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Abstract: Lung Cancer is one of the primary causes of cancer-related deaths worldwide. Timely
diagnosis and precise staging are pivotal for treatment planning, and thus can lead to increased
survival rates. The application of advanced machine learning techniques helps in effective diagnosis
and staging. In this study, a multistage neurobased computational model is proposed, DETECT-LC
learning. DETECT-LC handles the challenge of choosing discriminative CT slices for constructing
3D volumes, using Haralick, histogram-based radiomics, and unsupervised clustering. ALT-CNN-
DENSE Net architecture is introduced as part of DETECT-LC for voxel-based classification. DETECT-
LC offers an automatic threshold-based segmentation approach instead of the manual procedure,
to help mitigate this burden for radiologists and clinicians. Also, DETECT-LC presents a slice
selection approach and a newly proposed relatively light weight 3D CNN architecture to improve
existing studies performance. The proposed pipeline is employed for tumor phenotyping and staging.
DETECT-LC performance is assessed through a range of experiments, in which DETECT-LC attains
outstanding performance surpassing its counterparts in terms of accuracy, sensitivity, F1-score
and Area under Curve (AuC). For histopathology classification, DETECT-LC average performance
achieved an improvement of 20% in overall accuracy, 0.19 in sensitivity, 0.16 in F1-Score and 0.16 in
AuC over the state of the art. A similar enhancement is reached for staging, where higher overall
accuracy, sensitivity and F1-score are attained with differences of 8%, 0.08 and 0.14.

Keywords: radiomics; deep learning; 3D-CNN; computed tomography; staging; tumor phenotyping

1. Introduction

Cancer is considered one of the principal causes of death, impeding the possibility
of increasing life expectancy worldwide. According to GLOBOCAN estimates of cancer
incidence and mortality in 2020, lung cancer is responsible for around 18% of cancer-related
deaths. Newly diagnosed lung cancer cases are estimated to be 2.2 million cases. Lung
cancer ranks first in men and third in women in terms of incidence [1]. According to
North American Association of Central Cancer Registries (NAACCR), it was projected
that 235,760 lung cancer cases out of 1,898,160 new cancer cases will be attributed to lung
cancer in the United states of America (USA) [2] in 2021. It is also projected that lung cancer
will account for 131,880 out of 608,570 new deaths will be attributed to in the USA [2] in
2021. Meanwhile, lung cancer mortality manifests an accelerating long-term decline, which
doubled from 2.4% during 2009 through 2013 to 5% during 2014 through 2018 for both
sexes [2]. Non-small cell lung cancer (NSCLC), specifically, has attained a significant gain
of 5 to 6% in survival for every stage of diagnosis. Non-small cell lung cancer (NSCLC)
represents 80 to 85% of lung cancers [2].

Several factors have been found to contribute to the reported survival gains in the
USA. These factors include rising medical care access by individuals due to the Patient
Protection and Affordable Care Act and Medicaid expansion in 2014 [3]. More importantly,
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the developments in diagnostics and lung cancer staging [4] fields have led to increased
survival in early stage cancers. Lung cancer staging is crucial for therapy planning and
thus has a significant positive prognostic effect [4]. Medical imaging is one of the funda-
mental steps for effective staging. Different modalities are available for lung imaging and
screening, such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT) and
Positron Emission Tomography (PET) scans. However, CT remains the standard imaging
modality for preoperative staging. CT imaging has the advantages of lower cost and
shorter examination time, together with its comparable performance [5] relative to other
imaging modalities.

Recently, machine learning (ML) and deep learning (DL) have shown epic potential
in enhancing clinical decision making [6]. In oncology, ML and DL are applied in the
diagnosis and staging phase, as well as the follow-up and treatment evaluation phase [7].
The immense advances in ML techniques and the availability of computationally powerful
devices enable the effective processing of volumetric imaging data for diagnostic and
staging purposes [8].Volumetric data, for CT scans, is composed of two dimensional (2D)
stacked images, that gives better representation of the lung. Such enhanced representation
is generally related to improved performance [9]. However, the election of meaningful 2D
slices for 3D volume reconstruction, has a considerable impact on the performance. In this
paper, DETECT-LC pipeline is proposed for Non-small cell lung cancer (NSCLC) diagnosis
and staging. The pipeline incorporates:

• A simple automatic segmentation technique using hounsfield unit values and subse-
quent thresholding with acceptable performance.

• A semi-supervised 2D slice election approach, which depends on textural features.
The adopted clustering-based approach eliminates the need for extensive human
intervention, allowing for faster processing.

• A simple 3D DL network architecture ALT-CNN-DENSE Net for effective lung cancer
staging and tumor phenotyping. The performance of the proposed network surpasses
the performance of the state of the art.

This paper is organised as follows: a brief background on lung cancer staging standard
will be given in the next section. Similar studies that performed staging and/or malignancy
detection will be presented in Section 3. In Section 4, the proposed staging pipeline will be
described DETECT-LC. The benchmark datasets used to test the performance of DETECT-LC
are depicted in Section 5, with our obtained results and subsequent discussion. Conclusions
are finally drawn in Section 6.

2. Background

In this study, we will focus on NSCLC diagnosis and staging . NSCLC includes
three main subtypes namely adenocarcinoma, squamous cell carcinoma, and large cell
carcinoma. Despite the subtypes differences regarding their onset cell sites, they are
grouped together due to their similarity in terms of treatment and prognosis. Figure 1
illustrates the manifestations of the three NSCLC subtypes on CT scans. The characteristics
of these subtypes on CT scans [10] can be summarized as follows:

• Adenocarcinoma (ADC) early manifestation is in mucous cells and shows as rounded
or irregular lung nodules of higher attenuation. These nodules are usually present at
the outer parts of the lung.

• Squamous Cell Carcinoma (SCC) appears first in squamous cells at the inside lining
of the lung airways. These tumors are often white in color. Typically, SCC spread
centrally in the hilar cavity but can extend peripherally to the chest walls, as indicated
in Figure 1.

• Large cell (undifferentiated) carcinoma (LCC) has the tendency to grow rapidly any-
where in the lung, which makes its survival rate low. Additionally, it lacks the presence of
distinctive features except for large nuclei with modest amount of
cytoplasm microscopically.
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Figure 1. NSCLC radiopathological subtypes manifestations (marked) on CT scans: (a) Adenocarci-
noma (b) Squamous Cell Carcinoma (c) Large Cell (undifferentiated) Carcinoma.

Within each carcinoma subtype, staging is crucial for effective treatment and follow
up planning. The International Association for the Study of Lung Cancer (IASLC) recom-
mends a standard procedure for cancer stage classification based on TNM staging [11].
The assigned cancer category relies on three aspects: the size of the primary tumor (T),
the number and location of regional lymph nodes (N), and the presence or absence of
metastasis (M). The proposed classification system aims to provide a uniform system for
consistent reproducible stage, which is necessary for optimizing treatment. According
to the 8th Edition TNM staging update [11], there are 13 stages depending on different
combinations of T, N and M variations. In this study, we will focus on four broad stage
categorizations, namely stage I, stage II, stage IIIA and stage IIIB. Detailed definition of the
stages can be found in the 8th Edition TNM staging update [11]. These stages represent
localised and regional cancer spread with higher expected survival rates [12]. Hence, timely
accurate staging is of immense importance to help optimize the therapeutic outcome.

3. Related Work

Oncology computer aided diagnostic tools have evidently evolved over the years. ML-
based tissue and tumor segmentation models have been widely proposed as auxiliary di-
agnostic tools. Two examples of the recent work on segmentation are Nazir et al. [13] and
Nishio et al. [14] . In Nazir et al. [13] approach , adaptive global threshold is applied for lung
segmentation. The threshold is elected based on CT image histogram. Following segmentation,
laplacian pyramids are used for image decomposition and reconstruction. Adaptive Sparse
representation is used for image fusion. Nishio et al. [14] used transfer learning pretrained on
an artificial dataset LUNA16. The artificial dataset was generated with the aid of Generative
Adversial Network and 3D graph cut. The pretrained segmentation model is constructed by
nnUnet, where it showed 0.09 higher dice similarity score than without transfer learning.

Despite that lung segmentation is an important step for subsequent diagnosis, tools
that perform solely segmentation fail to utilize the full capability of ML. Hence, various
studies were directed towards providing a complete solution for pathology diagnosis and/or
stage assessment. To this end, Chaunzwa et al. [15] compared the performance of fully con-
nected VGG16 Convolution Neural Network (CNN) classification to traditional ML classifiers.
The classification models were used to differentiate between ADC and SCC. The traditional
classifiers relied on 512 and 4096 feature vectors output from VGG16 architecture. The highest
performance was achieved through a deep-radiomics approach, where a 4096 feature vector is
obtained from the last fully connected layer. Principal component analysis and Least Absolute
Shrinkage and Selection Operator (LASSO) method were used to generate and select the
most relevant features. Then, k-Nearest Neighbors (kNN) (k = 5) is applied for classification.
Marentakis et al. [16] conducted an extensive comparison between various approaches: two
classifiers radiomics (kNN and SVM), four recent CNN architectures, CNN with Long Short
Term Memory (LSTM) and combinatorial approach (CNN + LSTM + radiomics). LSTM was
used to incorporate spatial coherence of CT slices into the model. LSTM + Inception attained
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the highest accuracy and AuC. Another study based on radiomics is the work of Khod-
bashki et al. [17]. A set of 1433 radiomics features were generated from wavelet decomposition
and LOG filtered images. Wrapper and Multivariate regression feature selection algorithms
were applied to classify histopathological subtypes. Traditional learning was also adopted
by Yang et al. [18]. A total of 788 radiomic features were extracted then various features
selection methods were used to select the most informative features. Logistics Regression
(LR), Support Vector Machines (SVM), and Random Forest (RF) were applied for histology
(SCC and ADC) determination.

Other studies were directed towards staging, such as the work of Yu et al. [19]. Image
segmentation and features extraction are done using 3D-Slicer software and Pyradiomics
package respectively. SMOTE oversampling was applied to balance the dataset. Random
Forest was used for staging. The model did not perform well on multi-class staging, hence
binary (early-late) staging was performed resulting in accuracy of 75%. Choi et al. [20] also
performed binary staging with a serial two phase system. U-net autoencoder network is
used for latent variables extraction and image reconstruction. Then, CNN architecture is
used for binary classification. U-net + CNN outperformed U-net + traditional machine
learning classifiers. Paing et al. [21] performed T-staging using Back Propagation Neural
Network (BPNN). Five classifiers were applied on merged benchmark datasets. BPNN
achieved the highest accuracy of 90.6% with 28 geometric, intensity and textural nodule fea-
tures. Another study that implemented cascaded deep networks is that of Moitra et al. [22].
Maximally stable extremal regions (MSER) and speeded up robust features (SURF) were
extracted from enhanced images. The extracted features are fed to a 1D CNN-RNN model
for multi-staging. The model achieved the highest accuracy compared to RF, SVM and
Multilayer Perceptron.

Some of the previous work relied on manual intervention and/or expert knowledge
for Region of Interest (RoI) specification such as the work of Choi et al. [20]. Human
intervention provides validation for this step. However, fully automating the processing
pipeline would mitigate the burden off clinicians and radiologists. Hence, automating the
step of RoI specification is needed. The expected benefit is to enhance the performance
of diagnostic systems and free clinicians and radiologists to handle more critical tasks.
Also, most of the presented studies were directed towards histology classification or binary
staging [15,16,19,20], whereas multiclass staging can be considered more crucial. Multiclass
staging is important for adapting the medical care provision plans and providing better
prognosis. Also, the stratification of survival rates varies considerably with the respective
stage [12]. Thus, studies are needed to address this higher complexity classification problem
of multistaging to be able to provide precise treatment plans. Additionally, some of
the available studies did not utilize the spatial coherence information available in 3D
CT volumes [21] missing the holistic context of the slices. Neglecting the connectivity
properties of CT image pixels may disadvantage the staging decision. Another limitation in
2D slice-based classification, which offers a slice by slice class, is that it does not produce a
patient-level decision. Such limitation restricts these studies diagnostic value, as it does not
provide an overall diagnosis per patient. Thus, 3D volumetric decision support systems
are called for to produce patient decision. On the other hand, studies that used 3D volumes
utilized computationally expensive architectures [15,22]. Another issue with processing
3D volumes is selecting informative slices from the CT series. Slice selection is critical to
construct informative 3D volumes. Selection eliminates the effect of irrelevant slices on
performance and reduces computational time. However, this issue was not inspected, to our
knowledge, in the literature [15,20,22]. Despite the existing shortcomings, the employment
of ML and deep learning in lung cancer decision support systems show substantial prospect
in various applications [23]. Such potential encourages further developments that consider
the issues and limitations in current studies in attempt to improve the tumor phenotyping
and staging performance. Therefore, this study aims to tackle the existing described issues
through our proposed framework. It provides an automatic threshold-based segmentation
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approach, a semisupervised slice selection approach and a newly proposed relatively
lightweight 3D CNN architecture.

4. Materials and Methods

In this study, a 3D volumetric multi-stage computational pipeline is proposed (shown
in Figure 2) for Lung Cancer pathology phenotyping and staging integrating 3D DEep
Learning and TExtural Radiomics applied on CT volumes (DETECT-LC). The pipeline is
used for producing carcinoma subtype or stage class.

Figure 2. DETECT-LC multistage computational model for lung cancer pathology subtype or
stage determination.

In order to reduce the computation power required for processing 3D volumes and
enhance the effectiveness of the proposed CNN model, a semi-supervised slice selection
procedure is suggested. The selection procedure assists in constructing informative and
concise 3D volumes. The created 3D volumes are input to the new ALT-CNN-DENSE
Model architecture. The model outputs the corresponding class. Figure 2 depicts the flow
of the decision process through the different computational pipeline phases. A detailed
description of each phase is provided.

4.1. Dataset Acquisition

Three publicly available benchmark datasets from TCIA Repository [24] are used to
train, validate and test DETECT-LC. The datasets are NSCLC Radiomics [25], NSCLC
Radio-Genomics, NSCLC Radiomics-Genomics [26]. Several studies have been experi-
mented with these datasets, which allows state of the art comparison with our model.
In addition, it includes thoracic cavity binary segmentation masks, which enables the
validation of our simple segmentation approach.

NSCLC Radiomics (Lung 1) includes 422 non-small cell lung cancer (NSCLC) patients’
pre-treatment CT scans. After the applied preprocessing, the dataset is set to be 395 volumes.
On average, there are 123 slice/patient. Clinical data is provided together with the CT scans.

NSCLC Radiomics-Genomics (Lung 3) holds pre-treatment CT scans, gene expres-
sion, and clinical data of 89 non-small cell lung cancer (NSCLC) patients. The included
patients were treated with surgery.

NSCLC Radio-Genomics is a cohort of 211 patients, where imaging data are also
paired with gene mutation, RNA sequencing data from samples of surgically excised tumor
tissue. Also, clinical data including survival outcomes are provided.

For each dataset, the distribution of patients across the various histology groups and
stages is shown in Table 1. In addition, the age distribution of subjects across stages I,
II, IIIA and IIIB (gender differentiated) is illustrated in Figure 3. The violin plot shows
no significant difference in terms of age between different stage groups (p = 0.067, Mann-
Whitney U test).

The datasets included carcinoma subtypes and stages that are out of the scope of the
specified classes. Hence, their respective records were eliminated. The typical data used in
our experiments are outlined in Table 1.
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Table 1. Stage and Pathology (ADC, SCC, NOS and LCC) Distribution in the Non-Small Cell Lung
Cancer Benchmark Datasets.

NSCLC Radiomics (Lung 1)

ADC SCC NOS LCC

I 11 23 44 15
II 8 23 4 5

IIIA 14 44 15 36
IIIB 18 62 NA 57

NSCLC Radiomics-Genomics

ADC SCC NOS

I 5 9 25
II 23 23 9

IIIA 3 4 NA
IIIB 5 6 NA

NSCLC Radio-Genomics

ADC SCC NOS

I 73 18 2
II 22 12 NA

IIIA 15 5 1
IIIB 2 NA 1
UD 60 NA NA

UD: Unspecified

Figure 3. New Violin plot for the histology box-plot against age with distribution of genders (red:
male and blue: female).

4.2. Data Preprocessing

DICOM retrospective preprocessing is applied on CT slices in order to convert slice
domain from imaging machine domain to CT Hounsfield Unit (HU) domain. Domain trans-
formation relies on the differences in the absorption/attenuation coefficients of radiation
(X-ray beam) within tissues. The HU value of a tissue can be computed based on the linear
attenuation of the tissue (µ) relative to the attenuation of water (µwater) and air (µair) under
standard temperature and pressure as expressed in Equation (1).

HU = 1000× µ− µwater

µwater − µair
(1)

The radiodensity of water is considered to be zero HU and air is−1000 HU. In order to
generate grayscale images during CT reconstruction, the intensity values are transformed
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to HU CT values. Equation (2) is used for transformation, where m is the rescale slope and
c is the rescale intercept. The rescale values are available as part of each CT slice metadata.

HU = mx + c (2)

Following HU conversion, a binary image (mask) is generated for each slice depend-
ing on HU values. Multilevel thresholding is applied based on established HU spectral
bands [27], where the lung HU values range from −900 to −400. The mask helps highlight
the lung tissue area for further processing. In addition, Gaussian filter is applied on the orig-
inal slices to remove the noise. The noise might have been generated from electromagnetic
waves and heat or light from surroundings.

4.3. Radiomics-Based Semi-Supervised Slice Selection

CT scan volumes can be of large number of slices, which leads to high computation
time and complexity. Aside from the high computation complexity, another critical issue
is the information content of the slices. CT volumes comprise slices of the whole thoracic
cavity area. It includes discriminative and non-discriminative lung slices. Figure 4 shows
sample slices, exemplar slices in Figure 4a is of low value to the current study as it will
not give any additional information to the learning model. In fact, these slices may add
noise degrading the performance of the classification model. On the contrary, the exemplar
slices in Figure 4b are the ones that need to be selected as they show lung tissue clearly.
Another issue is that the exact location (index) of informative slices varies individually
per patient, which means that manual selection would be time consuming. Also, static
predefined range for the targeted slices will hinder the learning process as the range
of informative slices varies considerably. Hence, the slice selection is required to input
informative slices to the classifications’ models. The slices are not labelled as discriminative
and non-discriminative lung slices; hence, unsupervised clustering is used to group the
slices based on a set of extracted features. Unsupervised learning provides an adequate
solution to the issue of unlabeled slices, as it divides the slices into their natural groupings
based on the extracted features.

(a) Non-Discriminative Slices

(b) Discriminative Slices
Figure 4. Various exemplars of slices (views) from different positions of different CT volumes.

For the purpose of feature extraction, Haralick texture features [28] and Histrogram-
based features [29] are extracted from each slice and its binary mask. The features capture
the structural and spatial characteristics of the slices. The extracted features help differ-
entiate between discriminative and non-discriminativelung slices. Haralick features are
extracted from the normalized Gray-Level Co-occurrence Matrix (GLCM). Each GLCM
element p(i, i) represents the co-occurrence of a pair of grey levels (i, j, d, θ) in neighboring
pixels, where i denotes the grey level in the reference pixel, j denotes the grey level in the
neighbor pixel, d is the interpixel distance set to one and θ is the angle of offset between
neighbouring pixels set to zero. The number of (quantized) grey levels is denoted as G.
Five features are extracted from the produced GLCM, namely Angular Second Moment
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(ASM), contrast (C), Sum Entropy (SE) , Homogeneity (H) and Energy (E). The equations
given below present the calculation of the Haralick features.

ASM = ∑G
i=1 ∑G

j=1 p(i, j)2 (3)

C = ∑G
i=1 ∑G

j=1(i− j)2 p(i, j)2 (4)

SE = −∑G
i=1 ∑G

j=1 p(i, j) log2 p(i, j) (5)

H = ∑G
i=1 ∑G

j=1
p(i,j)

1+(i−j)2 (6)

E =
√

ASM (7)

For Histogram-based features, three descriptive statistical measures are computed for
each histogram. Histogram Entropy (EnH) measuring the uncertainty and disagreement
of the distribution is calculated according to the equation shown below. Kurtosis (KH)
and Skewness (SkH) measures are calculated. Kurtosis (KH) detect whether the data are
heavy-tailed or light-tailed relative to a normal distribution. Skewness (SkH) checks the
lack of symmetry. The measures are evaluated given the following equations, where N is
the number if bins, w is the bin width, pr is the bin probability and Ct is the bin count.

EnH = −∑N
i=1 pri log(pri/wi) (8)

KH = ∑N
i=1

(Cti−Ct)4/N
σ4 (9)

SkH = ∑N
i=1

(Cti−Ct)3/N
σ3 (10)

After feature extraction, a range of clustering algorithms, such as modified k-means
variant [30], agglomerative [31], Spectral [32], and BIRCH [33] are applied to create different
data partitions (clusters). The applied approach is outlined in Algorithm 1. Since there
is substantial variability in the slices that are to be considered for selection or omission
as shown in Figure 4, the targeted number of clusters to best partition the data cannot
be determined beforehand. Therefore, the number of clusters fit for the data is verified
experimentally. The quality of the clusters are evaluated to elect the partition of the best
usability to DETECT-LC pipeline through well established clustering quality metrics.

Algorithm 1 Radiomics-based semi-supervised slice selection

1: procedure SS( CTs)
2: for each S in CTs
3: Apply DICOM retrospective processing
4: Per f orm HU − based lung parenchyma segmentation generating binary maskSLP
5: end for
6: for each SLP
7: Generate Haralick Texture f eatures ASM, C, SE, H, E
8: Generate Histogram Texture f eatures EnH , KH , SkH
9: Generate Feature Vector : ASM, C, SE, H, E, EnH , KH , SkH

10: end for
11: Apply clustering : k−means, Agglomerative, BIRCH, and Spectral Clustering
12: return Output clusters
13: end procedure

4.4. ALT-CNN-DENSE Net Architecture

After the selection phase, the slices are constructed into 3D volumes and input to
the proposed ALT-CNN-DENSE Net model. The proposed architecture is illustrated in
Figure 5, where it depicts the characterizing blocks of alternating convolution and average
pooling layers followed by a drop out layer and multiple dense layers. The structure of the
network architecture is detailed in Table 2. ALT-CNN-DENSE Net uses 3D kernels for the
convolution process on the input CT volumes, which enables the extraction of both spatial
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and spectral features [34]. Such capability provides an advantage over 1D and 2D CNNs.
However, this comes at the cost of increased complexity. Thus, the sequence of blocks of
alternating convolution (CONV) and pooling layers are devised for dimensionality reduc-
tion and subsequent complexity moderation. Pooling eliminates redundant and irrelevant
information reducing overfitting. Also, it provides spatial translation invariance [35]. In ad-
dition to the known advantages of pooling, the downsampling generates bird’s eye view
feature maps for the following CONV layers. The generated feature maps aid the early
detection of 3D primitives reducing the CNN depth. The CONV layers comprise different
filter sizes to extract the multiscale inter-slices granule details in each volumetric input. The
architecture has inherited the residual connectivity from RESNET. Average pooling layers
as well as global average layer was taken from InceptionV3. Residual connections allow
gradients to flow through a network directly, without passing through activation functions.
At this point, the convolved features are passed between layers with the residual. This
has the advantage to compensate any loss in the features between extensive mathematical
calculations of layers as well as preserve spatial and temporal features in slices at the same
time. Average pooling is used instead of Max pooling to guarantee that pixels with their
surroundings relations are taken into consideration and not ignored. Average pooling
maintains inter and intra-slices locality spatiotemporal information, unlike in Max Pooling
where specific features are selected despite of location. The position of the tumor is critical
for lung tumor phenotyping and cancer staging, which explains why average pooling gives
higher performance with the problem considered here.

The flatten layer is added to convert the extracted features from the previous Convolution-
AveragePooling (CNN-AVP) block to a 1D vector. The features vector is fed into a fully
connected network of a set of dense layers. A drop out layer is added to reduce overfitting
and improve generalization error. The deep dense layers concatenate the feature maps from
all of the previous nodes and forward them to the following layers. New comprehensive
feature maps are created from the fully connected dense network, which is expected
to improve the CNN performance [36]. The softmax layer of this network outputs (n)
classifications. To sum up, the developed architecture offers advantages of architecture
depth reduction, extraction of both spatial and spectral features, generation of multiscale
feature maps, reduced risk of overfitting and features reuse.

Table 2. ALT-CNN-DENSE Net Architecture Layers Description

Layer Output

conv3d (Conv3D) (v, 40, 128, 128, 1)
average_pooling3d (v, 20, 64, 128, 1)
conv3d_1 (Conv3D) (v, 20, 64, 128, 8)

average_pooling3d_1 (v, 10, 32, 128, 8)
conv3d_2 (Conv3D) (v, 10, 32, 128, 16)

average_pooling3d_2 (v, 5, 16, 128, 16)
conv3d_3 (Conv3D) (v, 5, 16, 128, 32)

average_pooling3d_3 (v, 3, 8, 64, 32)
conv3d_4 (Conv3D) (v, 3, 8, 64, 64)

average_pooling3d_4 (v, 2, 4, 32, 64)
conv3d_5 (Conv3D) (v, 2, 4, 32, 128)

average_pooling3d_5 (v, 1, 2, 16, 128)
flatten (Flatten) (v, 4096)

dropout (Dropout) (v, 4096)
dense (Dense) (v, 1024)

dense_1 (Dense) (v, 256)
dense_2 (Dense) (v, 128)
dense_3 (Dense) (v, 64)

Output (v, n)
v: varies with input volume.
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Figure 5. ALT-CNN-DENSE Net proposed architecture for multiclass (lung cancer pathology or stage) classification.
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5. Results and Discussion

The experimental findings of each phase of DETECT-LC pipeline are presented. First,
the results of the preparation stage, including preprocessing, feature extraction and un-
supervised slice selection steps are reported. After data preparation, the performance of
ALT-CNN-DENSE Net is tested.

5.1. Experimental Tools and Setup

Preprocessing and slice selection are performed using pyRadiomics v3.1 and keras
preprocessing packages, while ALT-CNN-DENSE Net implementation, training, testing
and validation are done using Python language v3.7.6 with Keras package v2.3 (TensorFlow
v2.1 backend). Also, numpy v1.18.4 and OpenCV v4.2.0 packages are used. Experiments
are conducted on core i7, 2.21 GHz processor with 16 GB RAM and NIVIDIA TESLA
v100-sxm2-16gb. Curves and diagrams have been created and exported using matplot and
Microsoft Visio.

The performance of the simple HU-based segmentation approach is evaluated against
the thoracic cavity segmentation masks provided with the datasets. Dice similarity co-
efficient [37] is used for segmentation evaluation. It quantifies the overlap between two
binary segmentation masks, where a value of 0 indicates no overlap and a value of 1
indicates complete overlap. For the clustering-based slice selection phase, the quality of
the produced partitions is evaluated by two well-established clustering evaluation indices.
The performance metrics used are Silhouette index (Sil) and Davies Bouldin (DB) index [38],
which measure the intra-clutser and inter-cluster distances. The purpose is to select the
clusters with the highest compactness and best separability from the other clusters (i.e.,
higher Silhouette index and lower Davies Bouldin value). A range of cluster numbers are
tested with the different clustering algorithms to determine the best suited algorithm and
number of clusters based on Sil and DB values. Then, the appropriate number of clusters is
affirmed through the elbow method [39].

All CNN architectures are trained from scratch using Adam optimizer with starting
learning rate of 0.0001. ReLU activation is used to help overcome the vanishing gradient
problem. The percentage splits of the datasets into training, validation and testing are 0.55,
0.15 and 0.3 respectively. Inputs are divided into batches of size 5. Validation accuracy
and mean-squared-error are monitored for each epoch. In addition, the learning rate is
reduced by almost a factor of 0.15 for every two consecutive epochs without improvement
in validation. The best model is defined as having the maximum validation accuracy then
it is stored and applied on the testing. Boot strapping with replacement is applied and the
reported results represent the average of 10 runs. The performance of the CNN classifi-
cation models is evaluated using four performance measures and confusion matrix [40].
The metrics are accuracy (Acc), sensitivity (Sn), F1-Score and AUC. Confusion matrices are
displayed to show the classification distribution across class labels to aid the visualization
of the pipeline performance.

5.2. Preparation Stage Results

Based on the adopted multilevel thresholding procedure, a binary mask is generated
for each slice, as shown in Figure 6.

The mask images clearly outline the lung tissue in the middle lung slices and manifest
a constant image for peripheral lung slices. The presented output manifest the success of
the thresholding approach in generating segmentation masks for the lung tissue. Dice coef-
ficient is calculated for the three datasets and the results are shown in Table 3. The achieved
DC values presents acceptable performance as the recommended DC value for a good
overlap is >0.700 according to Zijdenbos et al. [37]. Hence, the HU-based mask generation
approach is considered satisfactory, especially that the masks are used solely for textural
analysis and subsequent slice selection.
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(a) Full HU CT Slices

(b) HU-based Segmentation Binary Masks

Figure 6. Output of HU multilevel thresholding from five different patients (CT Scans) at five different
positions (First Slice, two middle slices, Slice 250, and last Slice).

Table 3. HU-based segmentation evaluation using dice (DC) coefficient on the TCIA NSCLC datasets.

Dataset DC

NSCLC Radiomics (Lung 1) 0.79
NSCLC Radiomics-Genomics 0.85
NSCLC Radio-Genomics 0.89

For each slice S, ASM, C, SE, H, E, EnH , KH and SkH features are extracted from
the full HU CT slices and their corresponding binary masks SLP. In Figure 7, Haralick
features values variation across slices of five patients are depicted. The diagrams elucidate
that the features generated from the binary masks between peripheral slices and middle
slices better differentiate discriminative vs non-discriminative features. For instance, ASM
takes a value of one for constant images denoting non-discriminative lung slices. Similarly,
contrast feature C has a constant value of zero for all peripheral non-informative lung slices,
while it varies with the middle informative lung slices. Histogram based features depict the
same pattern, which is clear when comparing Figures 8 and 9. Thus, the features extracted
from the binary masks are the ones selected to be input to the clustering algorithm.
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(a) Angular Second Moment

(b) Contrast

(c) Sum Entropy

(d) Homogeneity

(e) Energy

Figure 7. Haralick Textural Features extracted from lung tissue binary mask slices (left) and from full
HU band CT slices (right).

The performance of modified k-means variant [30], agglomerative [31], Spectral [32],
and BIRCH [33] clustering is evaluated. Figure 10 shows the Sil index and DB index of
each clustering algorithm varying with cluster number. Considering Sil index, k-means
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presents the best performance across all cluster numbers. While in terms of DB, it is
equivalent to BIRCH clustering at two clusters. Nevertheless, k-means is employed for the
purpose of slice selection for its intrinsic advantages such as scalability to large datasets
and adaptiveness to data points cluster assignment [41].

(a) Histogram Entropy of Segmented CT Slices

(b) Histogram Kurtosis of Segmented CT Slices

(c) Histogram Skewness of Segmented CT Slices

Figure 8. Histogram-based Features extracted from Lung tissue binary mask slices.
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(a) Histogram Entropy of Full HU CT Slices

(b) Histogram Kurtosis of Full HU CT Slices

(c) Histogram Skewness of Full HU CT Slices

Figure 9. Histogram-based Features extracted from Full HU Bands CT slices.

The best number of clusters is decided through the elbow method, as illustrated in
Figure 11. From the shown diagrams, the optimum number of clusters can be chosen to
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be two or three. However, in view of the Sil and DB indices values in Figure 10, we opt
to two clusters. The choice of two clusters also naturally corresponds to the open/closed
lung partitions. Given the resultant clusters, the n slices nearest to the cluster centroid are
selected per patient. The chosen slices are used to construct the 3D volumetric structures
(nifti files), which are input to ALT-CNN-DENSE Net for training, validation and testing.

Figure 10. Clustering Quality Evaluation using two quality evaluation measures (a,b). Clusters
produced by modified kmeans variant, Agglomerative, Spectral and BIRCH clustering with varying
number of clusters.

Figure 11. Elbow Method results using Distortion (on the left) and Inertia (on the right).

5.3. Voxel-Based Classification Results

The discriminating ability of the proposed ALT-CNN-DENSE Net and DETECT-LC
pipeline is assessed using two scenarios: NSCLC carcinoma subtypes classification (ADC,
SCC and NOS) and lung cancer staging (I, II, IIIA and IIIB). The focus of this study is
on ADC, SCC and NOS as they comprise 80% of the diagnosed subtypes [42] and are
commonly available for all the study datasets. The described classifications are produced
on NSCLC radiomics, NSCLC radiomics-genomics, and NSCLC radio-genomics datasets.
Each dataset is split for training and testing purposes. The percentage split per class is
around 55% for training, 15% for validation and around 30% for testing.

An ablation study is conducted to signify the contribution of ALT-CNN-DENSE Net in
DETECT-LC pipeline to the final classification output. Hence, the output of DETECT-LC
full pipeline is compared against our proposed radiomics preparatory stage (RPS) and off
the shelf 3D ResNet-50 and Inception V3. The performance of ALT-CNN-DENSE Net is
compared with RESNET-50 and Inception V3 due the inherent similarities between them.
An additional experiment for NSCLC-Radiomics dataset is conducted, where a set of slices
are statically selected with predefined indices. The slices are selected at the middle of
the CT series depending on the size of the series. This approach is used instead of the
proposed radiomics unsupervised approach to determine the value of the preparatory stage.
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The results of this experiment are reported as Static Selection (SS) + ALT-CNN-DENSE Net.
NSCLC-Radiomics dataset is chosen for this experiment as it comprises the largest number
of patients volumes and slices.

5.3.1. Lung Cancer Pathology Phenotyping

Pathology phenotyping is carried out on the three datasets separately and the results
are reported accordingly in Tables 4–6.

Table 4. Lung Cancer Phenotyping Performance Evaluation on NSCLC Radiomics (Lung 1).

Model Acc Sn F1-Score AUC

SS + ALT-DENSE 0.60 0.61 0.62 0.41
RPS + ResNet-50 0.67 0.62 0.64 0.58

RPS + InceptionV3 0.89 0.7 0.81 0.71
DETECT-LC 0.96 0.93 0.93 0.83

Table 5. Lung Cancer Phenotyping Performance Evaluation on NSCLC Radiomics-Genomics.

Model Acc Sn F1-Score AUC

RPS + ResNet-50 0.67 0.62 0.64 0.58
RPS + InceptionV3 0.86 0.9 0.71 0.8

DETECT-LC 0.92 0.87 0.91 0.88

Table 6. Lung Cancer Phenotyping Performance Evaluation on NSCLC Radio Genomics.

Model Acc Sn F1-Score AUC

RPS + ResNet-50 0.82 0.73 0.71 0.51
RPS + InceptionV3 0.82 0.61 0.7 0.6

DETECT-LC 0.93 0.88 0.92 0.89

All the performance metrics in Tables 4–6 portray the superior performance of DETECT-
LC, compared to SS+ALT-DENSE Net, RPS + ResNet-50 and RPS+ Inception V3 counter-
parts. The superior performance highlights the importance of each phase. DETECT-LC
achieves higher performance when compared to RPS + ResNet-50 on all datasets with
a minimum difference of 0.11, 0.15 and 0.21 in terms of accuracy (Acc), sensitivity (Sn)
and F1-score respectively on NSCLC Radio Genomics. The minimum AUC difference of
0.25 is on NSCLC Radiomics. A smaller improvement is attained against RPS + Inception
V3; nevertheless it managed to score a minimum of 0.06, 0.2 and 0.08 improvement in
terms of Acc, F1-score and AUC, respectively. As for the manual static slice selection
comparison, an immense performance gap is observed where DETECT-LC outperformed
SS + ALT-DENSE Net with 0.29, 0.32, 0.31 and 0.42 gap for Acc, Sn, F1-score and AUC
respectively. Another parameter worth noting in this experiment is training convergence
time, as SS + ALT-DENSE Net recorded seven hours of training time against 48 min for
DETECT-LC. These findings highlight the inability of ALT-DENSE Net to extract distin-
guishing features from the statically selected slices. This is due to the fact that they contain
non-discriminative (closed) lung slices, which dramatically degrades the performance of
ALT-CNN-DENSE Net.

DETECT-LC is contrasted to state of the art studies, which experimented on the TCIA
NSCLC datasets. Marentakis et al. [16], Chaunzwa et al. [15] and Khodbashki et al. [17]
worked on NSCLC Radiomics dataset, whereas Yang et al. [18] studied the performance
of their model on a merged dataset of NSCLC Radiomics, NSCLC Radiogenmoics and a
private dataset from China Institute. The best results for these related studies are detailed in
Table 7. DETECT-LC outperforms the state of the art with an overall accuracy improvement
ranging from 9 to 22%. Despite that Khodbashki et al. [17] manifest the best overall accuracy
among the reported studies from the literature, it presented a sensitivity (Sn) value of
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0.60 for ADC class. This was explained by the limited number of patients in ADC class;
however, DETECT-LC managed to attain a Sn of 0.83 on the same class. When comparing
the average performance of DETECT-LC on the three datasets to the state of the art, it is
found that DETECT-LC surpasses them with a minimum of 0.07, 0.08, 0.16 and 0.09 of Acc,
Sn, F1-Score and AUC, respectively.

Table 7. State of the Art Tumor Phenotyping Results on TCIA NSCLC Datasets.

Model Acc Sn F1-Score AUC

Chaunzwa et al. [15] 0.77 0.56 NA 0.71
Marentakis et al. [16] 0.74 0.81 0.76 0.78
Khodbashki et al. [17] 0.87 0.70 0.71 0.75
Yang et al. [18] 0.74 0.77 NA 0.78
DETECT-LCavg 0.94 0.89 0.92 0.87

The confusion matrices of sample runs are outlined in Figure 12. The confusion
matrices and the reported performance metrics show comparable performance across the
three datasets. Moreover, the learning curves show minor differences between the training
and validation curves, ruling out the possibility of overfitting.

Figure 12. Summary of Phenotyping Results presenting confusion matrices and learning curves
on three datasets (a) Radiomics (b) Radiomics Genomics (c) Radio Genomics. The learning curves
present mean square error (mse) for training and testing and Accuracy for training and testing splits.

5.3.2. Lung Cancer Staging

Similar results are realized with the staging scenario as shown in Tables 8–10. How-
ever, the performance measures of SS + ALT-DENSE and RPS+ResNet-50 indicate lower
performance compared to the phenotyping scenario. Such a finding may be attributed
to the fact that the data is stratified into four classes instead of three. On average, com-
pared to RPS + ResNet-50 and RPS+ Inception V3 on the three datasets, DETECT-LC
records higher performance. The differences reached 0.29, 0.25, 0.37 and 0.35 in terms
of Acc, Sn, F1-score and AUC, respectively against RPS + ResNet-50. Also, it achieves
higher performance compared to RPS+ Inception V3 with 0.14, 0.38, 0.33 and 0.35 on the
Radiomics-Genomics dataset.
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Table 8. Lung Cancer Staging Performance Evaluation on NSCLC Radiomics (Lung 1).

Model Acc Sn F1-Score AUC

SS + ALT-DENSE Net 0.51 0.54 0.53 0.41
RPS + ResNet-50 0.56 0.59 0.57 0.47

RPS + InceptionV3 0.8 0.6 0.77 0.52
DETECT-LC 0.97 0.89 0.96 0.75

Table 9. Lung Cancer Staging Performance Evaluation on NSCLC Radiomics-Genomics.

Model Acc Sn F1-Score AUC

RPS + ResNet-50 0.66 0.65 0.52 0.41
RPS + InceptionV3 0.77 0.5 0.62 0.5

DETECT-LC 0.91 0.88 0.95 0.85

Table 10. Lung Cancer Staging Performance Evaluation on NSCLC Radio Genomics.

Model Acc Sn F1-Score AUC

RPS + ResNet-50 0.72 0.67 0.62 0.51
RPS + InceptionV3 0.83 0.57 0.61 0.55

DETECT-LC 0.93 0.88 0.92 0.84

Other performance aspects that are noted are the model building and training time
together with the GPU usage. Figure 13 shows the enhanced performance of ALT-CNN-
DENSE Net given both performance aspects. The improvement can be attributed to the
reduced architecture depth resulting from the successive early pooling layers combined
with the residuals connections.

(a) Computation Time (b) GPU Usage

Figure 13. Comparison between ALT-CNN-Dense Net, RESNET-50 and InceptionV3 in terms of
Computation time and GPU usage.

Table 11 sketches the performance of the related studies applied on TCIA NSCLC
Datasets and DETECT-LC average staging results. Moitra et al. [22] performed TNM
staging on NSCLC Radiogenomics dataset. Choi et al. [20] used NSCLC Radiogenomics
and NSCLC Radiomics-Genomics datasets as training and validation sets for binary stag-
ing, whereas Paing et al. [21] experimented with the three datasets for seven classes
T-staging only. The results of Paing et al. [21] were provided as collective averages. Al-
though DETECT-LC results cannot be directly compared with those of Choi et al. [20] and
Paing et al. [21] due to the difference in staging approach, their results are reported for com-
pleteness and to give a clear estimate of DETECT-LC performance. For instance, despite
the simplified binary staging approach of Choi et al. [20], DETECT-LC managed to attain
higher performance metrics. Compared to Moitra et al. [22] on NSCLC Radiogenomics
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dataset, DETECT-LC surpassed it with 7% in Acc. For staging results, DETECT-LC av-
erage performance outperforms the next higher model with 0.03 of Acc, 0.08 of Sn and
0.14 of F1-Score.

Table 11. State of the Art Staging Results on TCIA NSCLC Datasets.

Model Acc Sn F1-Score AUC

Moitra et al. [22] 0.87 NA NA NA
Choi et al. [20] 0.86 0.80 NA 0.82
Paing et al. [21] 0.91 0.77 0.80 0.85
DETECT-LCavg 0.94 0.88 0.94 0.81

In Figure 14, the sample confusion matrices elucidate the ability of ALT-CNN-DENSE
Net to discriminate minority classes. It is particularly evident with Stage IIIB in Radio-
genomics and Radiomics-Genomics datasets, where the number of training and testing
samples is challenging. This proves that the ALT-CNN-DENSE Net can handle imbalanced
data with highly skewed distributions. The learning curves exhibit a similar pattern to
phenotyping curves.

Figure 14. Summary of Staging results presenting confusion matrices and learning curves on three
datasets (a) Radiomics (b) Radiomics Genomics (c) Radio Genomics. The learning curves present
mean square error (mse) for training and testing and Accuracy for training and testing splits.

To sum up, our proposed model manifested acceptable performance compared to the
state of the art, which illustrates its success in handling the problem considered here, as
well as other engineering problems [43–46].

6. Conclusions

In this study, a multistage computational model DETECT-LC is proposed for lung
cancer tumor phenotyping and staging based on 3D CT volumes. DETECT-LC handles
the challenge of choosing discriminative CT slices for constructing 3D volumes. Haralick
radiomics and k-means clustering are used for this purpose. Then, ALT-CNN-DENSE
Net is developed for distinguishing the pathology and stage classes. For phenotyping,
DETECT-LC gets a minimum accuracy of 0.92, sensitivity of 0.87, F1-score of 0.91 and
AuC of 0.88 with the smallest dataset NSCLC Radiomics-Genomics. Similarly for staging,



Appl. Sci. 2022, 12, 6318 21 of 23

the least results are obtained with NSCLC Radiomics-Genomics dataset with values 0.91,
0.88, 0.95 and 0.85 for Acc, Sn, F1-score and AuC, respectively. DETECT-LC shows a robust
consistent performance across the three experimented TCIA NSCLC datasets with minor
differences in performance. Also, the performance assessment conveyed the capacity of
the pipeline to classify small highly imbalanced datasets exceeding the performance of the
state of the art. Generally, DETECT-LC is shown to have superior performance relative to
various similar solutions. Hence, DETECT-LC can provide an ample solution to different
recognition tasks. As future work, data integration between different organs’ CT will be
considered to detect metastasis. Also, the staging study can be enlarged to include Stage
IV. Also, other data types can be integrated with CT, such as genomes, in order to build a
Radio-Genomic model and improve the diagnosis results. In addition, the model can be
embedded in a user-friendly desktop application to aid doctors and non-medical experts in
analyzing Lung CTs to expand its usability.
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