ∑  n = 1  N   ∑  m = 1  M   (  p n  ∗  f n  + 1 )  + p ∗ f   



(1)




where the total weight of the network is w   y  , the size of a filter of the window is    p n  ∗  f n   , and the number of convolutional filters can be denoted by M [23]. The input with its related weights generates the loss function-based label throughout the training process. The loss function is given as and is derived from the compact size and validation data of the corresponding model as in Equation (2).


   L f  =   L c  + ϕ ∗  L d    



(2)







The scaling parameter  ϕ  is utilized to evaluate the precedence of nodes to calculate the next two metrics’ compact size and descriptiveness [24]. The important features are extracted from the supplied dataset and transformed into a feature matrix in the detection step. The matrix function assists in calculating the weight set in the training phase, and the output layer determines neuron labeling. The outputs are monitored using the activation function, and are given as in Equation (3):


   f m   ( y )  =   e m 0    ∑  m − 1  n   e n 0     



(3)







The probability of each neuron’s output and weight of a fully connected layer can be calculated by the activation function. In general, the activation function’s value ranges from 0 to 1, with the largest value representing the output label.




4. Results and Discussion


4.1. Preprocessing and Testing


The data are obtained and exported in readable format, therefore, before the execution process, the data are to be preprocessed. The proper format of data is taken. The sheer volume and dimensionality of the data make it compulsory to perform proper data preprocessing to clean and format data before any training. The first thing to account for is that some of the data may be missing or corrupt. After this initial cleansing and formatting of the following dataset, the horizontal complexity imposes some preliminary feature selection to guide the test. The suggested proposed system has been tested in the lab and compared to a CNN and RNN-based IDS. The data set for the proposed methodology is used for the ratio of 70% and 30%. The 70% is used for training and the other 30% is used for testing. The developed scheme analyzes the dataset for features and distinguishes between attack and normal conditions.



This is one of the latest IIoT datasets, which is widely used to assess the effectiveness of cybersecurity systems based on machine learning. There are a total of 257,673 samples in this dataset, with 164,673 inaccurate results and 93,000 normal values. There are 49 features and 9 types of threat in this dataset. Following are the types of attacks such as backdoor, analysis, reconnaissance, exploit, generic, fuzzer, DoS, worm, and shellcode assaults. The authors in [12] identify the network size of a packet, IP addresses of both source and destination, ports, set of rules, and so on, that can be used to forecast harmful malicious activity. The UNSW-NB15 dataset is used in the cited paper to train and test their model. For creating their model and assessing predictability, the four machine learning classifiers are used. The results revealed that the machine learning classifiers’ decision tree has better results, with a 93 percent accuracy rate. Some of the datasets given did not prefer a realistic testbed, and some of the threat scenarios were not varied. The model requires the following dataset for the tests due to its attributes such as regular updates, substantial attack heterogeneity, and integration of the traffic generated by IoT. To begin, both the training and testing datasets are loaded and the fundamental libraries needed to run the program are imported. The dataset is checked for missing values during the preprocessing step. The resulting dataset is well organized, therefore, there are no null values in the dataset. As a result, utilizing functions separates the different attacks from normal traffic data. The fundamental problem with this particular dataset is that data entries of the malicious traffic are much larger than the regular traffic data entries. The legitimate and malignant traffic data pieces were reduced to a 70–30 ratio as a result of the trimmed or pruned data of any attack. As a result of huge positive and few negative examples during training in binary classification, the model will prefer to forecast. In that situation, the model is quite accurate.




4.2. Steps to Load Data


The following model achieves the results using processors, with four gigabytes of RAM. The attack detection model is written in Python 3.8.8 and Keras. Keras constructs the model using layers of Convolutional, Max Pooling, and Dense Layers. The use of a dense layer is to alter the dimensions of the vector. This layer additionally manipulates the vector’s rotation, scaling, and translation parameters. Following that, the hyperparameters are optimized, as shown below, and the model is trained using the values of the hyperparameters with 20 epochs and a batch size of value 64. The number of classes required is a value of 25, to analyze the detection of attacks. The activation function in the following hybrid model is ReLU.



The ReLU sequence is followed by the convolution layer, which is used for mapping the features present in the output layer. The ReLU function is defined as follows in Equation (4):


  f  (  a 0  )  = m a x  ( 0 ,  a 0  )   



(4)








4.3. Analysis and Discussion


This section discusses the various settings as well as the outcomes of using the hybrid CNN-LSTM model. The following are the performance metrics on which the dataset is based. The efficiency of the dataset utilized to provide the best and safest findings affects performance metrics.



The first step is to train the model using a batch size of 250, epoch 60, and some classes 10, the activation function used is relu along with the softmax pooling. Table 2 discusses the various parameters along with their values.



After concluding the model, it is trained with the preprocessed data. For the training phase, epochs and batch size are specified. When approaching the minimum of a loss function, the learning rate regulates the step size at each cycle. An epoch is a complete presentation of the data set to be taught to a learning machine, whereas a batch size is merely the number of training cases used in one iteration. The correlation matrix between different features of the dataset is obtained and shown in Figure 4. Following the model’s training, testing is carried out as described in the preceding section. As a result, a confusion matrix with Predicted Labels and True Labels is obtained. The confusion matrix of all the attacks is represented in Figure 5. Both confusion matrix and correlation matrix relate to each other as the confusion matrix is the relationship between some features of the correlation matrix. The ROC curve is a graph that shows how well The Receiver Operating Characteristic curve depicts the productivity and effectiveness of a classification model at each classification level. Figure 6 depicts the ROC curve for multi-class which is the plot between the True positive and the False positive rate. The various characteristics such as accuracy (Acc), recall (Rec), and precision (Prec) are calculated and the results are shown in Figure 7 and Figure 8, with statistical results including mean absolute error, mean squared error, and root mean squared error.



Performance Metrics


	
Accuracy: It is the percentage of those predictions which are correct to the total True Positive predictions made by the model.


  Accuracy   ( Acc )  =   TP + TN   TP + TN + FP + FN    



(5)




where TP = class predictions True positive, TN = True Negative class prediction, FP = False positive class prediction, FN = False negative class prediction.



	
Recall: It is the ratio of the percentage as true predictions over an actual number of true predictions made by the model.


   Recall   ( Rec )  =  TP  TP + FN   .  



(6)







	
Precision: It is defined as the ratio of the true predictions which are actual over the total true predictions made by the model.


  Precision   ( Prec )  =  TP  TP + FP   .  



(7)










We integrated charting methods using the code, so that the loss functions can be visualized while keeping track of the epoch values. Figure 9 presents the comparison of state-of-the-art techniques.






5. Conclusions


The secure smart industrial domain is an important domain, as it holds sensitive data and records which are of major concern. To maintain security and privacy, the deep neural networks CNN with bidirectional LSTM are used in this paper. A predetermined number of epochs, the size of batches sampled, and the number of classes are the requirements or hyperparameters utilized to experiment to develop a model. To classify attacks, the model uses the UNSW NB15 dataset. Using the following hybrid approach in real-time will face the constraint of accuracy as it is not checked on the dynamic dataset and obtaining more consistent outcomes for different types or combinations of deep learning techniques on varied datasets is another area of investigation for future research.
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Figure 1. The Proposed hybrid model. 
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Figure 2. CNN architecture for classification of attacks in IoT Networks. 
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Figure 3. Working of LSTM. 
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Figure 4. Correlation Matrix. 
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Figure 5. Confusion Matrix. 
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Figure 6. ROC curve. 
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Figure 7. Precision and Recall. 
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Figure 8. Statistical Results. 
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Figure 9. Comparison with the state-of-the-art techniques. 
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Table 1. Comparison of Attacks with different datasets.
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	Ref.No
	Dataset
	ML/DL Classifier
	Type of Attack
	Accuracy





	 [4]
	KDDCUP99
	CNN
	DoS
	92.9%



	 [11]
	CAIDA
	WDLSTM
	anomaly detection
	96.7%



	 [15]
	KDDCUP99
	CNN
	Malware
	97.2%



	 [16]
	NSL-KDD
	DBN
	DoS
	96.3%



	 [17]
	DARPA
	GBRBM-DNN
	Fault Detection
	98.5%



	 [18]
	CICIDS and NSL-KDD
	Bi-LSTM
	Failure Detection
	95.5%



	Our Model
	UNSW NB 15
	Hybrid Model
	Various types of attacks
	99%
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Table 2. Hyperparameters with their Values.
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	Hyperparameters
	Values





	size of batches
	250



	epoch
	60



	number of classes
	10



	activation function
	relu



	pooling
	softmax
















	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file13.jpg
~—4— precision

—a—recall
12

02

1 2 3 Recal & 5 6
Cut-off point (Recall, Precision) = (0.989,0.958) AUC=0.989=99%





media/file4.png
INPUT Convolutional Max Pooling ) 5 Aonvolutlonal
Layer 1 J \ Layer 2

\ 4

Convolutional
Layer 3

Dropout Layer Flattening Layer






nav.xhtml


  applsci-12-06442


  
    		
      applsci-12-06442
    


  




  





media/file18.png
Comparison of State of art

98.50% 99%
97.20%
96.70% ’ 96.30%
95.50%
92 90% I
S N
4\0 @“ ‘b‘ >
%Q“ ‘oe
Q) O






media/file16.png
Mean Absolute Error - ©0.06800262812089355
Mean Squared Error - 0.20532194480946123
Root Mean Squared Error - 0.4531246459965086





media/file2.png
Y

Feature
Extraction

Dense

A

LSTM

Features

g (Improved)

\ 4

Output

A

Fully
connected

Training
(CNN)






media/file5.jpg





media/file3.jpg
Convoluﬂona}\ ” ‘ /éonvommma
INPUT‘>< everi > Max Pooling i fiprh

Dropout Layer /é"':_"_‘;':':’:"‘><— Flattening Layer

OUTPUT






media/file1.jpg
Dataset | Feature Features
it || Extraction (Improved)
Fully Training
o L connected (CNN)

Output






media/file7.jpg
a9

as

03

a0

<3





media/file10.png
Tue label

Analysis -

Backdoor -

DosS -

Exploits -

Fuzzers -

Generic -

Normal -

Reconnaissance -

Shelicode -

Worms -

Confusion Matrix

16

17

0 166 49 0

2 168 40 0

87 1445 51 -

35 . 122 12
4 219 1312 2
9 9% 6
2 68 370

37 0 0 0

858 19 8 3

31 1021 5 0






media/file12.png
Tue Positive Rate

1000

0.975 -

0.950 -

0925 -

0.900 -

0.875 1

0.850 1

0.825 A

0.800

Receiver operating charactenistic to multi-class

0000 0025 0050 0075 0100 0125 0150 0175 0200
False Positive Rate

micro-average ROC curve (area = 0.99)
macro-average ROC curve (area = 0.97)
ROC curve of class Analysis (area = 0.95)
ROC curve of class Backdoor (area = 0.94)
ROC curve of class DoS (area = 0.94)

ROC curve of class Exploits (area = 0.96)
ROC curve of class Fuzzers (area = 0.96)
ROC curve of class Generic (area = 1.00)
ROC curve of class Normal (area = 0.99)
ROC curve of class Reconnaissance (area = 0.98)
ROC curve of class Shellcode (area = 0.99)
ROC curve of class Worms (area = 1.00)





media/file9.jpg
Confusion Matrix

malysis |16 0 0 166 4 0 ¥ o0 0
Backdoor{ © 177 2 168 40 0 2 o0 3

Dos{ © 3 8 1485 51 4

2
E,,moaas.musszam
8s8

Fuers|{ 0 0 4 219 1312 2

Reconnaissance { © 1 7 ®29 3 2 31 1021 5
Selcoge | © 0 1 % 9 4 A U T

Wms{® 0 0 0 0 0 0 o0 0

FHELSFE ﬁ





media/file0.png





media/file14.png
1.2

Precision
=} o = -
N F =y o [+ ]

—&— precision
——recall

=ug =u

1 2 3 Recal 4 5 6
Cut-off point (Recall, Precision) = (0.989,0.958) AUC=0.989=99%






media/file8.png
5
<

src_dpo

a

;
:

£
0
@
v

attack cat

180 YorIE
jsp nSTp
PUWdyy My P
uiboy dy =
g “pods jspp
ug sp p
S NS P
yidep suey
Uesus
yoeuls
uwp

qdogs

up

pdup
ssop

peop

WP

el

sl
spyds
80188

e





media/file11.jpg
Receiver operating charactenistic to multi-class

1000 T RS =

ans
oo
§oms
oo
Foms
asso
oms

™
So00 odzs 0050 0075 oo olzs oo oi7s ox0
e Raative Rate

mcro-average ROC cuve(ares = 099)
macr-average ROC crve(ares = 097)

ROC curve of cas Analysis (s = 035)

ROC cuve of s Backdoor (orea = 094)

ROC cuve of cas DuS (e = 094)

ROC curve of cas Explos (30 = 096)

ROC curve ofcass Fugzers (rea = 096)

RO curve of cass Gener sea = 100)

ROC curve of cass Normal en = 099

RO curve ofcass Reconnasance (aes = 098)
ROC cive ofcass Shedcode (area = 099)

ROC cuve ofcass Woms (area = 100)





media/file6.png
Forward

Backward

.....................................................................





media/file15.jpg
Mean Absolute Error - ©.06800262812089355
Mean Squared Error - ©.20532194480946123
Root Mean Squared Error - 0.4531246459965086





media/file17.jpg
Comparison of State of art

98.50%

97.20%
96.70%
96.30% 95.50%
92.¢ 90" I I
% > &
(4 <
~x\° & @\’b &
&






