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Abstract: Continuous monitoring and observing of the earth’s environment has become interactive
research in the field of remote sensing. Many researchers have provided the Land Use/Land Cover
information for the past, present, and future for their study areas around the world. This research
work builds the Novel Vision Transformer–based Bidirectional long-short term memory model for
predicting the Land Use/Land Cover Changes by using the LISS-III and Landsat bands for the
forest- and non-forest-covered regions of Javadi Hills, India. The proposed Vision Transformer
model achieves a good classification accuracy, with an average of 98.76%. The impact of the Land
Surface Temperature map and the Land Use/Land Cover classification map provides good validation
results, with an average accuracy of 98.38%, during the process of bidirectional long short-term
memory–based prediction analysis. The authors also introduced an application-based explanation of
the predicted results through the Google Earth Engine platform of Google Cloud so that the predicted
results will be more informative and trustworthy to the urban planners and forest department to take
proper actions in the protection of the environment.

Keywords: Land Use/Land Cover; LISS-III; Landsat; Vision Transformer; Bidirectional long-short
term memory; Google Earth Engine; Explainable Artificial Intelligence

1. Introduction

The Land Use/Land Cover (LU/LC) prediction is one of the most significant appli-
cations of remote sensing and GIS technology. The main causes of LU/LC changes are
agricultural/crop damage, wetland change, deforestation, urban expansion, and vegetation
loss. Several researchers working in this application area for many years had different
findings for their study areas around the world. The importance of this LU/LC prediction
research is to provide information about the landscape changes of the specific study area to
the government officials, forest department, urban planners, and social workers for the pro-
tection of the LU/LC environment [1–3]. Remote sensing technology provides information
about the satellite data and helps in performing the LU/LC prediction research effectively.
Researchers have used different remote sensing satellite systems for acquiring the data, and
some of the satellite system databases are Advanced Land Imager (ALI), Hyperion data,
Linear Imaging Self-Scanning Sensor III (LISS-III), Linear Imaging Self-Scanning Sensor
IV (LISS-IV), Landsat Series, Sentinel-2A and -2B, Moderate Resolution Imaging Spectro-
radiometer (MODIS), Rapid Eye Earth Imaging System (REIS), and ASTER Global DEM
(Digital Elevation Model). Other data acquisition for performing the LU/LC prediction
research can be made through aerial photographs, Google Earth images, government, and
field or ground survey data. The advantage of the satellite and airborne data has been used
in many applications areas such as oceanography, landscape monitoring, weather forecast-
ing, biodiversity conservation, forestry, cartography, surveillance, and warfare [4–10]. The
different band in the multispectral data has been widely used in monitoring the LU/LC
changes around the world. The visible (red–blue–green), near infrared (NIR), short-wave
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infrared (SWIR), and TIRS (thermal infrared sensor) bands were used for calculating the
most important LU/LC indices, such as the Land Surface Temperature (LST), Normalized
Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI), Nor-
malized Difference Water Index (NDWI), Normalized Difference Built-Up Index (NBBI),
and Normalized Difference Salinity Index (NDSI) [11,12].

The primary processing for correcting the noise and cloud effects in the satellite and air-
borne data has been achieved through preprocessing. The multispectral satellite data have
been used for performing effective research on LU/LC analysis. The noise, atmospheric,
geometric, topographic, and radiometric errors in the raw multispectral satellite data are
corrected by using the primary process of image preprocessing. Different methods have
been used for correcting the satellite image errors, and some of them are Image Registration,
Independent Component Analysis (ICA), Linear Discriminant Analysis (LDA), Discrete
Wavelet Transform (DWT), Resampling, Quick Atmospheric Correction (QUAC) module,
Minimum Noise Fraction (MNF), Dark Object Subtraction (DOS) module, Orthorectifi-
cation, Rescaling, Principal Component Analysis (PCA), F-mask method, FLAASH (Fast
Line-of-Sight Atmospheric Analysis of Hypercubes) module, ASCII Coordinate Conver-
sion, Apparent Reflectance Model (ARM), Georeferencing, Image De-striping, and Lookup
Table (LUT) Stretch and Point Spread Convolution methods [13–17]. LU/LC classification
has been performed by using different classification algorithms for finding the LU/LC
types of a particular location. Some of the LU/LC classification algorithms used by re-
searchers are Maximum Likelihood Classification (MLC), Support Vector Machine (SVM)
Classification, k-Nearest Neighbor Classification (kNN), K-Means Clustering, Mahalanobis
Distance Classification (MDC), Classification and Regression Tree (CART), Logistic Re-
gression Model (LRM), Artificial Neural Network (ANN) Classification, Random Forest
Classification (RFC), Spectral Angle Mapper (SAM) Classification, Minimum Distance to
Mean Classification (MDM), Parallelepiped Classification (PLC), Multivariate Adaptive
Regression Spline (MARS), Fuzzy C Means (FCM), and Iterative Self-Organizing Data
Analysis (ISODATA) clustering. The different LU/LC class types classified are built-up
areas, water bodies, forest-cover areas, wetlands, and vegetation areas. The accuracy as-
sessment was performed by comparing the LU/LC classified map with the ground truth
data. Based on the accuracy assessment, the performance of the classification method has
been measured. The LU/LC change detection has been performed between the LU/LC
time-series classified map [18–22].

The LU/LC prediction was performed by calibrating the dependent and independent
variables. The LU/LC change map is considered the dependent variable, and the factors
associated with the LU/LC change are considered as the independent variables. The
factors associated with LU/LC change include slope, elevation, aspect, climatic variables,
distance variables (distance from road, forest edge, agricultural land, water bodies, and
urban areas), and census data. LU/LC prediction has been performed by using different
algorithms for finding the future LU/LC changes in a particular location. Some of the
algorithms used by researchers are based on the Markov Chain (MC), Cellular Automata
(CA), Conventional Neural Network (CNN), Recurrent Neural Network (RNN), Gated
Recurrent Unit (GRU), and Long Short-Term Memory Neural Network (LSTM) [23–30]. In
recent technologies, transformer-based models are widely used and processed in image-
processing applications. The transformer-based deep-learning model is considered the
state-of-the-art model in image recognition, as it focuses on the confident part of inputs to
get more efficient results [31,32]. Many researchers have worked on the transformer-based
model in the field of natural language processing (NLP) [33,34]. Researchers also performed
the transformer-based models in image-recognition problems through remote sensing
analysis. The Vision Transformers have been used widely for remote sensing applications.
The advantage of using the Vision Transformers for remote-sensing applications provides
better classification accuracy than the standard algorithms [35–37].

Explainable artificial intelligence (XAI) is a process of allowing the users to under-
stand and trust the outputs produced by the machine-learning and deep-learning models.
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XAI conveys the importance of transparency (presents the significant way of reaching
the goal), justification (clarifying why the results provided by the prediction model are
acceptable), informativeness (providing new information to researchers), and uncertainty
estimation (computing how trustworthy a prediction model is) [38,39]. The few XAI tools
for explaining the results of machine-learning and deep-learning models include LIME
(Local Interpretable Model-Agnostic Explanations), DeepLIFT (Deep Learning Important
Features), SHAP (Shapley Additive explanations), LRP (Layer-Wise Relevance Propaga-
tion), Saliency Maps, CIU (Contextual Importance and Utility), DALEX (Model Agnostic
Language for Exploration and Explanation), Skater, Occlusion Analysis, and Integrated Gra-
dients/SmoothGrad. The usage of XAI tools varies for every application area of machine-
and deep-learning models [40–43].

In the field of remote sensing, we observed that researchers had used the supervised
and unsupervised machine-learning models for performing the LU/LC classification and
prediction analysis. The supervised-learning models (MLC, SVM, KNN, MDC, CART, LR,
ANN, RFC, SAM, MDM, PLC, MARS, MC, CA, CNN, RNN, and LSTM) are considered to
be more accurate than the unsupervised-learning models (KM, FCM, and ISODATA). The
unsupervised learning is performed with no prior information about the data, and there are
no training data available for training the unsupervised algorithms. It performs the LU/LC
classification by learning the data without any class labels. The advantage of unsupervised
algorithms helps in finding the unknown patterns in the image, which are more difficult to
find by using the normal method. The results of the unsupervised classification algorithms
were used as the input training data for the supervised algorithms. The advantage of using
the unsupervised methods (KM, FCM, and ISODATA) is that they help in separating the
similar and dissimilar pixels into clusters through the distance functions. The disadvantage
of the unsupervised-learning model is the high computational time when the data are
unstructured. The main disadvantage is that unsupervised algorithms are not used during
the process of LU/LC prediction analysis since it requires both past and present training
data. The supervised learning depends on the user-defined training data for classifying
the LU/LC classes. The MLC, SVM, KNN, MDC, SAM, MDM, CART, MARS, and PLC
techniques were widely used for classifying the LU/LC classes. The models based on
LR, ANN, MC, CA, CNN, RNN, GRU, and LSTM were widely used during the process
of LU/LC prediction analysis. The supervised classifiers help in providing the results
by using previous experiences. The real-world computation problems were solved by
using supervised-learning methods. It performs the classification and prediction with the
knowledge of class labels. The supervised-learning models were used during the process
of LU/LC prediction analysis. The past and present training data have been analyzed
and processed in supervised learning. The accuracy results of the standard classification
and prediction algorithms differ for each study area. The results mainly depend on the
training parameters and the complexity of the input data. In terms of LU/LC analysis, the
misclassification rate has been observed due to the overlapping of pixels in the satellite
image. In all the neural network models, the time taken for training and validation is more
for massive datasets. The disadvantage of the standard LU/LC machine-learning model is
lacking knowledge of the predicted map, resulting in difficulties for the urban planners
when further processing the data [44–46].

The rest of the paper is given as follows: Section 2 explains the motivation and
contribution of this work. Section 3 explains the proposed methodology of this research
work. Section 4 explains the materials and methods proposed in our research work,
Section 5 provides the training parameters and validation results of each method used in
this research work, Section 6 explains the comparative analysis of our LU/LC prediction
model, and Section 7 delivers the conclusion of this research work.

2. Motivations and Contributions

The main contribution of researchers around the world is to provide new innovative
information to society, government, and different educational sectors in their respective
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domains. Many researchers had motivated and contributed to the significant problem of
LU/LC prediction analysis. The LU/LC change detection for past, present, and future
analysis has been a key research topic to understand the environmental change on the
earth’s surface. Hence, LU/LC feature extraction has emerged as an essential research
aspect, and therefore, the standard and accurate methodology for LU/LC classification
and prediction should be made. By use of satellite system technology, we can perform our
research on LU/LC change analysis. The main need of this research is to assist the land-
resource management, government officials, forest department, and urban planners to take
action to protect the earth’s environment. From the brief survey on different classification
and prediction algorithms, we have found that the sustainable growth of the LU/LC
environment for the time-series data requires an accurate classification and prediction map,
which was considered the strong motivation for our study. The main contributions of our
work are as follows:

• The novel Vision Transformer–based Bidirectional long-short term memory (Bi-LSTM)
model is proposed for predicting the LU/LC changes of Javadi Hills, India.

• The use of the LST map with the Vision Transformer–based LU/LC classification
map provides the main advantage in achieving good validation accuracy with less
computational time during the process of LU/LC prediction analysis through the
Bi-LSTM model.

• The impacts of the Multi-Satellite System (LISS-III multispectral with the Landsat
TIRS, RED, and NIR bands) on the proposed LU/LC prediction model for Javadi Hills,
India, are analyzed.

• Explainable Artificial Intelligence (XAI), an application-based explanation, is also
introduced for validating the predicted results through the Google Earth Engine
platform of Google Cloud so that the predicted results will be more informative and
trustworthy to the urban planners and forest department to take appropriate measures
in the protection of the environment.

3. Materials and Methods

This section elaborates the various stages of our proposed prediction model: (i) the
study area and data acquisition, (ii) proposed Vision Transformer–based LULC classifica-
tion, (iii) description of expression for calculating and analyzing the LST map, (iv) Bi-LSTM
model for LULC prediction, and (v) description of explainable AI and its importance.

3.1. Study Area and Data Acquisition

The study area in our research work is the forest- and non-forest-covered area of Javadi
Hills with the geographic coordinates falling between 78.75 E 12.5 N and 79.0 E 12.75 N.
Our study area is located across the Eastern Ghats of Vellore and Tiruvannamalai district,
Tamil Nadu, India. The UTM (Universal Transverse Mercator) GCS (geographic coordinate
system)/WGS (World Geodetic System) 1984 (44 N) projection system was processed for
the extracted satellite data. The location of the Javadi Hills map was extracted from Google
Earth Engine (https://www.google.com/earth/ (accessed on 10 November 2021)). The
map view of our study area was prepared by using ArcGIS (Version 10.1 developed by ESRI
(http://www.esri.com/software/arcgis)) geospatial software, and it is shown in Figure 1.

The multispectral LISS-III satellite images for the years 2012 and 2015 were col-
lected from the Bhuvan Indian Geo-Platform of ISRO (www.bhuvan.com (accessed on
9 December 2019)). The extracted LISS-III multispectral data of Javadi Hills were used for
the LU/LC classification process. The TIRS, RED, and NIR bands of Landsat 8 (Band 10)
and Landsat 7 (Band 6) were collected from the United States Geological Survey (USGS),
United States (https://earthexplorer.usgs.gov (accessed on 16 December 2019)) and were
used for the estimation of LST. There was no TIRS Band in the LISS-III sensor, so we ex-
tracted the TIRS image from the Landsat Satellite data for our study area. The importance
of the TIRS band used in our paper provides the impact of LST on Javadi Hills for the years
2012 and 2015. Table 1 shows the source and characteristics of the remotely sensed satellite

https://www.google.com/earth/
http://www.esri.com/software/arcgis
www.bhuvan.com
https://earthexplorer.usgs.gov
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images. In our research work, the atmospheric corrections were made to provide good
visibility to the extracted LISS-III multispectral satellite image of Javadi Hills. The scan-line
error correction was made for filling the gaps in the extracted Landsat TIRS image of Javadi
Hills. The geometric correction was made to extract the Region of Interest (ROI) coordinates
in the forest- and non-forest-covered area of Javadi Hills that falls between 78.80 E 12.56 N
and 78.85 E 12.60 N. Figure 2 represents the preprocessed image of multispectral LISS-III
data of Javadi Hills for the years 2012 and 2015. Figures 3–5 represent the preprocessed
Landsat TIRS, RED, and NIR bands of the Javadi Hills for the years 2012 and 2015.
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Table 1. Characteristics and sources of the satellite images.

Satellite Path Sensor Year Source

Resourcesat-1/2 101/064 LISS-III 18 February 2012
22 March 2015

Bhuvan Indian Geo-Platform of
ISRO (www.bhuvan.com

(accessed on 9 December 2019))

Landsat 8 OLI/TI and
Landsat 7 (ETM+)

143/51
Operational Land Imager

(OLI) and the Thermal
Infrared (TI) Sensor

27 March 2015 United States Geological Survey
(https://earthexplorer.usgs.gov
(accessed on 16 December 2019))Enhanced Thematic

Mapper Plus (ETM+) 26 March 2012
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3.2. Proposed Vision Transformer Model for LU/LC Classification

A transformer is a deep-learning model that has emerged through the self-attention
mechanism. The transformer follows the encoder–decoder architecture by processing
the sequential data parallelly without depending on any recurrent network. It has been
widely used in the scientific fields of NLP and computer vision. The Vision Transformer
architecture has attracted an interesting view from researchers in recent years by showing
good performance in the area of machine- and deep-learning applications. The Vision
Transformer has been used in the area of image classification for providing state-of-the-art
performance and to outperform the standard classification models. The Vision Transformer
develops the encoder module of the transformer for performing the image classification by
representing the sequence of image patches to the classified label. The attention mechanism
of the Vision Transformer goes through all areas of the image and integrates the informa-
tion into the full-sized image [47–51]. The end-to-end Vision Transformer model for the
classification of satellite images is shown in Figure 6. The Vision Transformer classification
model has experimented with the preprocessed LISS-III satellite image of Javadi Hills for
the years 2012 and 2015. The Vision Transformer architecture is composed of an embedding,
encoder, and classifier layer. Equations (1) and (2) represent the first step of analyzing and
dividing the training images into a sequence of patches.
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Let Si represent a set of training satellite images, r, where Xi is a satellite image; yi
represents the class labels {yi ∈ 1, 2, . . . . . . , m} associated with the Xi, and m denotes the
number of defined LU/LC classes for that set.

Si = {Xi, yi}r
i=1 (1)
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In the first step of the Vision Transformer model, an image Xi from the training, the set
is divided into non-overlapping patches of fixed size. Each patch is observed by the Vision
Transformer as an individual token. Thus, from the size h ∗ w ∗ c (where h is the height, c
is the number of channels, and w is the width) of an image Xi, we extracted the patches of
dimension c ∗ p ∗ p (p is the patch size) from it. The extracted patches are converted to a
sequence of images (x1, x2, x3, . . . . . . . . . , xn) of length n through flattening.

n = hw/p2 (2)

The image patches are linearly projected into a vector setup of model dimension, d,
using the known embedding matrix, E. The concatenation of embedded representations
is processed along with the trained classification token vclass for performing the classifi-
cation task. The positional information, Epos, is programmed and attached to the patch
representation. The spatial arrangements of the trained image patches were processed
through positional embedding. The resulting sequence of image patches from positional
embedding with token z0 is given in Equation (3).

z0 = [vclass; x1E; x2E; . . . . . . . . . , xnE] + Epos, E ∈ R(p2c) ∗ d, Epos ∈ R(n+1) ∗ d (3)

The resulting sequence of embedded image patches, z0, is passed into the transformer
encoder with L identical layers. It has a multi-head self-attention block (MSA) and fully
connected feed-forward MLP (Multilayer Perceptron) block with the GeLU activation
function between them. The two subcomponents of the encoder work with the residual
skip connections through the normalization layer (LN). The representation of the two
main components of the encoder is given in Equations (4) and (5). The last layer of the
encoder, the first element in the sequence z0

L, is passed into the head classifier for attaining
the LU/LC classified classes.

z1
l = MSA (LN(zl−1)) + zl−1, l = 1 . . . ..L (4)

zl = MLP
(

LN
(

z1
l

))
+ z1

l , l = 1 . . . ..L (5)

yi = LN
(

z0
L

)
(6)

The transformer block for the classification model is shown in Figure 7. The MSA
block of the encoder is considered the central component of the transformer. The MSA
block determines the importance of a single patch embedding with the other embeddings
in the sequence. There are four layers in the MSA block: the linear layer, the self-attention
layer, the concatenation layer, and a final linear layer. The attention weight is computed by
calculating the weighted sum of all values in the sequence. The query-key-value scaling
dot product is computed by the self-attention (SA) head through the attention weights The
Q (query), K (key), and V (value) were generated by multiplying the element against three
learned matrices UQKV (Equation (7)). For determining the significance of the elements
on the sequence, the dot product is used between the Q vectors of one element with the
K vectors of the other elements. The results show the importance of the image patches in
the sequence. The outcomes of the dot product were scaled and passed into a Softmax
(Equation (8)).

[Q, K, V] = zUQKV , UQKV ∈ Rd ∗ 3Dk (7)

A = so f tmax
(

QKT
√

DK

)
, A ∈ Rn ∗ n (8)

SA (z) = A.V (9)

MSA (z) = Concat(SA1(z); SA2(z); . . . . SAh(z))W, W ∈ Rh.DK ∗ D (10)
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Figure 7. Transformer block for the Vision Transformer classification model.

The scaling-dot-product process achieved by the SA block is related to the standard dot
product, but it includes the dimension of the key DK as a scaling factor. The patches with
the high attention scores (Equation (8)) are processed by multiplying the outputs of Softmax
with the values of each patch embedding vector. The results of all the attention heads are
concatenated and provided to the MLP classifier for attaining the pixel value representation
of the feature map (Equation (10)). The resampling was performed for adjusting the
size of the feature map so that the output classified image would be represented in the
standardized form during the time of accuracy assessment. The training data with different
parameters that define the Vision Transformer classification model of our research work are
presented in Section 5.1. The LU/LC classification map for the years 2012 and 2015 is shown
in Figure 8. The accuracy assessment for the feature-extraction-based classification model
is shown in Section 5.2. The evaluation of the LU/LC classification map was achieved
through the accuracy assessment. The percentage of the LU/LC change between the years
2012 and 2015 for our study area was calculated. Based on the good accuracy results,
the LU/LC change classification map was processed for further findings of the LU/LC
prediction map.
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3.3. Land Surface Temperature

The LST measures the skin temperature of the spatial data in the field of remote
sensing. It displays the cold and hot temperature of the earth’s surface through the radiant
energy reflected within the surface. The thermal-infrared remote-sensing data are used
for measuring the LST. The TIRS data help in recognizing the mixture of bare soil and
vegetation temperatures through LST [52–54]. In our research work, we estimated the LST
for the TIRS bands of Landsat 8. Equations (11)–(13) represent the estimation of LST for
TIRS image 7. The conversion of the Digital Number (DN) value to the radiance of the TIRS
image is calculated by using Equation (11). The conversion of radiance into the brightness
temperature is shown in Equation (12). The degree conversion from Kelvin (K) to Celsius ©
is shown in Equation (13).

Lλ =

(
LMAXλ − LMINλ

QCALMAX−QCALMIN

)
∗ (QCAL−QCALMIN) + LMINλ (11)

where Lλ represents the spectral radiance in
(
Watts/(m2 ∗ sr2 ∗ µm

)
) , QCAL represents

the quantized calibrated pixel value, QCALMAX represents the maximum quantized cali-
brated pixel value, QCALMIN represents the minimum quantized calibrated pixel value,
LMAXλ represents the spectral radiance scaled to QCALMAX, and LMINλ represents the
spectral radiance scaled to QCALMIN.

TK =
K2

ln
(

K1
Lλ

+ 1
) (12)
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C = TK − 273.15 (13)

where TK represents the effectiveness at the satellite temperature in Kelvin, and K1 and K2
represent the calibration constants 1 and 2 in

(
Watts/(m2 ∗ sr2 ∗ µm

)
), respectively. For

Landsat 7, the calibration constant value of K1 and K2 is 666.09 and 1282.71, respectively.
Equations (14)–(20) represent the estimation of LST for the TIRS image of Landsat 8.

By using the radiance rescaling factor, the conversion of Top of Atmosphere (TOA) spectral
radiance is shown in Equation (14). By using the thermal infrared constant values in
the metadata file of the satellite image, the spectral radiance data are converted to the
TOA brightness temperature, and the expression is shown in Equation (15). The NDVI
is calculated for differentiating the near-infrared and visible reflectance of the vegetation
cover of the satellite data. The expression for NDVI is shown in Equation (16). The Land
Surface Emissivity (LSE) is derived from NDVI values for displaying the average emissivity
of the earth’s surface. The expressions are shown in Equations (17) and (18). By using the
results of TOA brightness temperature, emitted radiance wavelength, and LSE, the LST
was calculated and is shown in Equation (19).

TLλ = ML ∗ QCAL + AL−Oi (14)

where TLλ represents the TOA spectral radiance in
(
Watts/(m2 ∗ sr2 ∗ µm

)
), ML repre-

sents the radiance multiplicative band rescaling factor of the TIRS image, QCAL represents
the quantized calibrated pixel value, AL represents the radiance additive band rescaling
factor of TIRS image, and Oi represents the correction value of the TIRS band of Landsat 8.

BTP =
K2

ln
(

K1
TLλ

+ 1
) − 273.15 (15)

where BTP represents TOA brightness temperature in Celsius, and K1 and K2 represent the
calibration constant 1 and 2 in

(
Watts/(m2 ∗ sr2 ∗ µm

)
), respectively. For Landsat 8, the

calibration constant value of K1 and K2 is 774.8853 and 1321.0789, respectively.

NDVI =
(NIR− RED)

(NIR + RED)
(16)

where NDVI represents the Normalized Difference Vegetation Index, NIR represents the
reflectance values of the near-infrared band, and RED represents the reflectance values of
the red band.

PV = ((NDVI − NDVImin)/(NDVImax – NDVImin))
2 (17)

E = 0.004 ∗ PV + 0.986 (18)

where E represents the Land Surface Emissivity, PV represents the Proportion of Vegetation,
NDVI represents the reflectance values of the NDVI image, NDVImax represents the
maximum reflectance value of the NDVI image, and NDVImin represents the minimum
reflectance value of the NDVI image.

LST =
BTP(

1 +
(
λ ∗ BTP

c2

)
∗ ln(E)

) (19)

c2 =
pk ∗ vl

bc
(20)

where LST represents Land Surface Temperature, BTP represents the TOA brightness
temperature in Celsius ©, λ represents the wavelength of the emitted radiance, pk represents
the Planck’s constant value of 6.626 ∗ 10−34 J s, vl represents the velocity of the light value
of 2.998 ∗ 108 m/s, and bc represents the Boltzmann constant value of 1.38 ∗ 10−34 JK. The
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statistical modeling of TIRS bands present in the Landsat satellite image was used for
analyzing the LU/LC surface temperature of Javadi Hills, and it helps in improving the
performance of the LU/LC prediction model. The LST map of Javadi Hills during the years
2012 and 2015 was analyzed by using the TIRS bands of Landsat 7 and 8 for the area of
Javadi Hills. The flow of the calculation of LST for our area of Javadi Hills is shown in
Figure 9. The LST map for the years 2012 and 2015 is shown in Figure 10. In this research
work, we used the spatial features of the LST map and the LU/LC change classification map
for evaluating the LU/LC prediction map for Javadi Hills. The LST map shows the features
of the high- and low-temperature values of the earth’s surface. The high-temperature
values indicate less vegetation, and the low-temperature value indicates a high-vegetation
area. The impact of the LST map over the LU/LC change classification map provides good
accuracy during the process of LU/LC prediction. The relationship between the values of
the LST and LU/LC map is shown in Section 5.1.
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3.4. Bidirectional Long Short-Term Memory Model for LU/LC Prediction

The LSTM model is considered the advanced model of RNN, where the long-term de-
pendencies can be learned for the sequence prediction problems. The long-term vanishing-
gradient problems are prevented by using the LSTM models. The key elements of the LSTM
model are input, forget, and output gate [55–57]. Figure 11 displays the working principle
of the LSTM model. In Figure 11, the vector operations represent the element-wise multi-
plication (∗), and element-wise summation (+) respectively. The time step (t) indicates
the length of the input sequence in all the Equations (21)–(26). Equation (21) shows the
mathematical expression of the forget gate, where ft represents the memory gate’s output
at time t, σ represents the sigmoid function (0 < σ < 1), W f represents the weight value of
ANN, ht−1 is the output value of the previous cell, xt represents the input values, and b f
denotes the bias weight values of the ANN. At the output of the equation, the value 1 will
keep the information and the value 0 will forget the information

ft = σ
(

W f ∗ [ht−1, xt] + b f

)
(21)

It = σ (Wi ∗ [ht−1, xt] + bi) (22)

c̃t = tanh(Wc ∗ [ht−1, xt] + bc) (23)
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In Equation (22), It represents the output of the input gate, σ represents the sigmoid
function, Wi represents the weight values stored in the memory of ANN, ht−1 is the output
value of the previous cell, xt represents the input values, and bi denotes the bias weight
values of the ANN.

In Equation (23), c̃t represents the output of ANN with the normalized tanh function
that outputs the value between −1 and +1, Wc represents the weight values stored in the
memory of ANN, ht−1 is the output value of the previous cell, xt represents the input
values, and bc denotes the bias weight values of the ANN.

Ct = Ct−1 ∗ ft + it ∗ c̃t (24)

Ot = σ (WO ∗ [ht−1, xt] + bO) (25)

ht = Ot ∗ tanh (Ct) (26)

Equation (24) shows the mathematical expression of the updated gate, where the
memory is updated. The ANN learns the stored or forgotten information from the memory
and then updates the newly added information from Equations (21)–(23). Equation (25)
shows the mathematical expression of the output gate, where WO represents the weight
values stored in the memory of ANN, ht−1 is the output value of the previous cell, xt
represents the input values, and bO denotes the bias weight values of the ANN. The output
value, ht, was calculated in Equation (26).

The uniform LU/LC classes were generated through the Vision Transformer classi-
fication model, and the features of the LST map were extracted for the years 2012 and
2015. In this research work, we used the spatial features of the LST map and the LU/LC
change classification map for evaluating the LU/LC prediction map, using the Bi-LSTM
model. The idea of Bi-LSTM is to process the sequence data in both forward and backward
directions. The Bi-LSTM algorithm was used in our research for extracting the spatial and
temporal features of the fifteen-year time-series data from 2012 to 2027 for the area of Javadi
Hills. Figure 12 displays the working principle of the Bi-LSTM prediction model.
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The inputs of the Bi-LSTM are given as the 3D vectors (samples, time steps, and
features) for producing both spatial and temporal information. The samples define the
number of the input LU/LC map (L (jm,n)) of size (m ∗ n) with defined labels (j) for
training and validation. With the LU/LC and LST features for the years 2012 and 2015,
we have predicted and simulated the LU/LC map for the years 2018 and 2021. With the
inputs of 2012 (t− 3), 2015 (t), 2018 (t + 3), and 2021 (t + 6), the Bi-LSTM was processed
in forward and backward directions for analyzing the features of time-series data and
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to project the predicted maps for the years 2021 (t + 9) and 2024 (t + 12) successfully.
The features (LC(jm,n)) define the LU/LC classes with the LST temperature values for
each time step at defined coordinates. The input set of combined features of the LU/LC
and LST map from the Javadi Hills was split by the ratio of 8:2 for the training and
validation of the model. The parameters were adjusted through a trial-and-error approach
for acquiring good prediction accuracy. The tanh activation function was used for the
Bi-LSTM layers, whereas the Softmax activation functions were used for the last layer to
calculate the probabilities between the LU/LC classes of Javadi Hills. Through repeated
forward and back-propagation processes, the parameters are adjusted until the cost function
is minimized. The validation method is part of training the prediction model and adjusting
the parameters, which uses a small portion of data to validate and update the model
parameters for each training epoch. The significant approach is to ensure that the prediction
model is learning from data correctly by minimizing the cost function during the training
and validation process. The training data with the parameters that run the Bi-LSTM
prediction model for our research work are presented in Section 5.1. The LU/LC prediction
map for the years 2018, 2021, 2024, and 2027 is shown in Figures 13 and 14. The validation
results of the LU/LC prediction model are shown in Section 5.2. Our proposed model
provides good validation accuracy, and the growth patterns of the LU/LC results are shown
in Section 5.3.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 35 
 

project the predicted maps for the years 2021 (𝑡 + 9) and 2024 (𝑡 + 12) successfully. 
The features (𝐿𝐶(𝑗 , )) define the LU/LC classes with the LST temperature values for each 
time step at defined coordinates. The input set of combined features of the LU/LC and 
LST map from the Javadi Hills was split by the ratio of 8:2 for the training and validation 
of the model. The parameters were adjusted through a trial-and-error approach for ac-
quiring good prediction accuracy. The tanh activation function was used for the Bi-LSTM 
layers, whereas the Softmax activation functions were used for the last layer to calculate 
the probabilities between the LU/LC classes of Javadi Hills. Through repeated forward 
and back-propagation processes, the parameters are adjusted until the cost function is 
minimized. The validation method is part of training the prediction model and adjusting 
the parameters, which uses a small portion of data to validate and update the model pa-
rameters for each training epoch. The significant approach is to ensure that the prediction 
model is learning from data correctly by minimizing the cost function during the training 
and validation process. The training data with the parameters that run the Bi-LSTM pre-
diction model for our research work are presented in Section 5.1. The LU/LC prediction 
map for the years 2018, 2021, 2024, and 2027 is shown in Figures 13 and 14. The validation 
results of the LU/LC prediction model are shown in Section 5.2. Our proposed model 
provides good validation accuracy, and the growth patterns of the LU/LC results are 
shown in Section 5.3. 

  
(a) (b) 

Figure 13. LU/LC prediction map of Javadi Hills for the years (a) 2018 and (b) 2021. Figure 13. LU/LC prediction map of Javadi Hills for the years (a) 2018 and (b) 2021.



Appl. Sci. 2022, 12, 6387 18 of 35Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 35 
 

  
(a) (b) 

Figure 14. LU/LC prediction map of Javadi Hills for the years (a) 2024 and (b) 2027. 

3.5. Application-Based Explainable Artificial Intelligence and Its Importance 
The XAI provides knowledge to humans about the outcomes achieved by machine- 

or deep-learning models. The XAI has been used for providing knowledge on the ex-
tracted time-series LU/LC information to the urban planners, forest department, and 
government officials. XAI improves the user’s understanding and trust in the products or 
services. There are many ways of explaining the model through XAI, and the techniques 
of explaining the model differ for each application area around the world [58–60]. In our 
research work, we used application-based XAI, and it was observed to be the easiest and 
fastest way of obtaining knowledge with finite compute resources. The knowledge about 
the outcomes of the prediction model can be accessed through online applications. 
Technically, the application-based XAI can be understood by the end-users through 
third-party applications. In our prediction model, we used the Google Earth Engine 
(https://www.google.com/earth/ (accessed on 10 November 2021)) platform for explain-
ing our results to urban planners, forest departments, and government officials. The 
LU/LC predicted results for the years 2018 and 2021 were tested through the Google 
Earth Engine time-series image. We achieved good testing accuracy for our prediction 
model. Through the XAI of the Google Earth Engine platform, the end-users can also 
access and check the LU/LC information. We have shown the model structure of XAI 
through the Google Earth Engine platform for our research work in Figure 15. The XAI 
on Google Earth will convey the LU/LC information to the government, forest depart-
ment, and urban planners to take action in regard to protecting the LU/LC area. 

Figure 14. LU/LC prediction map of Javadi Hills for the years (a) 2024 and (b) 2027.

3.5. Application-Based Explainable Artificial Intelligence and Its Importance

The XAI provides knowledge to humans about the outcomes achieved by machine- or
deep-learning models. The XAI has been used for providing knowledge on the extracted
time-series LU/LC information to the urban planners, forest department, and government
officials. XAI improves the user’s understanding and trust in the products or services. There
are many ways of explaining the model through XAI, and the techniques of explaining
the model differ for each application area around the world [58–60]. In our research work,
we used application-based XAI, and it was observed to be the easiest and fastest way of
obtaining knowledge with finite compute resources. The knowledge about the outcomes
of the prediction model can be accessed through online applications. Technically, the
application-based XAI can be understood by the end-users through third-party applications.
In our prediction model, we used the Google Earth Engine (https://www.google.com/
earth/ (accessed on 10 November 2021)) platform for explaining our results to urban
planners, forest departments, and government officials. The LU/LC predicted results for
the years 2018 and 2021 were tested through the Google Earth Engine time-series image. We
achieved good testing accuracy for our prediction model. Through the XAI of the Google
Earth Engine platform, the end-users can also access and check the LU/LC information.
We have shown the model structure of XAI through the Google Earth Engine platform
for our research work in Figure 15. The XAI on Google Earth will convey the LU/LC
information to the government, forest department, and urban planners to take action in
regard to protecting the LU/LC area.

https://www.google.com/earth/
https://www.google.com/earth/
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4. Proposed LU/LC Prediction Using Vision Transformer–Based Bi-LSTM Model

This research work aimed to identify the LU/LC changes in the forest-covered (high
vegetation) and non-forest-covered (less vegetation) regions of the proposed study area.
The flow of LU/LC change for our study area is shown in Figure 16. The proposed flow of
this work is described in the following steps,

• The LISS III satellite images for the years 2012 and 2015 of Javadi Hills, India, were
collected from Bhuvan-Thematic Services of the National Remote Sensing Centre
(NRSC), Indian Space Research Organization (ISRO).

• The Landsat satellite images for the years 2012 and 2015 of Javadi Hills, India, were
collected from the United States Geological Survey (USGS), United States.

• Atmospheric, geometric, and radiometric corrections were performed to provide better
visibility in the acquired LISS-III and Landsat images.

• The proposed Vision Transformers for classifying LU/LC classes were successfully
performed for the years 2012 and 2015 of the LISS-III image.

• An LST map was calculated for the years 2012 and 2015 from Landsat TIRS images for
extracting the spatial features.

• The relationship between the spatial features of the LST map with the LU/LC classifica-
tion map were used to provide good validation results during the prediction process.

• The Bi-LSTM model was successfully applied to forecast the future LU/LC changes of
Javadi Hills for the years 2018, 2021, 2024, and 2027.

• The LU/LC changes that occurred in our study area will assist the urban planners
and forest department to take proper actions in the protection of the environment
through XAI.
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Algorithm to Construct the Vision Transformer–Based Bi-LSTM Model for LU/LC Prediction

Our research is based on the Vision Transformer–based Bi-LSTM model for LU/LC
Prediction of Javadi Hills, India. From the brief analysis and validation, we found that
the impact of the TIRS LST map with the LU/LC classified provides a good percentage of
results with a lower misclassification rate. The detailed steps of our proposed model are
presented in Algorithm 1. Each process in our proposed algorithm provides the different
aspects of LU/LC information of Javadi Hills. A brief explanation of the input data, training
data, parameter settings, and accuracy assessment of our proposed model is explained in
Section 5.

Algorithm 1: To Construct the Vision Transformer–Based Bi-LSTM Prediction Model.

Inputs (IP): The LISS-III multispectral satellite images for the years 2012 and 2015 (I1, I2), and
Landsat bands for the years 2012 and 2015 (IR1, IR2)
Output (OP): Predicted LU/LC images 2018, 2021, 2024, and 2027 (PR1, PR2 , PR3 , PR4 )
Begin
1 Input data (IP):
2 Initialize the input data
3 Extract LISS-III multispectral image (M = I1, I2)
4 Extract Landsat bands (T = IR1, IR2)
5 Return input data (IP)
6
7 Preprocessed data (PRI):
8 Initialize the input data for performing the preprocessing for the input data IP of M and T
9 For each initialized input image of M and T
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Algorithm 1: Continued.

10 Calculate the geometric coordinates of the study area GI (georeferencing)
11 Reduce the atmospheric (haze) effects AI of the georeferenced image
12 Correct the radiometric errors RI for the haze-reduced image
13 End for
14 Return preprocessed data (PRI)
15
16 LU/LC classification (LUI):
17 Perform the Vision Transformer–based LU/LC classification by using the preprocessed
image PRI
18 For each input image of PRI
19 Load the training data Ti and initialize the parameters
20 Split an image into patches of fixed size
21 Flatten the image patches
22 Perform the linear projection from the flattened patches
23 Include the positional embeddings
24 Feed the sequences as an input to the transformer encoder
25 Fine-tune the multi-head self-attention block in the encoder
26 Concatenate all the outputs of attention heads and provide the MLP classifier for
attaining the pixel value representation of the feature map.
27 Generate the LU/LC classification map
28 End for
29 LU/LC classification (LUI)
30
31 Accuracy assessment (AAI):
32 Perform the accuracy assessment for the feature extraction–based LU/LC classification
map LUI
33 For each classified map of LUI
34 Compare the labels of each classified data LUI with the Google Earth data
35 Build the confusion matrix
36 Calculate overall accuracy, precision, recall, and F1-Score
37 Summarize the performance of the classified map LUI
38 End for
39 Return accuracy assessment (AAI)
40
41 Change detection (CDI):
42 Perform the LU/LC change detection by using the time-series LU/LC change classification
map (LUI)
43 For each classified map of LUI
44 Calculate the percentage of change between the time-series classified map of LUI
45 End For
46 Return change detection (CDI)
47
48 Extracting LST map (LST)
49 Initialize the IP of T
50 For each preprocessed image of T
51 Calculate Land Surface Temperature using the Landsat bands (TIRS, RED, and NIR)
52 Extract the spatial features
53 End for
54 Return LST (LSTI)
55
56 LU/LC prediction (LPI):
57 Perform the Bi-LSTM prediction model by using the time-series LU/LC classification map
of 2012 (LU1) and 2015 (LU2) and the spatial features of the LST map of 2012 (LST1) and
2015 (LST2)
58 For each time-series, LU/LC classified map of LUI : {LU1, LU2} and LST map LSTI :
{LST1, LST2}
59 Perform LU/LC prediction (LPI) using Bi-LSTM model
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Algorithm 1: Continued.

60 Initialize the inputs for LU/LC prediction
61 Input (IP) = {L1, LST1, L2, LST2, . . .}
62 Combine the information of the time-series LU/LC classified map LUI with the LST
map LSTI
63 Load the 3D input vectors {samples, time steps, features}
64 Initialize the Bi-LSTM parameters
65 Apply tanh activation function for each Bi-LSTM layer
66 The output layer is decided by using the Softmax activation function
67 Update the parameters until the loss function is minimized
68 The output of the predicted time-series data is obtained
69 Validate the results
70 End for
71 Return LU/LC prediction map LPI {PR1, PR2 , . . .}
72 Analyze the growth patterns of the LU/LC prediction maps
73
74 Explain predicted results to the urban planners, forest department, and government
officials, using application-based XAI
End

5. Results and Discussion

The problematic study on LU/LC prediction in Javadi was presented in this research
work. The LISS-III multispectral, Landsat TIRS, RED, and NIR satellite images were used
for predicting the vegetation in the forest- and non-forest-covered regions of the Javadi
Hills. All the research experiments were processed on the Intel Xeon processor 2.90 GHz
CPU, along with 128 GB RAM in Windows 10 (64-bit) environment. The needed libraries
and packages of Python of version 3.10.2 developed by Python Software Foundation
(https://www.python.org/) were installed for implementing the proposed model of our
research. The backend geospatial software such as QGIS of version 3.6.1 developed by
QGIS Development Team (https://qgis.org/en/site/), ArcGIS of version 10.1 developed
by ESRI (http://www.esri.com/software/arcgis) and Google Earth Engine developed
by Google (https://www.google.com/earth/) was used for preparing and analyzing the
satellite data.

5.1. Training Data and Parameter Settings

For appropriate mapping of the input features to the output features using machine-
learning or a deep-learning model, the training data and its parameters were used and
tuned. Algorithm 1 shows the detailed procedure of our research on LU/LC prediction.
The multispectral input map (M) of our study area Javadi Hills for the year 2012 and
2015 was considered as (I1, I2). The preprocessed multispectral image was processed for
the further processing of our model.

The training samples of an image are divided into patches. The 16 patches (size = 64 × 4)
were extracted from the input training image (256 × 256), of which each patch contains
the trained LU/LC classes (high and less vegetation). The training samples for the area of
Javadi Hills were generated through the latitude and longitudinal coordinates of Javadi
Hills manually through Google Earth image. For the input image of Javadi Hills for
the years 2012 and 2015, the LU/LC classification was performed through the Vision
Transformer model. The working process of the Vision Transformer model was explained
in Section 3.2. For a better understanding of our training samples in the patched image,
we show the trained patches of 1 and 16 in Figure 17. The hyper-parameters used during
the training process of the Vision Transformer model are shown in Table 2. The output
extracted at the end of the fully connected layer was used as the LU/LC classified map for
further processing.

https://www.python.org/
https://qgis.org/en/site/
http://www.esri.com/software/arcgis
https://www.google.com/earth/
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Table 2. Hyperparameters of the Vision Transformer model.

Hyperparameters Value

Learning Rate 0.001
Weight Decay 0.0001

Batch Size 10
Number of epochs 100

Image size 256 × 256
Patch size 64

Patches per image 16
Number of heads 4

Transformer Layers 8
Activation Function GeLU

Optimizer Adam

After the classification, each classified sample was tested through the referenced
data of Google Earth images. The LU/LC classified image (LUI) was tested through
the referenced Google Earth image. Each reference datum was labeled according to the
respective LU/LC classes of the Javadi Hills through Google Earth images. The LU/LC
class considered in our research work includes the high- and less-vegetation regions of the
forest- and non-forest-covered regions of Javadi Hills. For better understanding, we have
shown the validation of the point shape file with the Google Earth images in Figure 18, and
the class values associated with each coordinate of the trained image are shown in Table 3.
The accuracy assessment was calculated for the Vision Transformer model, and the results
are shown in Section 5.2.
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Figure 18. Validation of LU/LC classified map for the area of Javadi Hills.

Table 3. Training data values for the area of Javadi Hills.

Training Feature Value Longitude Latitude Class Value Class Label

1 78.829746 12.581815 1 High Vegetation
241 78.81025 12.58796 2 Less Vegetation

1785 78.818244 12.580221 2 Less Vegetation
733 78.849159 12.576782 1 High Vegetation

6640 78.81107 12.57028 2 Less Vegetation
6277 78.83463 12.576789 1 High Vegetation

12,354 78.851079 12.59151 1 High Vegetation
12,179 78.80721 12.58024 2 Less Vegetation
20,163 78.81167 12.5669 2 Less Vegetation
30,759 78.841932 12.59148 1 High Vegetation
24,465 78.840458 12.591477 1 High Vegetation
28,861 78.805977 12.580232 2 Less Vegetation
35,655 78.836129 12.591499 1 High Vegetation
33,638 78.812464 12.580187 2 Less Vegetation

63 78.81674 12.60167 1 Less Vegetation
39,388 78.81276 12.58634 2 Less Vegetation

The percentage of LU/LC change detection was calculated for the LU/LC classified
image, and the results are shown in Section 5.3. Based on the good accuracy, the LU/LC
classification map was processed for further findings of the LU/LC prediction map. The
LST map for the years 2012 and 2015 was calculated to extract the spatial features of Javadi
Hills. The estimation of the LST map was explained in Section 3.3. The LST map shows the
features of the high- and low-temperature values of the earth’s surface of Javadi Hills. The
high-temperature values indicate less vegetation, and the low-temperature value indicates
a high-vegetation area. The LST (LSTI) and the LU/LC (LUI) classification map was used
as an input for predicting the LU/LC map of Javadi Hills. We combined the time-series
features of LST and the LU/LC map of Javadi Hills. The impact of LST on the LU/LC
map provides good results during the prediction process. For a better understanding, we
show the impact of a few LST and LU/LC features in Figure 19, and we show the values
in Table 4. The impact on the LST and LU/LC map strengthens our proposed predicted
model with good validation results.
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Table 4. LST and LU/LC values for the area of Javadi Hills.

Feature Value Longitude Latitude Class Value Temperature Value Class Label

1 78.82975 12.58182 1 32.183754 High Vegetation
241 78.81025 12.58796 2 37.755061 Less Vegetation

1785 78.81824 12.58022 2 37.755061 Less Vegetation
733 78.84916 12.57678 1 31.708773 High Vegetation

6640 78.81107 12.57028 2 34.998298 Less Vegetation
6277 78.83463 12.57679 1 31.708773 High Vegetation

12,354 78.85108 12.59151 1 30.273344 High Vegetation
12,179 78.80721 12.58024 2 38.20916 Less Vegetation
20,163 78.81167 12.5669 2 34.998298 Less Vegetation
30,759 78.84193 12.59148 1 32.607521 High Vegetation
24,465 78.84046 12.59148 1 32.183754 High Vegetation
28,861 78.80598 12.58023 2 38.20916 Less Vegetation
35,655 78.83613 12.5915 1 31.708773 High Vegetation
33,638 78.81246 12.58019 2 34.533323 Less Vegetation

63 78.81674 12.60167 2 36.842331 Less Vegetation
39,388 78.81276 12.58634 2 38.20916 Less Vegetation

From the input LU/LC and LST features of 2012 and 2015, we predicted the LU/LC
map of 2018 by using the Bi-LSTM model with the tuning of different parameters. The
validated result provides good accuracy for our proposed model. We used the inputs of the
LU/LC map of 2012 and 2015, along with the predicted LU/LC map of 2018 for predicting
the LU/LC map for the year 2021. The short-term prediction was performed till the year
2027 for our study area. The working process of the Bi-LSTM model was explained in
Section 3.4. The parameter used during the training process of the Bi-LSTM model is shown
in Table 5.
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Table 5. Hyperparameters for the Bi-LSTM model.

Parameter Value

Input Image Format Raster
Number of Training Samples 51,200

Activation Function tanh, Softmax
Dropout 0.1, 0.25

Learning Rate 0.001
Optimizer Adam

Loss Function Categorical Cross Entropy
Hidden layers 20

Number of epochs 100
Batch Size 32

The combined features of the LU/LC and LST map were used as the training features
during the process of the Bi-LSTM training. Each pixel value was identified through the
latitude and longitudinal coordinates of Javadi Hills manually through the combined
features of the LU/LC and LST map. Each pixel holds either high or less vegetation for its
defined coordinate system. The few combined values were shown in Table 4. For better
understanding, we show the combined features map in Figure 20. The accuracy results for
the prediction model are shown in Section 5.2. The results were also cross-verified with the
time-series Google Earth Engine for acquiring the validation accuracy of our model. With
the impact of the LST map with the LU/LC map, good validation accuracy was obtained
with a lower misclassification rate.
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5.2. Validation of Vision Transformer–Based Bi-LSTM Model

The Google Earth images with the LU/LC classified images were evaluated for the
examination of accuracy assessment. By using the time-series images of the Google Earth
Engine, the accuracy assessment was calculated for the LU/LC classified image of Javadi
Hills. All the pixel values of the LU/LC classified image were validated with the Google
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Earth images. A total of 1008 random training samples were loaded, and the confusion
matrix was obtained during the process of accuracy assessment. Table 6 represents the
confusion matrix for the years 2012 and 2015. The results of the accuracy assessment for
the year 2012 are 0.9891, and for 2015, it is 0.9861. Table 7 represents the LU/LC accuracy
assessment for the years 2012 and 2015.

Table 6. LU/LC confusion matrix.

LU/LC Classification Class

Reference Class

2012 2015

High Vegetation Less Vegetation High Vegetation Less Vegetation

Actual Class
High Vegetation 694 4 689 6
Less Vegetation 7 303 8 305

Table 7. LU/LC accuracy assessment for the proposed Vision Transformer model.

LU/LC Classification 2012 2015

Overall Accuracy 0.9891 0.9861
Precision 0.9901 0.9885

Recall 0.9942 0.9913
F1-Score 0.9921 0.9898

The LU/LC prediction was performed, and the results were analyzed and processed.
The total number of pixel values was sliced into training and validation sets in an 8:2 pro-
portion. The accuracy values of the prediction method look good for the LU/LC map of
2018 and 2021. The result of the validation accuracy for the year 2018 is 0.9865, and for
2021, it is 0.9811. The results were also cross-verified with the time-series Google Earth
Engine image of Javadi Hills for the years 2018 and 2021 for acquiring the testing accuracy
of our model. The results of the testing accuracy for our model also provide good results
for 2018 and 2021. The results of the testing accuracy for the year 2018 is 0.9696, and for
2021, it is 0.9673. The results of the testing and validation accuracy of the predicted map
are presented in Table 8. The validation accuracy refers to the results of the non-trained
datasets of the model. The testing accuracy refers to the results of the complete model. We
used the inputs of the LU/LC map of 2012 and 2015, along with the predicted LU/LC map
of 2018 and 2021 for predicting the LU/LC map for the years 2024 and 2027. The short-term
prediction was performed till the year 2027 for our study area. As the Google Earth Engine
provides the time-series image till the current date, the validation and testing accuracy for
the predicted LU/LC map of 2024 and 2027 was not calculated. With the results of the
good validation accuracy for all the LU/LC predicted maps of Javadi Hills, our prediction
model provides a lower misclassification rate.

Average Model Accuracy =

(
AY1 + AY2 + . . . + AYn

T

)
∗ 100 (27)

where AY represents the accuracy value of years {1 . . . .n}, and T represents the total
number of years. The importance of providing the performance of the model depends on
the average classification and prediction results. The average classification and prediction
accuracy for the time series LU/LC data have been calculated by using Equation (27). The
accuracy results for the years 2012 (0.9891) and 2015 (0.9861) were used for providing the
performance of the calculation model through the average model accuracy. The average
classification accuracy that was obtained was 98.76% for the proposed Vision Transformer
model. The validation and testing results of our prediction model for the year 2018 are
0.9865 and 0.9696, respectively. The validation and testing results of our prediction model
for the year 2021 are 0.9811 and 0.9673, respectively. The average validation accuracy is
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98.38%, and the testing accuracy is 96.84% for our prediction model. We infer that the
impact of the LST spatial variable from TIRS bands with the classified LU/LC map provides
a good percentage of results.

Table 8. Validation and testing process of the proposed Vision Transformer–based Bi-LSTM
Prediction Model.

Input Map (Year) Training Feature Map
(256 × 200 Pixels)

Train—Validation
Split (8:2) Data

Test Data (Google
Earth Image) Predicted Map Validation

Accuracy
Testing

Accuracy

LU/LC
Classification—
LST Map (2012,

and 2015)

51,200 40,960–10,240 51,200 2018 0.9865 0.9696

51,200 40,960–10,240 51,200 2021 0.9811 0.9673

The computational complexity defines the total time taken by the computer for run-
ning an algorithm. The computational complexity of the Vision Transformer model is
O (nC), where n is the size of input, and C is the number of classified LU/LC classes. The
computational complexity of the Bi-LSTM prediction model is O (nkC + 1), where k is the
size of the spatial maps (LST) associated with input data n. Hence, the total computational
time of our proposed algorithm Cc is the arithmetic sum of the classification and prediction
model, which is given in Equation (28).

Cc = O (nC) + O (nkC + 1) (28)

Although the proposed Vision Transformer–based Bi-LSTM prediction model shows
significant performance, its training phase requires the determination of class values associ-
ated with spatial maps for each pixel in the n images, and this is computationally expensive.

5.3. Growth Pattern of the LU/LC Area of Javadi Hills

The growth patterns of LU/LC change in the area of Javadi Hills were performed
between the years 2012 to 2027, and the results are shown in Table 9. In 2012, the LU/LC
multispectral classified map was found to be 1651.04 ha (hectare) of the high vegetation and
736.85 ha of less vegetation. In 2015, the LU/LC multispectral classified map was found to
be 1601.22 ha of vegetation and 786.67 ha of less vegetation. In 2018, the LU/LC predicted
map was found to be 1621.18 ha of high vegetation and 766.71 ha of less vegetation. In 2021,
the LU/LC predicted map was found to be 1596.04 ha of high vegetation and 791.85 ha
of less vegetation. In 2024, the LU/LC predicted map was found to be 1568.23 ha of high
vegetation and 819.66 ha of less vegetation. In 2027, the LU/LC predicted map was found
to be 1553.17 ha of high vegetation and 834.72 ha of less vegetation. It was observed that
the LU/LC changes have been frequently happening every three years in the area of Javadi
Hills. The results of the LU/LC change that occurred between the years 2012 to 2027 are
shown in Table 10. The comparison chart of LU/LC area statistics for the time-series data
from 2012 to 2027 is shown in Figure 21.

Table 9. LU/LC area statistics for LU/LC Map (2012–2027).

LU/LC Class

Area (ha)

Year

2012 2015 2018 2021 2024 2027

High Vegetation 1651.04 1601.22 1621.18 1596.04 1568.23 1553.17
Less Vegetation 736.85 786.67 766.71 791.85 819.66 834.72

Total (ha) 2387.89 2387.89 2387.89 2387.89 2387.89 2387.89
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Table 10. Percentage of LU/LC change for the area of Javadi Hills during 2012–2027.

LU/LC Class

Area (%)

Year

2012–2015 2015–2018 2018–2021 2021–2024 2024–2027

High Vegetation −3.01 1.24 −1.55 −1.74 −0.96
Less Vegetation 6.76 −2.53 3.27 3.51 1.83
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6. Comparative Analysis

In this research work, we have proposed the Vision Transformer–based Bi-LSTM
prediction model for analyzing the past, present, and future changes of Javadi Hills, India.
We also infer that the LU/LC prediction accuracy of our model provides a lower error rate,
i.e., below 5%. From the thorough analysis, we infer that the use of the LST map has a high
impact on the LU/LC environment, and it was considered an important spatial feature for
the prediction of the LU/LC vegetation map.

We have compared our model with CNN, DWT, and standard LU/LC classification
and prediction techniques for the area of Javadi Hills. Our model outperforms the other
standard classification and prediction algorithms in terms of accuracy and computational
efficiency. We have executed the standard LU/LC algorithms (DWT [22], CNN [27],
SVM [1], MLC [2], and RFC [25]) and provided a comparative analysis of the Vision
Transformer model for our study area of Javadi Hills in Table 11. We have also presented
the comparative accuracy of the classification model in Figure 22. We have also shown the
comparative analysis of our prediction model with the hybrid machine-learning models [7]
for the area of Javadi Hills in Table 12.
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Table 11. Comparative analysis of the proposed Vision Transformer model with other algorithms for
the area of Javadi Hills, India.

Algorithms Average Accuracy (%)

Ours 98.76
CNN [27] 96.42
DWT [22] 94.21
SVM [1] 97.71
MLC [2] 94.4
RFC [25] 95.6
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Table 12. Comparative analysis of LU/LC prediction models for the area of Javadi Hills, India.

Study Area Algorithm Prediction Accuracy (%)

Javadi Hills, India

Vision Transformer–based
Bi-LSTM Model (ours) 98.38%

RFC-based MC–ANN–CA
Model [7] 93.41%

Our model outperforms the hybrid machine-learning models [7] and provides good
prediction accuracy. We have validated the use of the LST map with other spatial maps that
include a slope, aspect, and distances from the road map [7] for our prediction model. From
the thorough analysis, we infer that the use of the LST map has a high impact on the LU/LC
environment, and it has been considered an important spatial feature for the prediction of
the LU/LC vegetation map. We have shown a few comparisons of the validation results
of the LU/LC prediction methods by using LST, slope, aspect, and distance from the road
map for the area of Javadi Hills in Table 13.
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Table 13. Testing of the Vision Transformer–based Bi-LSTM model using the various combinations of
Input Spatial Data for Javadi Hills, India.

Study Area Input Data Prediction Accuracy (%)

Javadi Hills, India

LU/LC Classification—LST Map 98.38

LU/LC Classification—Slope Map 92.33

LU/LC Classification—Distance from
Road Map 91.64

LU/LC Classification—Slope, Distance
from road map 92.52

LU/LC Classification—Slope, LST map 93.45

LU/LC Classification—Distance from
Road, LST map 93.17

LU/LC Classification—Slope, Distance
from Road, LST map 94.2

We also show a few comparative analyses of overall prediction models for a few
different study areas in Table 14. We observed that there is a performance variation
in the prediction results for each study area around the world. This variation of the
LU/LC classification and prediction results was due to the selection of study area, satellite
data, environmental data, and its LU/LC classes. A variation of results was observed
for our study area with the assessment of multi-satellite datasets through the proposed
algorithm. We delivered a clear view of the importance of Vision Transformer–based
LU/LC classification and Bi-LSTM-based prediction for forecasting the time series LU/LC
vegetation map. The advantage of our proposed work lies in using only the LST map as the
spatial data for predicting the LU/LC vegetation map. We also achieved a good prediction
accuracy of 98.38%. Our proposed algorithm can be applied to other study areas around
the world in predicting the LU/LC vegetation map. Moreover, our proposed model has
been efficient for urban planners, forest departments, and government officials in analyzing
the LU/LC information through XAI and taking necessary actions in the protection of the
LU/LC environment.

Table 14. Comparative analysis of LU/LC prediction models for different study areas.

Study Area Algorithm Prediction Accuracy (%)

Javadi Hills, India (our study) Vision Transformer–Based Bi-LSTM Model 98.38

Wuhan, China [28] Self-Adaptive Cellular-Based Deep-Learning
LSTM Model 93.1

Guangdong province of South China [23] Deep Learning
(RNN–CNN) and CA–MC Model 95.86

Western Fansu Province, China [26] CNN–GRU Model 93.46

Dhaka, Bangladesh [29] CA–MC and ANN Model 90.21

University of Nebraska–Lincoln [24] CNN–Bi-LSTM Model 91.73

City of Surrey, British Columbia [56] RNN–ConvLSTM Model 88.0

Klingenberg, Germany [55] Fully CNN–LSTM Model 87.0

Awadh, Lucknow [6] CA–MC and LR model 84.0

7. Conclusions

The LU/LC prediction modeling was considered important research in the area of
remote sensing. In this research work, the multispectral LISS-III and Landsat satellite
image of Javadi Hills for the periods 2012 and 2015 were downloaded and performed
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for analyzing the LU/LC prediction for the years 2018, 2021, 2024, and 2027. The Vision
Transformer model for performing the LU/LC classification was proposed, and the accuracy
assessment was performed by using Google Earth Images. The average classification
accuracy obtained for our Vision Transformer model was 98.76%. The spatial features from
the LST map and LU/LC classified map were used as input for predicting the LU/LC
changes in Javadi Hills. For predicting the future LU/LC changes of Javadi Hills, the Bi-
LSTM model was successfully applied. We infer that the impact of the LST spatial features
with the LU/LC classified map provides a good percentage of results with 98.38%. The
predicted results provide the variation in the high- and less-vegetation regions of Javadi
Hills from 2012 to 2027. Our Vision Transformer–based Bi-LSTM model has produced
good validation results when compared with other standardized models. Our research on
LU/LC prediction provides information to the forest departments, urban planners, and
government officials to take necessary action in the protection of the LU/LC environment
through application-based XAI. In the future, we plan to focus more on using the TIRS
bands of hyperspectral data to obtain the temperature values associated with each pixel
and to classify the hyperspectral data in real-time scenarios.
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