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Abstract: The suspected cases of COVID-19 must be detected quickly and accurately to avoid the
transmission of COVID-19 on a large scale. Existing COVID-19 diagnostic tests are slow and take
several hours to generate the required results. However, on the other hand, most X-rays or chest
radiographs only take less than 15 min to complete. Therefore, we can utilize chest radiographs
to create a solution for early and accurate COVID-19 detection and diagnosis to reduce COVID-19
patient treatment problems and save time. For this purpose, CovidDetNet is proposed, which
comprises ten learnable layers that are nine convolutional layers and one fully-connected layer.
The architecture uses two activation functions: the ReLu activation function and the Leaky Relu
activation function and two normalization operations that are batch normalization and cross channel
normalization, making it a novel COVID-19 detection model. It is a novel deep learning-based
approach that automatically and reliably detects COVID-19 using chest radiograph images. Towards
this, a fine-grained COVID-19 classification experiment is conducted to identify and classify chest
radiograph images into normal, COVID-19 positive, and pneumonia. In addition, the performance
of the proposed novel CovidDetNet deep learning model is evaluated on a standard COVID-19
Radiography Database. Moreover, we compared the performance of our approach with hybrid
approaches in which we used deep learning models as feature extractors and support vector machines
(SVM) as a classifier. Experimental results on the dataset showed the superiority of the proposed
CovidDetNet model over the existing methods. The proposed CovidDetNet outperformed the
baseline hybrid deep learning-based models by achieving a high accuracy of 98.40%.

Keywords: chest X-ray; COVID-19; classification; detection; deep learning models

1. Introduction

The coronavirus family has hundreds of virus types; although only seven are harmful
to humans [1]. Mammals such as bats transfer these viruses into the human body [2]. The
virus can transfer from one animal (or person) to another through the air and by physical
interaction with a COVID-19 positive patient, i.e., handshaking [3]. The COVID-19 virus
causes an acute respiratory infection in people, and it has now become the world’s greatest
pandemic. At first, the virus contaminated residents of Wuhan, China, in December of
2019 [4]. The COVID-19 virus is lethal to humans due to its rapid propagation. The World
Health Organization (WHO) has officially declared that COVID-19 is a pandemic [5,6].
COVID-19 indicators are high temperature, exhaustion, coughing, loss of taste, breathing
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difficulty, etc. [7]. The virus usually affects the lungs in humans, producing pneumonia
in extreme situations. As a result, the oxygen level in the body plummets. COVID-
19 takes 3 to 13 days to grow, but symptoms in the patient’s body take 6 to 7 days to
appear. So far, the WHO has documented 396,558,014 COVID-19 cases globally, with
5,745,032 losses [8]. According to the Pakistani government, 1,531,242 cases of COVID-19
have been reported in Pakistan, with 30,381 fatalities and 1,498,017 recoveries [9]. As a
response to the unpredicted COVID-19 outbreak, numerous research centers’ research and
innovation groups are working hard to create an accurate detection method and treatment
vaccine [10]. Researchers from various fields, such as machine learning, computer science,
and artificial intelligence, collaborate to control and mitigate the epidemic by sharing their
technical insights and alternative solutions [11–15].

Moreover, existing COVID-19 detection tests are inefficient and require several hours
to produce results. The antibody and polymerase chain reaction (PCR) test is usually used
to identify COVID-19 around the globe. The antibody test, which is an indirect method
of testing, can determine if the immune system has come into contact with the virus.
Antibodies can take up to 9 to 28 days to form after an infection has taken hold, which is
a long time. If the diseased person is not kept separate, the infection can spread. In most
cases, PCR tests are used in medical research [16,17]. However, the number of patients
continues to rise, and performing enough PCR testing has become difficult due to time
constraints, a lack of medical resources, and the associated costs [18–20]. A fundamental
constraint of PCR tests is the high expense of importing the required chemicals and other
ingredients necessary in the kits. One PCR test costs almost up to USD 30 (compared to
Pakistani rupees), and the price varies depending on availability in different regions of the
world. That takes us to the following constraint: availability; not every country has the exact
needs and resources. Some states have a larger population and fewer kits available, while
others have more kits than are needed. As a result of COVID-19, clinical laboratories have
developed, tested, and implemented various virus detection approaches. It has been crucial
in identifying patients, making isolation recommendations, and assisting with disease
control. As the need for COVID-19 testing has expanded, laboratory professionals have run
across a growing number of barriers, doubts, and, in some cases, disagreements. As a result,
there is an urgent need to develop alternative testing (automated COVID-19 diagnosis)
techniques that can reliably detect the virus in a short period and low cost, allowing patients
to be identified and quarantined or isolated quickly. One of the alternative solutions is to
use chest radiographs for COVID-19 detection. One radiograph costs approximately USD
3; therefore, we can obtain a large number of image samples to efficiently and correctly
identify COVID-19 using chest radiograph images. Furthermore, the time required to
conduct a chest radiograph is approximately 15 min compared to the PCR test.

An important aspect of home tests for COVID-19, which are relatively simple to per-
form and interpret, is the immediacy of test results, between 10 and 30 min. Previously,
patients had to wait several days or more for results from commercial reference laboratories.
There are several important issues regarding using and interpreting home COVID-19 tests.
Foremost among these are obtaining a quality specimen and the performance of the test.
The process for the consumer has been simplified by the manufacturer-provided visual
aids, videos, or online guidance to assist in specimen collection and understanding test
performance. For home emergency use, authorization from the Food and Drug Administra-
tion (FDA) required feasibility data showing that people in the authorized age ranges can
safely and accurately perform these tests. Individuals performing these tests must read
and follow the manufacturer’s instructions. Regardless of the test type, whether performed
at home or in the laboratory, an inferior quality specimen often translates into inferior test
results. Furthermore, positive results in asymptomatic individuals are less accurate and
should be confirmed by more accurate tests. Additionally, home-based COVID-19 testing
is not common globally, especially in underdeveloped countries. For example, currently,
there is not a home-based COVID-19 testing facility in Pakistan. In contrast, the PCR-based
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COVID-19 facility is frequently available globally but is time-consuming compared to the
proposed approach.

Furthermore, COVID-19 has been reliably detected in its initial stages using a variety
of medical imaging modalities, including chest radiography, electrocardiogram trace im-
ages, and computed tomography (CT) scan. Medical practitioners place a higher value on
chest radiograph images since they are easily accessible through radiology departments.
According to radiologists, chest radiograph images aid in the precise knowledge of chest
pathology. As a result, the X-ray modality [21] is the first low-cost and low-risk approach
for the COVID-19 analysis. The X-ray approach is an extensively utilized, most effective
and accessible tool to identify and diagnose pneumonia [22]. Pneumonia is an infection
that inflames the lungs’ air sacs. X-ray serves an important role in clinical care and epi-
demiological studies. Detecting pneumonia in chest X-rays, on the other hand, is a difficult
task that requires the presence of professional radiologists. We offer a model that can
detect pneumonia from chest X-rays more accurately than experienced radiologists in this
paper. X-rays are simpler, quicker, inexpensive, less harmful, and expose individuals to
less radiation than CT and magnetic resonance imaging (MRI) [23].

Recent research has shown that Artificial Intelligence (AI) methods employing deep
learning (DL) methodologies can identify numerous disorders on chest radiographs with
accuracy comparable to expert radiologists [24–27]. When experienced radiologists are
unavailable, these computer-aided detection (CADs) systems can help with imaging-based
patient classification in resource-constrained situations and increase practitioner’s chest ra-
diograph interpretation accuracy and inter-reader variability [28,29]. Deep learning-based
CAD has been shown in several recent studies to detect and identify COVID-19 on chest ra-
diographs with high (radiologist-level) accuracy and to use it in medical practice [30,31]. DL
approaches employ unstructured data, extract more significant features automatically [32],
and generate more accurate results than classic ML techniques. Several investigations
were started at the beginning of 2020 to build automated DL models for reliable COVID-19
detection [33]. Convolutional neural networks (CNNs) were employed in most of this
research to classify and assess COVID-19-infected or normal chest X-ray pictures. To detect
and identify brain tumors from magnetic resonance images (MRI) data, specialists can use
CAD based on classical DL [34]. CNNs are commonly used in image classification and
identification applications such as MRI brain cancer image classification [35] and others.

According to our knowledge, when it comes to AI-driven tools that use imaging
techniques, COVID-19 does not have a lot of state-of-the-art literature. Existing COVID-19
detection research has certain limitations, i.e., low accuracy of COVID-19 detection. Most
studies relied on datasets with fewer images (small datasets). There are fewer training
data, the model is not perfectly generalized, and the training samples may have been
overfitted. Most studies use classic ML and transfer learning algorithms to detect and assess
COVID-19. Still, the most concerning limitation of traditional ML (such as support vector
machine (SVM)) is the long training time for large datasets. In contrast, the most concerning
limitations in transfer learning systems are negative transfer and overfitting. One of the
drawbacks of using pre-trained classification approaches is that they are frequently trained
on the ImageNet database, which contains images that are unrelated to medical images. As
a result, putting in place effective CADS to reliably and quickly identify COVID-19 from
chest radiographs remains a difficult task. To address these limitations, the CovidDetNet
DL model is proposed. It utilizes filter-based feature extraction, which can help achieve
high classification performance. The proposed model has been created with a convolutional
layer and both ReLu and Leaky ReLu activation functions, which extract the most detailed
and important features from the chest radiograph images. The architecture can minimize
many weight parameters by using a max-pooling operation. We implemented both Relu
and leaky ReLu activation functions and batch and cross channel normalization operations
in the proposed model, making it a novel COVID-19 detection and classification method.
The proposed approach also tackles the issue of PCR kit scarcity by requiring only an X-ray
machine, which is currently found in most hospitals across the world. As a result, people
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will not have to wait longer for colossal PCR kit shipments. The proposed approach would
efficiently enable the contact and isolation of COVID-19 individuals and limit community
transmission with the rapid detection of COVID-19. Therefore, as chest radiographs are
low-cost and time-efficient, and available in practically every clinic, chest radiograph
images were utilized as a sample dataset in this study. The suggested architecture was
validated using a standard Kaggle (publicly available) dataset. According to the results,
the proposed structure performs satisfactorily in COVID-19 detection in test accuracy. The
main contributions of this research are:

• A CovidDetNet DL model is proposed to detect COVID-19 positive cases using chest
radiograph images.

• Chest radiographs are favored over CT scans since X-ray machines are readily available
in most hospitals and CT scans emit less ionizing radiation.

• To evaluate the efficacy of the proposed model, we compared the proposed CovidDet-
Net model performance with hybrid approaches on the same dataset and experimental
configuration. For this purpose, we utilized various classification metrics, i.e., accuracy,
precision, recall, and f1-score.

• We evaluated the performance of the proposed novel CovidDetNet DL model on a
standard COVID-19 radiography database.

The remainder of this paper is arranged as follows. Section 2 presents the related
work about COVID-19 detection methods. The motivation and description of the proposed
work are discussed in Section 3. Section 4 explains the datasets, evaluation measures, and
experimental results. Section 5 discusses the proposed approach and explains the future
directions and Section 6 concludes the paper.

2. Related Work

Although COVID-19 has only just begun to spread, researchers have created a substan-
tial number of research approaches in such a short time. To detect and classify COVID-19
images, which is still under research and needs further improvements, many ML, hybrid,
and DL approaches have been presented in the literature. To highlight the critical literature
work in COVID-19 detection and classification, below we discuss and analyze several
related works on COVID-19.

Mahdy et al. [36] used multi-level thresholding and an SVM approach to identify and
detect COVID-19. They used a median filter to increase the input image contrast after
analyzing the patient’s lung radiograph image. The Otsu objective function is then utilized
to create a multi-level picture segmentation threshold. Next, the SVM was employed
to distinguish between diseased and uninfected lungs. Using the proposed model, the
authors achieved high average accuracy for classifying lung radiograph images than
the existing approaches. Singh et al. [37] introduced a research method based on the
least-squares SVM (LS-SVM) and autoregressive integrated moving average (ARIMA) to
detect and identify COVID-19. The study’s research data were obtained from the US, UK,
Italy, France, and Spain, where most confirmed coronavirus cases occurred. The authors
used different feature extraction methods to increase the performance of the proposed
approach. The dataset is then fed into the algorithm that predicts the disease’s spread
one month ahead of time. LS-SVM outperformed ARIMA in terms of accuracy. Based on
the locality-weighted learning and self-organization map (LWL-SOM), Osman et al. [38]
proposed a novel COVID-19 detection method. They employed the SOM approach to
group pictures from the chest radiographs dataset based on similar features in distinct
clusters to distinguish between COVID-19 and normal patients. The LWL approach is
then used to create a model for detecting COVID-19. The proposed model improved the
correlation coefficient performance outcomes between COVID-19, normal, and pneumonia
cases; pneumonia and normal cases; COVID-19 and pneumonia cases; and COVID-19
and normal cases. The proposed model improved the correlation coefficient performance
outcomes. Current ML-based methods that use AI evaluation measures to distinguish
COVID-19 and normal patients outperformed the proposed model. In [39], the authors
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present a fusion scheme based on an ML system using three significant texture features,
namely, local binary pattern (LBP), fractal dimension (FD), and grey level co-occurrence
matrices (GLCM). In experimental results, to demonstrate the efficiency of the proposed
scheme, we have collected 300 CT scan images from a publicly available database.

Furthermore, traditional ML approaches perform poorly compared to DL techniques
because they rely heavily on manual feature extraction and adequate feature selection. In
contrast, DL approaches use unstructured data, extract more robust deep features, and
produce more accurate results than traditional ML algorithms. Recently, DL algorithms
have been frequently employed to extract classification features automatically. Classi-
fiers based on DL can be utilized to develop fully automated classifiers that can detect
COVID-19 using chest radiograph images. Recently, Ozturk et al. [40] proposed a binary
classifier that recognizes COVID-19 and normal chest radiograph pictures and a multi-
class classifier that detects COVID-19, pneumonia, and normal images using the DarkNet
transfer learning (TL) architecture. Similarly, the Xception TL approach was utilized as a
pre-trained network by Khan et al. [41]. The tests were carried out on publicly available
datasets. Apostolopoulos et al. [42] used the MobileNet DL algorithm, trained the model
from scratch, and extracted various classification features for COVID-19 classification. On
the COVID-19 diagnostic, Ucar et al. [43] used the Bayesian optimization method to opti-
mize the SqueezeNet network. The COVID-19 images dataset has also been improved to
improve its performance. Additionally, Okolo et al. [44] employed eleven CNN models to
classify chest radiograph images as belonging to healthy persons, people with COVID-19,
or people with viral pneumonia. They analyzed three distinct improvements to modify
the frameworks for the COVID-19 detection by expanding them with extra layers. All of
the investigated networks are established frameworks that have been demonstrated to be
effective in image detection and classification tasks. The proposed techniques were tested
on a COVID-19 radiography database for all of the studied designs, with the EfficientNetB4
and Xception-based models providing the best classification results. Uddin et al. [45] sug-
gested a CNN-based model for detecting COVID-19 from chest radiograph images, making
the test more effective and trustworthy. The proposed model used a TL technique and a
bespoke model to improve accuracy. The pre-trained CNN models, such as InceptionV3,
MobileNetV2, ResNet50, and VGG16, were utilized to extract deep features. The catego-
rization and classification accuracy were utilized as a criterion for gauging performance
in this study. According to the results of this study, DL can detect SARS-CoV-2 from CXR
images. Out of all of these TL models, InceptionV3 has achieved the highest accuracy.

Aside from ML approaches and DL models, previous research has also used hybrid
models that combine both classic ML and DL-based methodologies. Sethy et al. [46]
employed chest radiograph images to detect COVID-19 infected patients (deep feature and
SVM-based approach) using a hybrid approach. For classification, SVM is used rather than
a DL-based classifier because the latter requires a large training dataset. Deep features from
the DL models’ fully connected (FC) layers are obtained and fed into the SVM for COVID-19
categorization and classification. The distant chest radiograph data sources used in the
technique are pneumonia, normal, and COVID-19. The method aids medical practitioners
in distinguishing between healthy people, COVID-19, and pneumonia patients. The SVM
algorithm is evaluated for COVID-19 detection using the attributes of 13 DL frameworks.
The best results were from ResNet50 and SVM algorithms. Based on chest radiograph image
data, Novitasari et al. [47] employed CNN architectures as feature extractors and the SVM
as a classification tool to determine if the participants were normal, COVID-19 positive,
or had pneumonia. The tests contrasted the kernel used, feature selection strategies,
feature extraction frameworks, and different classes. The authors used resnet50, resnet18,
resnet101, and googlenet TL approaches to separate three classes: normal, pneumonia,
and COVID-19. They attained the maximum average accuracy using resnet50, resnet18,
resnet101, and googlenet.

The studies mentioned above could be increased even further. Both the images
sent to the model and the network’s architecture are beneficial in diagnosing COVID-19



Appl. Sci. 2022, 12, 6269 6 of 22

infection. As seen above, traditional ML, CNN, transfer learning, and hybrid algorithms
have all been employed to detect COVID-19. The primary goal of this study is to obtain
satisfactory results in detecting COVID-19 instances while avoiding false positives. When
the findings are analyzed, it is clear that the proposed method is effective and simple for
COVID-19 detection.

3. Methodology

We proposed the CovidDetNet approach for effective and efficient detection and
classification of COVID-19 using chest radiographs images. We accomplished a three-class
classification (COVID-19, pneumonia, and normal) because its automatic prediction and
detection can help doctors in rapid and in-time identification of COVID-19 patients to
propose an appropriate treatment approach based on the cause of infection. The abstract
view of the proposed approach is shown in Figure 1, which comprises five main steps.
To run the proposed approach, we fed chest radiography images as input to the model.
Furthermore, the input images in the datasets are 1024 × 1024 pixels in size. Next, to
ensure uniformity and speed up the processing, we applied certain pre-processing to resize
the input images to 256 × 256 pixels. Furthermore, a CovidDetNet architecture with nine
convolution layers was developed and designed to classify images into three categories for
the optimized setups, i.e., COVID-19, normal, and viral pneumonia. The dataset is divided
into training and testing sets for all experiments. More specifically, we used 70% of the
dataset for model training and 30% for testing. Finally, we evaluated the proposed model
on the COVID-19 radiography dataset. The proposed model consists of ten learned layers,
i.e., nine convolutional layers and one FC layer. The details about the proposed approach
are elaborated below.
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3.1. Motivations

DL algorithms may be a beneficial technique for detecting COVID-19 disease. DL
techniques have been used to solve a variety of similar challenges, such as skin cancer
classification [48], Parkinson and brain illness categorization [49], and pneumonia diagno-
sis using chest radiograph images [50]. In [51], the authors created a 121-layer DL-based
model for pneumonia detection that produces the confidence score based on an input
chest radiograph image. The model has been trained on millions of images and consis-
tently outperforms practicing radiologists. It can detect 14 pathological disorders in chest
radiographs with slight modifications using the most widely available chest radiograph
dataset [52]. As COVID-19 has symptoms similar to severe pneumonia, therefore, inspired
by the success of DL-based architecture in pneumonia detection using chest radiograph
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images, we proposed a CovDetNet model for COVID-19 detection and classification in
this work. The goal of this research is to propose a DL model that can effectively detect
COVID-19 using chest radiographs with higher accuracy.

The proposed model’s depth and input image resolution are based on the following
facts: it is widely assumed that a deeper DL-based model captures more complicated and
vital deep features and increases the network’s classification performance. Furthermore,
many DL-based models utilized depth scaling to improve their accuracy [53,54]. However,
as the depth of the network expands, so does the computational complexity, which does not
ensure that accuracy will improve in all circumstances. Therefore, DL-based models collect
more detailed features with high-resolution input images to attain improved performance.
DL models accept images with various resolutions, such as 224 × 224, 227 × 227, and
299 × 299, but models with higher resolution tend to perform better in recognition [55].
Similarly, the proposed model has ten layers and can process images with a resolution of
256 × 256 pixels. The CovidDetNet architecture and the size of the input image are chosen
based on the present computing machine requirements.

Furthermore, we used both cross-channel [56] and batch [57] normalization (BN) layers
in the proposed architecture. Cross-channel normalization layer because cross channel
normalization improves generalization and reduces top-1 and top-5 error rates [56]. Batch
normalization accelerates the model’s training by reducing internal covariate shifting [57].
Batch normalization can stabilize DL models while maintaining data dispersion (data
distribution). The input distribution varies as we train the CovidDetNet DL model, making
the model train slower (internal covariate). We employ batch normalization to retain
the same data distribution and deal with covariate shifting by normalizing the results
(mean = 0, standard dev = 1). Furthermore, batch normalization normalizes each feature
such that its significance is maintained, although some classification features have a greater
numerical value than others. As a result, the proposed network will be unbiased (to
higher-value classification features). Furthermore, in contrast to a network that does not
utilize batch normalization, the model that uses this technique is trained faster and has
higher accuracy.

Additionally, we used both LeakyRelu [58] and ReLu [59] activation functions in the
proposed CovidDetNet model. Because ReLu is more computationally efficient, it only
needs to select max (0, x) and not execute expensive exponential calculations. It indicates
that ReLu neurons have zero derivatives for all negative inputs (output zero for negative
values). Furthermore, a value of 0 indicates that the network will run faster on the negative
axis. Moreover, we used the LeakyRelu [58] activation function in the first five layers to
confound the dying ReLu issue. The ReLu activation procedure is extensively employed
between layers to enhance non-linearity and handle more complicated information. How-
ever, as ReLu neurons have zero derivatives for all negative inputs, as a result of the
network’s weights continuously resulting in negative inputs to a ReLu neuron, that neuron
is effectively not participating in the network’s training (i.e., neurons die), and the problem
is referred to as the dying ReLu issue. The DL network will stop learning in a dying ReLu
issue. We used a leaky ReLu in the proposed CovidDetNet approach to overcome this issue.
The Leaky ReLu activation process allows for a minor (non-zero) gradient whenever the
unit is inactive. As a result, it continues to learn without coming to a halt, i.e., reaching a
dead end. Furthermore, Max pooling is chosen in our proposed study because it preserves
the most prominent characteristics of the feature maps, resulting in sharp classification
features. Max-pooling with a filter size of 3 × 3, a stride of [2 2], and padding of [0 0 0 0] is
used for downsampling. A global average pooling is used at the end of the structure to
convert each feature map into a single value.

We believe that the proposed CovidDetNet architecture works well in classifying and
identifying COVID-19 using chest radiographs images. It combines the advantages of the
ReLu activation function, leaky ReLu activation function, batch normalization, and cross
channel normalization layers to improve the performance of the proposed CovidDetNet
in identifying and classifying COVID-19. Furthermore, the proposed model uses a high-
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resolution image of 256 × 256 and is deep enough to capture more complex and essential
features. Below, we explain the architecture of the proposed CovidDecNet approach.

3.2. CovidDetNet Architecture Details

The architecture of the proposed CovidDetNet model is depicted in Figure 2. As
illustrated in Table 1, the CovidDetNet model has ten learnable layers: nine convolutional
layers and one FC layer. The input layer in the proposed model is the initial layer, and it
accepts 256 × 256 input images for processing. The architecture has a total of thirty-one
layers, including two cross-channel normalization layers, three maximum pooling layers (to
reduce network size), four batch normalization layers, three clipped ReLu layers, five leaky
ReLu layers, one global average pooling layer, one Softmax layer, and one classification
layer. In the proposed CovidDetNet model, the leaky ReLu (nonlinear activation function) is
utilized after the first five convolutional layers. In contrast, the ReLu activation is employed
after the last four convolutional layers. The first two layers of architecture are followed
by the cross-channel sectional normalization layer, whereas batch normalization layers
follow the last four convolutional layers. Maximum pooling layers follow the first two and
fifth convolutional layers. The output of the last FC layer is provided as an input to 3-way
Softmax in the case of COVID-19 classification and detection (three-class classification).
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Figure 2. The architecture of the proposed CovidDetNet model.

The first convolution layer extracts feature from the 256 × 256 input chest radiograph
image by using 128 filters of size 3 × 3 with a 4-pixel shift (stride) at a time. After em-
ploying normalization and maximum pooling operations, the output feature of the initial
convolutional layer is provided into the second convolutional layer. The next convolutional
layer uses 512 filters of size 3 × 3 having a stride value of 1-pixel at a time. The inputs are
filtered by the third convolutional layer, employing 384 filters of size 3 × 3 with a stride
value of 1 pixel. Pooling layers do not follow the subsequent two convolutional layers, the
fourth and fifth. The fourth and fifth convolutional layers apply 256 filters of size 3 × 3 to
the input feature map with a default stride of 1 pixel. The sixth convolutional layer applies
960 filters of size 1 × 1, whereas the seventh convolutional layer applies 960 filters of size
3 × 3. The eighth convolutional layer applies 320 filters of size 1 × 1, and the final (ninth)
convolutional layer applies 1280 filters of size 3 × 3.
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Table 1. CovidDetNet architecture parameters.

S. No Classification Layers Kernels Size Padding Strides

1 Input
2 Convolutional-layer-1 (LeakyRelu + Cross channel Normalization) 128 11 × 11 0 × 0 4 × 4
3 Max pooling 3 × 3 0 × 0 2 × 2
4 Convolutional-2 (LeakyRelu + Cross channel Normalization) 512 5 × 5 2 × 2 1 × 1
5 Max pooling 3 × 3 0 × 0 2 × 2
6 Convolutional-3 (LeakyRelu) 384 3 × 3 1 × 1 1 × 1
7 Convolutional-4 (LeakyRelu) 256 3 × 3 1 × 1 1 × 1
8 Convolutional-5 (LeakyRelu) 256 3 × 3 1 × 1 1 × 1
9 Max pooling 3 × 3 0 × 0 2 × 2
10 Convolutional-6 (Batch normalization + ReLu) 960 1 × 1 same same
11 Convolutional-7 (Batch normalization + ReLu) 960 3 × 3 same same
12 Convolutional-8 (Batch normalization + ReLu) 320 1 × 1 same same
13 Convolutional-9 (Batch normalization + ReLu) 1280 1 × 1 same same
14 Average pooling layer
15 FC layer
16 Softmax
17 Classification

3.3. Hyperparameters Settings

We employed a grid search technique to identify the optimal hyperparameters (which
give high accuracy and less error) for the proposed CovidDetNet model. Given the nu-
merous choices for layer types, numbers, and parameters, we chose to test and analyze
the performance of the proposed CovidDetNet model with as few layers as possible, i.e.,
using only ten layers. After some preliminary trials on a smaller dataset, the proposed
technique hyperparameters and extra layers are selected. Table 2 shows the details of the
shortlisted parameters for the proposed CovidDetNet approach. We employed stochastic
gradient descent (SGD) to train the proposed CovidDetNet method, using a final learn-
ing rate and minibatch of 0.001 and 10 images, respectively. The CovidDetNet classifier
is trained over 60-epochs for COVID-19 detection (three-class classification) using chest
radiograph images.

Table 2. Selected parameters for CovidDetNet classifier.

CovidDetNet Parameters Values Given

Learning rate 0.001
Validation frequency 30
Optimization algorithm SGDM
Shuffle Every epoch
Iterations per epoch 82
Maximum epochs 60
Verbose false
Activation function Leaky ReLu + ReLu

4. Results

This section goes through the findings of a series of experiments conducted to assess
the CovidDetNet model’s performance. Furthermore, the section elaborates on further
information about the datasets used to assess and evaluate the CovidDetNet model’s
performance, specifically the COVID-19 radiography database.

4.1. Datasets

We employed the COVID-19 radiography images dataset [60,61] for the proposed
CovidDetNet approach, produced by a group of academics from the University of Dhaka,
Bangladesh and Qatar University, Qatar, to detect COVID-19. This COVID-19 chest radio-
graph image database is developed and created in collaboration with medical doctors con-
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taining COVID-19 positive samples, pneumonia, and healthy samples. The COVID-19 chest
radiograph images database, which was recently released, includes 3616 chest radiographs
of COVID-19 infected people, 10,192 chest radiograph images of healthy people, 6012 Lung
Opacity, and 1345 images of pneumonia. The images in the dataset are 1024 × 1024 pixels
in size. The images were resized to fit the need of each model. It is a standard Kaggle
dataset that is freely available for research purposes. This dataset’s radiograph images are
grayscale and have the exact dimensions. A few example image samples from the SIRM
dataset are displayed in Figure 3, whereas Table 3 provides statistical information about
the dataset.
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Table 3. Datasets details.

Dataset Images Type Images Collections Bit Depth Format

Chest Radiography Database Chest Radiographs COVID Normal Pneumonia
8 PNG3616 10,192 1345

4.2. CovidDetNet Evaluation Metrics

The evaluation metrics such as accuracy, sensitivity (recall), precision, specificity,
F1_score, and kappa are computed to validate the accurate performance of the proposed
CovidDetNet approach, such that:

Accuracy = (TN + TP)/TS (1)

Precision =
TP

TP + FP
(2)

Sensitivity (recall) =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)
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F1_score = 2· Precision × Recall
Precision + Recall

(5)

Kappa = (p0 − pe)/1 − pe (6)

where TP, TS, FP, TN, FN, p0, and pe are true positive, total samples, false positive, true
negative, false negative, the proportion of cases correctly classified samples, and expected
proportion of cases correctly classified by chance, respectively.

4.3. CovidDetNet Experimental Setup

Each experiment is performed on a laptop machine equipped with Intel (R) Core
(TM) i5-5200U CPU and 8 GB RAM. To complete the research study, we used the R2020a
version of MATLAB. For all experiments, the datasets are separated into training and testing
datasets. The performance of a novel CovidDetNet framework for COVID-19 detection
utilizing chest radiograph images is evaluated and analyzed by performing a series of
DL experiments.

4.3.1. Performance Evaluation

This experiment aims to validate the COVID-19 detection (three-class classification)
performance of the proposed CovidDetNet framework using chest radiograph images.
For this experiment, the dataset is divided into training and testing sets, i.e., we used
70% of the data for model training and 30% for testing. More specifically, we used all
the 15,153 radiograph images (3616 data instances of COVID-19 patients, 1345 pneu-
monia radiographs, and 10,192 instances of healthy individuals) of the dataset named
COVID-19 Radiography Database, where 10,606 images (2531 images of COVID-19 in-
dividuals, 941 pneumonia radiographs, and 7134 images of healthy individuals) were
used for training and the remaining 4547 images (1085 images of COVID-19 individu-
als, 404 Pneumonia radiographs, and 3058 images of healthy individuals) for testing. The
training set trains the proposed CovidDetNet framework for COVID-19 detection and
classification with the same parameters mentioned in Table 2. The training of the pro-
posed CovidDetNet model consumed 3853 min and 11 s for COVID-19 detection and
classification. This time, however, is proportional to the maximum number of epochs and
iterations per epoch. The total number of iterations in the training stage for CovidDetNet
is 4920 (82 iterations per epoch), and the number of epochs is 60. At epoch 60, the model
achieved an average validation accuracy of 98.40%. To assess the training performance of
our approach we have shown accuracy and loss in Figures 4 and 5.
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The loss function indicates how well the framework can predict the dataset. The loss
and accuracy of our model after epoch 47 approximately remains the same, which shows
that our model is predicting COVID-19 with higher accuracy even at lower epochs than 60.
The training and validation process of the proposed CovidDetNet approach is shown in
Figure 4 and the confusion matrix for the testing phase of the CovidDetNet framework for
COVID-19 infection detection is shown in Table 4. The proposed CovidDetNet architecture
misclassified 109 radiographs out of 4547, of those, 48 COVID-19 images, 50 images for nor-
mal, and 11 images for viral pneumonia. The proposed CovidDetNet framework has higher
TN and TP values, as well as lower FN and FP values, as shown by the confusion matrix.
As a result, the suggested method is capable of accurately classifying COVID-19 situations.

Table 4. Confusion matrix of the proposed CovidDetNet model.

Predicted Class

Actual class

COVID-19 Normal Viral Pneumonia
COVID-19 1037 46 2
Normal 36 3008 14
Viral Pneumonia 3 8 393

In addition, the training epochs in the experiments are changed from 20 to 60 with a
step size of 10 to ensure the validity of the obtained results. Table 5 shows the accuracy,
precision, recall, F1-score, and kappa values obtained by varying different values of epochs.
The best results in terms of all performance measures are obtained with 60 training epochs.
It is concluded that the accuracy of the proposed approach increases gradually with the
increase in the number of epochs. The proposed CovidDetNet approach attained the
average accuracy, precision, recall, specificity, F1-score, and Kappa index of 98.40%, 97.0%,
96.66%, 97.06%, 96.82%, and 95%, demonstrating its reliability in COVID-19 detection, as
shown in Table 5. Figure 6 shows the receiver operating characteristic (ROC) curve of the
proposed CovidDetNet framework. The area under the curve is 0.9955. Similarly, Figure 7
demonstrates the box plot of the proposed CovidDetNet approach with various values of
epochs. It is demonstrated that increasing the size of epochs improves the values of various
evaluation matrices, as shown in Table 5.
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Table 5. Accuracies (in %) on different epochs.

Epochs Accuracy Precision Recall F1-Score Kappa

20 95.72 92.33 93.33 92.82 95.0
30 98.21 96.66 96.66 96.66 95.0
40 98.25 96.66 96.66 96.66 95.0
50 98.3 97.00 96.66 96.82 95.0
60 98.40 97.00 96.66 96.82 95.0
Average 97.77 95.93 95.99 95.96 95.0
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This demonstrates the impact of our proposed method on improving COVID-19
classification accuracy from chest radiographs. These results are because our proposed
model successfully extracts the most discriminative, robust, and detailed deep features to
represent the chest radiograph image for accurate and reliable classification. As it does not
have a separate feature extraction stage, the suggested solution is straightforward to apply
because of its end-to-end learning architecture.

4.3.2. Performance Evaluation on Train/Validation/Test Split

This experiment aims to validate further the COVID-19 detection (three-class classi-
fication) performance of the proposed CovidDetNet framework using chest radiograph
images. For this experiment, the dataset is divided into three parts, i.e., training, validation,
and testing sets. We used 70% of the input data for training, 10% for validation, and
20% for testing the proposed CovidDetNet approach. More specifically, we used all the
15,153 radiograph images (3616 data instances of COVID-19 patients, 1345 pneumonia
radiographs, and 10,192 instances of healthy individuals) of the dataset named COVID-
19 Radiography database, where 10,606 images (2531 images of COVID-19 individuals,
941 pneumonia radiographs, and 7134 images of healthy individuals) are used for training.
In contrast, 1515 radiograph images (362 images of COVID-19 individuals, 134 pneumonia
radiographs, and 1019 radiograph images of healthy individuals) are used for validation.
The remaining 3032 images (723 images of COVID-19 individuals, 270 pneumonia radio-
graphs, and 2039 images of healthy individuals) are used for testing. The training set trains
the proposed CovidDetNet framework for COVID-19 detection and classification with the
same parameters mentioned in Table 2. The training of the proposed CovidDetNet model
consumed 3510 min and 36 s for COVID-19 detection and classification. This time, however,
is proportional to the maximum number of epochs and iterations per epoch. The total
number of iterations in the training stage for CovidDetNet is 4920 (82 iterations per epoch),
and the number of epochs is 60. At epoch 60, the model achieved average validation and
testing accuracies of 98.41% and 98.24, respectively. The validation and testing confusion
matrices of the proposed CovidDetNet approach are shown in Tables 6 and 7, respectively.
The results obtained from the train, validation, and test splits are shown in Table 8.

Table 6. Validation confusion matrix of the proposed CovidDetNet model.

Predicted Class

Actual class

COVID-19 Normal Viral Pneumonia
COVID-19 350 12 0
Normal 14 1001 4
Viral Pneumonia 2 4 128

Table 7. Testing confusion matrix of the proposed CovidDetNet model.

Predicted Class

Actual class

COVID-19 Normal Viral Pneumonia
COVID-19 688 33 2
Normal 25 2004 10
Viral Pneumonia 3 7 260

Table 8. Detailed results obtained with train, validate, and test split.

Accuracy Precision Recall F1-Score Kappa

Training 100 100 100 100 100
Validation 98.41 97.0 97.0 97.0 94.5
Testing 98.24 96.33 96.66 96.50 94.5
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4.3.3. Comparison with a Hybrid Approach

A hybrid experiment for COVID-19 detection is elaborated in this section to examine
the effectiveness of the proposed CovidDetNet classifier. It is claimed that putting an SVM
classifier at the top of the network instead of traditional deep CNN increases classification
performance significantly [32]. As a result, we devised a hybrid strategy in which we
extracted in-depth features using the eight most well-known deep CNNs and then used
these features as inputs to train SVM with the linear kernel (decision function). The values
of Gamma and C hyperparameters are set to 0.1 and 1.0, respectively, because these settings
yielded the maximum performance. In the proposed research, we employed Alexnet [56],
Resnet18 [62], Squeeznet [63], Darknet19 [64], Googlenet [65], Shufflenet [66], Resnet50 [62],
Mobilnetv2 [67], and Inceptionv3 DL-based classification approaches.

For this experiment, the dataset is divided into training and testing sets, i.e., we
used 70% of the data for model training and 30% for testing. More specifically, we used
all the 15,153 radiograph images (3616 data instances of COVID-19 patients, 1345 pneu-
monia radiographs, and 10,192 instances of healthy individuals) of the dataset named
COVID-19 Radiography Database, where 10,606 images (2531 images of COVID-19 indi-
viduals, 941 Pneumonia radiographs, and 7134 images of healthy individuals) were used
for training and remaining 4547 images (1085 images of COVID-19 individuals, 404 pneu-
monia radiographs, and 3058 images of healthy individuals) for testing. We used the
same experimental setup (hyperparameters values are selected using the same approach
as the proposed method) to train these models as mentioned in Table 2. Table 9 contains
information about these deep feature extractor models. As different models need input
images of different sizes, such as mobilenetv2 accepting 224-by-224 input images, whereas
darknet19 requires 256-by-256 input images. The dataset images are automatically re-
sized using augmented image data repositories before being inserted into the network
for feature extraction. We employed activations on deeper layers (last fully connected
or global average pooling layer) because they include more high-level information than
earlier layers; for example, we applied activations on the fc8 layer, the last layer (FC layer)
in Alexnet. These layers pool the input features overall spatial locations after applying
the activation functions to provide distinct features (i.e., Shufflenet gives 1000 features in
total). Table 10 shows the classification results of deep features and the SVM technique.
Compared to CovidDetNet, deep features of all twelve networks and the SVM technique
produced poorer accuracy outcomes. Based on the experimental results, the proposed
CovidDetNet approach outperforms the other eight hybrid models, reaching a COVID-19
detection accuracy of 98.40%. The Resnet18 model had the second-highest accuracy of
97.14%, while Inceptionv3 had the lowest accuracy of 95.05%. Resnet18 outperforms other
models with a recall of 94.66% in terms of true positive rate. It is to be notice that the
accuracy of all hybrid comparative models is greater than 95%. Resnet18 attained the
second-highest accuracy because it uses batch normalization to reduce generalization error.
The proposed CovidDetNet approach successfully extracts more distinguishing features
from the chest radiograph images, which is why the proposed approach achieved better
results in detecting and identifying COVID-19. We used small filters with 3 × 3 and 1 × 1,
which ensured the extraction of more detailed and robust features. The proposed model’s
batch normalization technique standardizes the inputs to a layer for each mini-batch, offers
regularization, and decreases the generalization error.
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Table 9. Deep features extractor models details.

S. No CNN Architecture Input Size Depth Activation Layer Name Features

1 Alexnet 227 × 227 8 fc8 1000
2 Resnet18 224 × 224 18 pool5 512
3 Squeezenet 227 × 227 18 pool10 1000
4 Darknet19 256 × 256 19 avg1 1000
5 Googlenet 224 × 224 22 pool5-drop_7 × 7_s1 1024
6 Shufflenet 224 × 224 50 node_200 544
7 Resnet50 224 × 224 50 avg_pool 2048
8 Mobilnetv2 224 × 224 53 global_average_pooling2d_1 1280
9 Inceptionv3 299 × 299 48 avg_pool 2048

Table 10. COVID-19 detection using chest radiographs comparison with hybrid models.

Model Accuracy Precision Recall Specificity F-Measure

Alexnet 96.13 93 92.33 97.07 92.66
Resnet18 97.14 94.66 94.66 97.43 94.66
Squeezenet 95.99 93 93.33 96.87 93.16
Darknet19 96.87 93.33 94.33 97.43 93.83
Googlenet 95.82 92 93 96.83 93
shufflenet 96.09 92.33 93.33 97.61 92.83
Mobilenetv2 96.29 93.33 93.33 96.81 93.33
Inceptionv3 95.05 90.33 92.0 95.76 91.16
Proposed
CovidDetNet 98.40 97 96.66 97.06 96.82

4.3.4. COVID-19 Detection Comparison with State-of-the-Art Methods

This experiment aims to recover the performance of the proposed CovidDetNet
framework in identifying and classifying COVID-19 from chest radiograph images com-
pared to existing state-of-the-art deep learning approaches in the literature. We com-
pared the proposed classification model performance to various approaches [43,44,68,69].
Prateek et al. [68] proposed an automated diagnostic method for COVID-19 detection and
classification using the DL model on chest radiograph images. The Inception-V3 model,
with node dropping, flattening, dense layer, and normalization, was used to automatically
present a transfer learning-based algorithm for detecting COVID-19 from chest radio-
graphs. Three separate COVID-19 X-rays datasets with three classes (COVID-19, normal,
and pneumonia) were used to test the model’s effectiveness. The suggested framework
has achieved a maximum accuracy of 97.7%. Similarly, Aayush et al. presented the SARS-
Net DL model, an automatic method for COVID-19 detection using graph convolutional
networks and CNNs for identifying anomalies in a patient’s chest radiographs for the pres-
ence of COVID-19 virus [69]. The suggested model also outperformed the state-of-the-art
methodologies previously discussed. On the validation set, the suggested model had an
accuracy of 97.60% and a sensitivity of 92.90%. Gabriel et al. [43] evaluated eleven deep
CNN frameworks for the classification of chest X-rays into healthy people, people with
COVID-19, and pneumonia. They focus on three distinct adjustments to adapt the designs
for the COVID-19 classification task by adding new layers to them. The proposed tech-
niques were tested and analyzed on a chest X-ray images dataset, with the best-performing
setup achieving the maximum classification accuracy of 98.04% and the highest F1-score
of 98.22%. Azhar et al. [44] introduced a CNN framework for detecting COVID-19 using
chest radiographs that are faster and more reliable. For feature extraction, a CNN approach
was utilized. Four convolutional layers, three MaxPooling layers, one flattened layer, and
two thick layers with a ReLu activation function make up the model. In the final layers, pre-
trained models such as InceptionV3, Resnet50, MobileNetV2, and VGG16 were employed
with some modifications. The created model had a validation accuracy of 98%.
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The comparison results are shown in Table 11, elaborating the success of the pro-
posed CovidDetNet model in identifying COVID-19 from chest radiograph images com-
pared to existing alternatives. It is important to mention that the proposed model outper-
formed the approaches [43,44] using the same dataset (COVID-19 radiography database)
for COVID-19 detection. It is worth noting that these approaches are more computation-
ally challenging than the proposed approach because they use deeper models, leading
to overfitting. The proposed CovidDetNet model, on the other hand, is ten layers deep
and uses modest 1 × 1 filters to extract in-depth high-level and more complex features for
COVID-19 identification.

Table 11. COVID-19 detection using chest radiographs comparison with existing methods.

Work Method Dataset Date Accuracy

Prateek et al. [68]
Inception-V3 with flattening,
node dropping, normalization,
and dense layer

Chest X-ray (COVID-19 and
Pneumonia) 2020 2021 97.7

Aayush et al. [69] SARS-Net COVIDx 2021 97.60
Gabriel et al. [43] Round-off fine-tuning COVID-19 radiography database 2021 98.04
Azhar et al. [44] Custom CNN COVID-19 radiography database 2021 98
Proposed approach CovidDetNet model COVID-19 radiography database 2022 98.40

5. Discussion and Future Research Direction

In this research, we have adopted a model with higher accuracy (98.40) than competing
models in detecting COVID-19 from chest radiography. The training and testing accuracy of
the model proliferates after each epoch, as shown in Figure 4, and the training and testing
loss decrease gradually, as depicted in Figure 5. Although the prop approach yielded
promising results, we recognized several limitations and made some recommendations for
future research. Due to the unavailability of the research datasets that could be used as a
baseline to investigate the severity level of COVID-19 infection, the proposed approach was
unable to categorize the various stages of COVID-19 infection, such as pre-symptomatic,
asymptomatic, moderate, and severe. The proposed method does not reveal how well
the system detects COVID-19 using other imaging modalities such as computerized to-
mography (CT scans) and electrocardiogram (ECG) trace images. We continuously split
image data into a 70% training set and a 30% test set in the proposed approach. Alternative
splits, on the other hand, may produce different results. In the future, we plan to conduct
experiments using comparable large-scale datasets of chest radiographs, CT scans, and
ECG trace images to assess the models’ generalization ability by testing them on a range of
large-scale datasets from diverse sources and images obtained by several machines. We
want to use the same method to categorize the various stages of COVID-19 infection, such
as pre-symptomatic, asymptomatic, mild, severe, and so on. According to the experimental
results, the proposed CovidDetNet method is more accurate than PCR because PCR results
rely heavily on sample collection timing, type, storage, handling, and processing. A false-
negative result is possible if the sample is not properly obtained or if an individual is tested
too early after exposure to the virus or too late in their infection. Therefore, in the future,
we intend to provide further experimental evidence to compare the performance of the
proposed system (CovidDetNet approach) with PCR and other manual COVID-19 testing
methods to identify its performance in identifying COVID-19. The proposed CovidDetNet
approach estimated accuracy might be biased or inflated because we used a dataset con-
taining images with only three classes (normal, pneumonia, covid) for training and testing
the proposed model. Therefore, in the future, we intend to use the proposed method in
other COVID-19 datasets or other medical datasets with CT scans or chest radiographs to
test the generalization ability of the proposed CovidDetNet model so that it can be used in
practice to detect different diseases such as tuberculosis, breast cancer, and lung opacity,
etc. Furthermore, the challenge faced by the machine and deep learning experts these
days is the unavailability of relevant data. Currently, the dataset adopted for the proposed
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approach contains only three types of images such as normal, COVID-19, and pneumonia.
Therefore, to generalize the proposed CovidDetNet approach, we need to evaluate it with
other types of chest radiograph disease images. For this purpose, in the future, we need
to explore the existing benchmark dataset of chest radiographs containing breast cancer,
tuberculosis, and lungs opacity together with the COVID-19 detection. This paper only
focuses on the approaches that use deep learning to detect and identify COVID-19 from
chest radiograph images. In the future, we are interested in conducting an experiment
with expert radiologists and identifying the proposed approach’s efficacy in identifying
COVID-19. It is currently difficult to identify radiologist experts in the area where most of
the authors reside. We claim that the proposed CovidDetNet approach can be used as a
replacement for expert radiologists to timely identify COVID-19 and help stop the spread
of the virus. Furthermore, to perfectly know the time gained comparing chest radiography
with the proposed CovidDetNet approach, we need to experiment with the domain ex-
perts diagnosing COVID-19 from X-rays and compare the results and time taken with the
proposed CovidDetNet approach. Additionally, to generalize the proposed CovidDetNet
approach, we aim to test and validate the proposed approach with the emerging new
variants of COVID-19 and record its performance and accuracy to identify the new types of
COVID-19 virus. Additionally, we are interested to identify the performance of proposed
approach on detecting & removing mask [70] and heart disease predication [71,72].

Furthermore, healthcare institutions in many countries are incorporating a large
number of smart devices for combating the disease and obtaining information about its
growth. In addition, blockchain and IoT are also assisting medical professionals in gaining
valuable insights about behavior and symptoms. At the same time, physicians are using
various IoT-enabled devices for remote monitoring of patients, considering that COVID-19
spreads faster than the average communicable disease. In particular, the Internet of Medical
Things (IoMT) applications involve tracking medication orders, monitoring COVID-19
patients remotely, and incorporating wearables for transmitting healthcare information to
the respective healthcare professionals. The healthcare sector is banking on the potential of
IoMT technologies to collect, evaluate, and transmit healthcare information efficiently. IoT
devices can pacify the diagnosis process of infectious diseases, which is essential in the case
of COVID-19. IoT-enabled devices can capture body temperatures, collect samples from
possible cases, and eliminate human intervention. Even during the quarantine period, IoT
devices can remotely monitor patients, preventing further infection. Even IoT-based drones
are being used for thermal imaging, disinfecting, medical purposes, surveillance, and
announcements to draw the line of defense against COVID-19. Therefore, there is a rising
demand to develop deep learning models based on IoT and blockchain technologies—since
both have significantly leveraged the global healthcare industry—to detect COVID-19
infection early from the data gathered from IoT-enabled devices.

6. Conclusions

COVID-19 infection needs to be identified and detected early to prevent the infection
from spreading to others. This research study proposed a novel CovidDetNet classification
approach to efficiently and correctly identify COVID-19 using chest radiograph images.
For this purpose, following image resizing, the resulting images are fed into a CovidDetNet
model developed to detect COVID-19. The accuracy of 98.40% for COVID-19 detection has
confirmed the superiority of our CovidDetNet model over other existing hybrid approaches.
The results of our rigorous testing demonstrated that our proposed model outperforms
other contemporary techniques. In the COVID-19 global pandemic, the proposed Covid-
DetNet classification and identification approach is expected to develop a mechanism for
COVID-19 patients and reduce COVID-19 medical diagnosis workload and virus spread.
Because the proposed CovidDetNet model has an end-to-end learning structure, it can
detect COVID-19 from chest radiograph images automatically without the necessity for
any manual feature extraction techniques. As a decision support system, a rapid and stable
system aids expert radiographs in this way. The workload of radiologists can be reduced,
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and misdiagnosis is avoided. Despite the success of the given method, different DL-based
strategies for COVID-19 identification will be proposed in future studies to improve the
CovidDetNet approach’s performance further.

Author Contributions: N.U. developed the method; N.U., M.S.K., S.A. and J.A.K. performed the
experiments and analysis, and M.A., D.A. and A.R. wrote the paper. All authors have read and
agreed to the published version of the manuscript.

Funding: The authors are thankful to the Deanship of Scientific Research at Najran University for fund-
ing this work under the Research Collaboration Funding program grant code (NU/RC/SERC/11/8).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used in this investigation are available on request from
the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Coronaviruses. Available online: https://www.niaid.nih.gov/diseases-conditions/coronaviruses (accessed on 3 May 2021).
2. Fan, Y.; Zhao, K.; Shi, Z.-L.; Zhou, P. Bat Coronaviruses in China. Viruses 2019, 11, 210. [CrossRef] [PubMed]
3. Razai, M.S.; Doerholt, K.; Ladhani, S.; Oakeshott, P. Coronavirus disease 2019 (COVID-19): A guide for UK GPs. BMJ 2020,

368, m800. [CrossRef] [PubMed]
4. Chan, J.F.-W.; Yuan, S.; Kok, K.-H.; To, K.K.-W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.-Y.; Poon, R.W.-S.; et al. A familial

cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family
cluster. Lancet 2020, 395, 514–523. [CrossRef]

5. Iqbal, H.M.; Romero-Castillo, K.D.; Bilal, M.; Parra-Saldivar, R. The emergence of novel-coronavirus and its replication cycle-an
overview. J. Pure Appl. Microbiol. 2020, 14, 13–16. [CrossRef]

6. Siddiqui, M.K.; Morales-Menendez, R.; Gupta, P.K.; Iqbal, H.M.; Hussain, F.; Khatoon, K.; Ahmad, S. Correlation Between
Temperature and COVID-19 (Suspected, Confirmed and Death) Cases based on Machine Learning Analysis. J. Pure Appl. Microbiol.
2020, 14, 1017–1024. [CrossRef]

7. Peng, X.; Xu, X.; Li, Y.; Cheng, L.; Zhou, X.; Ren, B. Transmission routes of 2019-nCoV and controls in dental practice. Int. J. Oral
Sci. 2020, 12, 9. [CrossRef] [PubMed]

8. World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. Available online: https://covid19.who.int
(accessed on 30 December 2020).

9. COVID-19 Situation! Available online: https://covid.gov.pk/ (accessed on 22 March 2021).
10. WHO. Coronavirus Disease (COVID-2019) R&D. Available online: https://www.who.int/blueprint/priority-diseases/key-

action/novel-coronavirus/en/ (accessed on 9 March 2020).
11. Xu, X.; Jiang, X.; Ma, C.; Du, P.; Li, X.; Lv, S.; Yu, L.; Chen, Y.; Su, J.; Lang, G. Deep Learning System to Screen novel Coronavirus

Disease 2019 Pneumonia. Engineering 2020, 6, 1122–1129. [CrossRef] [PubMed]
12. Gozes, O.; Frid-Adar, M.; Greenspan, H.; Browning, P.D.; Zhang, H.; Ji, W.; Bernheim, A.; Siegel, E. Rapid ai development cycle

for the coronavirus (COVID-19) pandemic: Initial results for automated detection & patient monitoring using deep learning ct
image analysis. arXiv 2020, arXiv:2003.050372003, 05037.

13. Fanelli, D.; Piazza, F. Analysis and forecast of COVID-19 spreading in China, Italy, and France. Chaos Solitons Fractals 2020, 134,
109761. [CrossRef]

14. Hall, L.O.; Paul, R.; Goldgof, D.B.; Goldgof, G.M. Finding COVID-19 from chest x-rays using deep learning on a small dataset.
arXiv 2004, arXiv:2004.02060.2020.

15. Alimadadi, A.; Aryal, S.; Manandhar, I.; Munroe, P.B.; Joe, B.; Cheng, X. Artificial intelligence and machine learning to fight
COVID-19. Physiol. Genom. 2020, 52, 200–202. [CrossRef]

16. World Health Organization. Laboratory Testing for Coronavirus Disease 2019 (COVID-19) in Suspected Human Cases. Available
online: https://apps.who.int/iris/bitstream/handle/10665/331329/WHO-COVID-19-laboratory-2020.4-eng.pdf (accessed on
15 May 2020).

17. Unites States Centers for Disease Control and Prevention USCfDCa. Interim Guidelines for Collecting, Handling, and Testing
Clinical Specimens from Persons for Coronavirus Disease 2019 (COVID-19). Available online: https://www.cdc.gov/coronavirus/
2019-ncov/lab/guidelines-clinical-specimens.html (accessed on 15 May 2020).

18. Emanuel, E.J.; Persad, G.; Upshur, R.; Thome, B.; Parker, M.; Glickman, A.; Zhang, C.; Boyle, C.; Smith, M.; Phillips, J.P. Fair
Allocation of Scarce Medical Resources in the Time of COVID-19. N. Engl. J. Med. 2020, 382, 2049–2055. [CrossRef]

19. American Society for Microbiology. Supply Shortages Impacting COVID-19 and non-COVID Testing. 2020. Available online:
https://asm.org/Articles/2020/September/Clinical-Microbiology-Supply-Shortage-Collecti-1 (accessed on 26 March 2021).

https://www.niaid.nih.gov/diseases-conditions/coronaviruses
http://doi.org/10.3390/v11030210
http://www.ncbi.nlm.nih.gov/pubmed/30832341
http://doi.org/10.1136/bmj.m800
http://www.ncbi.nlm.nih.gov/pubmed/32144127
http://doi.org/10.1016/S0140-6736(20)30154-9
http://doi.org/10.22207/JPAM.14.1.03
http://doi.org/10.22207/JPAM.14.SPL1.40
http://doi.org/10.1038/s41368-020-0075-9
http://www.ncbi.nlm.nih.gov/pubmed/32127517
https://covid19.who.int
https://covid.gov.pk/
https://www.who.int/blueprint/priority-diseases/key-action/novel-coronavirus/en/
https://www.who.int/blueprint/priority-diseases/key-action/novel-coronavirus/en/
http://doi.org/10.1016/j.eng.2020.04.010
http://www.ncbi.nlm.nih.gov/pubmed/32837749
http://doi.org/10.1016/j.chaos.2020.109761
http://doi.org/10.1152/physiolgenomics.00029.2020
https://apps.who.int/iris/bitstream/handle/10665/331329/WHO-COVID-19-laboratory-2020.4-eng.pdf
https://www.cdc.gov/coronavirus/2019-ncov/lab/guidelines-clinical-specimens.html
https://www.cdc.gov/coronavirus/2019-ncov/lab/guidelines-clinical-specimens.html
http://doi.org/10.1056/NEJMsb2005114
https://asm.org/Articles/2020/September/Clinical-Microbiology-Supply-Shortage-Collecti-1


Appl. Sci. 2022, 12, 6269 20 of 22

20. Ranney, M.L.; Valerie Griffeth, M.P.H.; Jha, A.K. Critical Supply Shortages—The Need for Ventilators and Personal Protective
Equipment during the COVID-19 Pandemic. N. Engl. J. Med. 2020, 382, e41. [CrossRef] [PubMed]

21. Rubin, G.D.; Ryerson, C.J.; Haramati, L.B.; Sverzellati, N.; Kanne, J.; Raoof, S.; Schluger, N.W.; Volpi, A.; Yim, J.-J.;
Martin, I.B.K.; et al. The Role of Chest Imaging in Patient Management during the COVID-19 Pandemic: A Multinational
Consensus Statement from the Fleischner Society. Radiology 2020, 296, 172–180. [CrossRef]

22. Jaiswal, A.K.; Tiwari, P.; Kumar, S.; Gupta, D.; Khanna, A.; Rodrigues, J.J. Identifying pneumonia in chest X-rays: A deep learning
approach. Measurement 2019, 145, 511–518. [CrossRef]

23. Raza, A.; Ayub, H.; Khan, J.A.; Ahmad, I.; Salama, A.S.; Daradkeh, Y.I.; Javeed, D.; Rehman, A.U.; Hamam, H. A Hybrid Deep
Learning-Based Approach for Brain Tumor Classification. Electronics 2022, 11, 1146. [CrossRef]

24. Hwang, E.J.; Park, S.; Jin, K.N.; Im Kim, J.; Choi, S.Y.; Lee, J.H.; Goo, J.M.; Aum, J.; Yim, J.J.; Cohen, J.G.; et al. Development and
validation of a deep learning–based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw.
Open 2019, 2, e191095. [CrossRef] [PubMed]

25. Park, S.; Lee, S.M.; Lee, K.H.; Jung, K.-H.; Bae, W.; Choe, J.; Seo, J.B. Deep learning-based detection system for multiclass lesions
on chest radiographs: Comparison with observer readings. Eur. Radiol. 2019, 30, 1359–1368. [CrossRef]

26. Nam, J.G.; Park, S.; Hwang, E.J.; Lee, J.H.; Jin, K.-N.; Lim, K.Y.; Vu, T.H.; Sohn, J.H.; Hwang, S.; Goo, J.M.; et al. Development and
Validation of Deep Learning–based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs.
Radiology 2019, 290, 218–228. [CrossRef]

27. Majkowska, A.; Mittal, S.; Steiner, D.F.; Reicher, J.J.; McKinney, S.M.; Duggan, G.E.; Eswaran, K.; Chen, P.-H.C.; Liu, Y.;
Kalidindi, S.R.; et al. Chest Radiograph Interpretation with Deep Learning Models: Assessment with Radiologist-adjudicated
Reference Standards and Population-adjusted Evaluation. Radiology 2020, 294, 421–431. [CrossRef] [PubMed]

28. Hwang, E.J.; Nam, J.G.; Lim, W.H.; Park, S.J.; Jeong, Y.S.; Kang, J.H.; Hong, E.K.; Kim, T.M.; Goo, J.M.; Park, S.; et al. Deep
Learning for Chest Radiograph Diagnosis in the Emergency Department. Radiology 2019, 293, 573–580. [CrossRef]

29. Annarumma, M.; Withey, S.J.; Bakewell, R.J.; Pesce, E.; Goh, V.; Montana, G. Automated Triaging of Adult Chest Radiographs
with Deep Artificial Neural Networks. Radiology 2019, 291, 196–202. [CrossRef] [PubMed]

30. Murphy, K.; Smits, H.; Knoops, A.J.G.; Korst, M.; Samson, T.; Scholten, E.T.; Schalekamp, S.; Schaefer-Prokop, C.M.;
Philipsen, R.H.H.M.; Meijers, A.; et al. COVID-19 on the Chest Radiograph: A Multi-Reader Evaluation of an AI System.
Radiology 2020, 296, E166–E172. [CrossRef] [PubMed]

31. Wehbe, R.M.; Sheng, J.; Dutta, S.; Chai, S.; Dravid, A.; Barutcu, S.; Wu, Y.; Cantrell, D.R.; Xiao, N.; Allen, B.D.; et al.
DeepCOVID-XR: An Artificial Intelligence Algorithm to Detect COVID-19 on Chest Radiographs Trained and Tested on a
Large US Clinical Dataset. Radiology 2020, 299, E167–E176. [CrossRef] [PubMed]

32. Ullah, N.; Javed, A.; Ghazanfar, M.A.; Alsufyani, A.; Bourouis, S. A novel DeepMaskNet model for face mask detection and
masked facial recognition. J. King Saud Univ.-Comput. Inf. Sci. 2022. [CrossRef]

33. Apostolopoulos, I.D.; Mpesiana, T.A. COVID-19: Automatic detection from X-ray images utilizing transfer learning with
convolutional neural networks. Phys. Eng. Sci. Med. 2020, 43, 635–640. [CrossRef] [PubMed]

34. Ullah, N.; Khan, J.A.; Khan, M.S.; Khan, W.; Hassan, I.; Obayya, M.; Negm, N.; Salama, A.S. An Effective Approach to Detect and
Identify Brain Tumors Using Transfer Learning. Appl. Sci. 2022, 12, 5645. [CrossRef]

35. Subramaniam, S.; Radhakrishnan, M. Neural Network with Bee Colony Optimization for MRI Brain Cancer Image Classification.
Int. Arab. J. Inf. Technol. (IAJIT) 2016, 13, 1–7.

36. Mahdy, L.N.; Ezzat, K.A.; Elmousalami, H.H.; Ella, H.A.; Hassanien, A.E. Automatic X-ray COVID-19 lung image classification
system based on multi-level thresholding and support vector machine. medRxiv 2020, 1–8. [CrossRef]

37. Singh, S.; Parmar, K.S.; Makkhan, S.J.; Kaur, J.; Peshoria, S.; Kumar, J. Study of ARIMA and least square support vector machine
(LS-SVM) models for the prediction of SARS-CoV-2 confirmed cases in the most affected countries. Chaos Solitons Fractals 2020,
139, 110086. [CrossRef]

38. Osman, A.H.; Aljahdali, H.M.; Altarrazi, S.M.; Ahmed, A. SOM-LWL method for identification of COVID-19 on chest X-rays.
PLoS ONE 2021, 16, e0247176. [CrossRef] [PubMed]

39. Zebari, D.A.; Abdulazeez, A.M.; Zeebaree, D.Q.; Salih, M.S. A fusion scheme of texture features for COVID-19 detection of CT
scan images. In Proceedings of the 2020 International Conference on Advanced Science and Engineering (ICOASE), Duhok, Iraq,
23–24 December 2020; IEEE: Piscataway, NJ, USA; pp. 1–6.

40. Ozturk, T.; Talo, M.; Yildirim, E.A.; Baloglu, U.B.; Yildirim, O.; Acharya, U.R. Automated detection of COVID-19 cases using deep
neural networks with X-ray images. Comput. Biol. Med. 2020, 121, 103792. [CrossRef]

41. Khan, A.I.; Shah, J.L.; Bhat, M.M. CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray
images. Comput. Methods Programs Biomed. 2020, 196, 105581. [CrossRef] [PubMed]

42. Apostolopoulos, I.D.; Aznaouridis, S.I.; Tzani, M.A. Extracting Possibly Representative COVID-19 Biomarkers from X-ray Images
with Deep Learning Approach and Image Data Related to Pulmonary Diseases. J. Med Biol. Eng. 2020, 40, 462–469. [CrossRef]
[PubMed]

43. Ucar, F.; Korkmaz, D. COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19)
from X-ray images. Med. Hypotheses 2020, 140, 109761. [CrossRef] [PubMed]

44. Okolo, G.I.; Katsigiannis, S.; Althobaiti, T.; Ramzan, N. On the Use of Deep Learning for Imaging-Based COVID-19 Detection
Using Chest X-rays. Sensors 2021, 21, 5702. [CrossRef] [PubMed]

http://doi.org/10.1056/NEJMp2006141
http://www.ncbi.nlm.nih.gov/pubmed/32212516
http://doi.org/10.1148/radiol.2020201365
http://doi.org/10.1016/j.measurement.2019.05.076
http://doi.org/10.3390/electronics11071146
http://doi.org/10.1001/jamanetworkopen.2019.1095
http://www.ncbi.nlm.nih.gov/pubmed/30901052
http://doi.org/10.1007/s00330-019-06532-x
http://doi.org/10.1148/radiol.2018180237
http://doi.org/10.1148/radiol.2019191293
http://www.ncbi.nlm.nih.gov/pubmed/31793848
http://doi.org/10.1148/radiol.2019191225
http://doi.org/10.1148/radiol.2018180921
http://www.ncbi.nlm.nih.gov/pubmed/30667333
http://doi.org/10.1148/radiol.2020201874
http://www.ncbi.nlm.nih.gov/pubmed/32384019
http://doi.org/10.1148/radiol.2020203511
http://www.ncbi.nlm.nih.gov/pubmed/33231531
http://doi.org/10.1016/j.jksuci.2021.12.017
http://doi.org/10.1007/s13246-020-00865-4
http://www.ncbi.nlm.nih.gov/pubmed/32524445
http://doi.org/10.3390/app12115645
http://doi.org/10.1101/2020.03.30.20047787
http://doi.org/10.1016/j.chaos.2020.110086
http://doi.org/10.1371/journal.pone.0247176
http://www.ncbi.nlm.nih.gov/pubmed/33626053
http://doi.org/10.1016/j.compbiomed.2020.103792
http://doi.org/10.1016/j.cmpb.2020.105581
http://www.ncbi.nlm.nih.gov/pubmed/32534344
http://doi.org/10.1007/s40846-020-00529-4
http://www.ncbi.nlm.nih.gov/pubmed/32412551
http://doi.org/10.1016/j.mehy.2020.109761
http://www.ncbi.nlm.nih.gov/pubmed/32344309
http://doi.org/10.3390/s21175702
http://www.ncbi.nlm.nih.gov/pubmed/34502591


Appl. Sci. 2022, 12, 6269 21 of 22

45. Uddin, A.; Talukder, B.; Khan, M.M.; Zaguia, A. Study on Convolutional Neural Network to Detect COVID-19 from Chest X-Rays.
Math. Probl. Eng. 2021, 2021, 3366057. [CrossRef]

46. Sethy, P.K.; Behera, S.K. Detection of coronavirus disease (COVID-19) based on deep features. Int. J. Math. Eng. Manag. Sci. 2020,
5, 643–651. [CrossRef]

47. Novitasari, D.C.R.; Hendradi, R.; Caraka, R.E.; Rachmawati, Y.; Fanani, N.Z.; Syarifudin, A.; Toharudin, T.; Chen, R.C. Detection
of COVID-19 chest X-ray using support vector machine and convolutional neural network. Commun. Math. Biol. Neurosci. 2020,
2020, 2052–2541. [CrossRef]

48. Wang, X.; Jiang, X.; Ding, H.; Zhao, Y.; Liu, J. Knowledge-aware deep framework for collaborative skin lesion segmentation and
melanoma recognition. Pattern Recognit. 2021, 120, 108075. [CrossRef]

49. Aversano, L.; Bernardi, M.L.; Cimitile, M.; Pecori, R. Early Detection of Parkinson Disease using Deep Neural Networks on Gait
Dynamics. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July
2020; pp. 1–8.

50. Ullah, N.; Javed, A. Deep Features Comparative Analysis for COVID-19 Detection from the Chest Radiograph Images. In
Proceedings of the 2021 International Conference on Frontiers of Information Technology (FIT), Islamabad, Pakistan, 13–14
December 2021; pp. 258–263.

51. Rajpurkar, P.; Irvin, J.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Langlotz, C.; Shpanskaya, K.; et al. Chexnet:
Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv 2017, arXiv:1711.052251711, 05225.

52. Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks
on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2097–2106.

53. Majumdar, A.; Bocquet, M.; Hirtzlin, T.; Laborieux, A.; Klein, J.O.; Nowak, E.; Vianello, E.; Portal, J.M.; Querlioz, D. Model of the
Weak Reset Process in HfOx Resistive Memory for Deep Learning Frameworks. IEEE Trans. Electron Devices 2021, 68, 4925–4932.
[CrossRef]

54. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

55. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2016; pp. 2818–2826.

56. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. NIPS 2012, 60, 84–90.
[CrossRef]

57. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456.

58. Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the ICML,
Atlanta, GA, USA, 16–21 June 2013; Volume 30, p. 3.

59. Nair, V.; Hinton, G.E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the ICML 2010, Haifa,
Israel, 21–24 June 2010; pp. 807–814.

60. Chowdhury, M.E.H.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Mahbub, Z.B.; Islam, K.R.; Khan, M.S.; Iqbal, A.;
Al-Emadi, N.; et al. Can AI help in screening Viral and COVID-19 pneumonia? IEEE Access 2020, 8, 132665. [CrossRef]

61. Rahman, T.; Khandakar, A.; Qiblawey, Y.; Tahir, A.; Kiranyaz, S.; Kashem, S.B.A.; Islam, M.T.; Al Maadeed, S.; Zughaier, S.M.;
Khan, M.S.; et al. Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images.
Comput. Biol. Med. 2021, 132, 104319. [CrossRef]

62. He, K.; Xiangyu, Z.; Shaoqing, R.; Jian, S. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

63. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

64. Joseph, R. Darknet: Open Source Neural Networks in C. Available online: https://pjreddie.com/darknet (accessed on 13
July 2021).

65. Zhou, B.; Lapedriza, A.; Torralba, A.; Oliva, A. Places: An Image Database for Deep Scene Understanding. J. Vis. 2017, 17, 296.
[CrossRef]

66. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6848–6856.

67. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; IEEE: Piscataway, NJ, USA; pp. 4510–4520.

68. Chhikara, P.; Gupta, P.; Singh, P.; Bhatia, T. A deep transfer learning based model for automatic detection of COVID-19 from chest
X-ray. Turk. J. Electr. Eng. Comput. Sci. 2021, 29, 2663–2679. [CrossRef]

69. Kumar, A.; Tripathi, A.R.; Satapathy, S.C.; Zhang, Y.-D. SARS-Net: COVID-19 detection from chest x-rays by combining graph
convolutional network and convolutional neural network. Pattern Recognit. 2021, 122, 108255. [CrossRef]

http://doi.org/10.1155/2021/3366057
http://doi.org/10.20944/preprints202003.0300.v1
http://doi.org/10.28919/cmbn/4765
http://doi.org/10.1016/j.patcog.2021.108075
http://doi.org/10.1109/TED.2021.3108479
http://doi.org/10.1145/3065386
http://doi.org/10.1109/ACCESS.2020.3010287
http://doi.org/10.1016/j.compbiomed.2021.104319
https://pjreddie.com/darknet
http://doi.org/10.1167/17.10.296
http://doi.org/10.3906/elk-2104-184
http://doi.org/10.1016/j.patcog.2021.108255


Appl. Sci. 2022, 12, 6269 22 of 22

70. Jabbar, A.; Li, X.; Assam, M.; Khan, J.A.; Obayya, M.; Alkhonaini, M.A.; Al-Wesabi, F.N.; Assad, M. AFD-StackGAN: Automatic
Mask Generation Network for Face De-Occlusion Using StackGAN. Sensors 2022, 22, 1747. [CrossRef]

71. Ali, L.; Niamat, A.; Khan, J.A.; Golilarz, N.A.; Xingzhong, X.; Noor, A.; Nour, R.; Bukhari, S.A.C. An optimized stacked support
vector machines based expert system for the effective prediction of heart failure. IEEE Access 2019, 7, 54007–54014. [CrossRef]

72. Ali, L.; Rahman, A.; Khan, A.; Zhou, M.; Javeed, A.; Khan, J.A. An automated diagnostic system for heart disease prediction
based on X2 statistical model and optimally configured deep neural network. IEEE Access 2019, 7, 34938–34945. [CrossRef]

http://doi.org/10.3390/s22051747
http://doi.org/10.1109/ACCESS.2019.2909969
http://doi.org/10.1109/ACCESS.2019.2904800

	Introduction 
	Related Work 
	Methodology 
	Motivations 
	CovidDetNet Architecture Details 
	Hyperparameters Settings 

	Results 
	Datasets 
	CovidDetNet Evaluation Metrics 
	CovidDetNet Experimental Setup 
	Performance Evaluation 
	Performance Evaluation on Train/Validation/Test Split 
	Comparison with a Hybrid Approach 
	COVID-19 Detection Comparison with State-of-the-Art Methods 


	Discussion and Future Research Direction 
	Conclusions 
	References

