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Abstract: For attention deficit hyperactivity disorder (ADHD), a common neurological disease,
accurate identification is the basis for treatment. In this paper, a novel end-to-end representation
learning framework for ADHD classification of functional magnetic resonance imaging (fMRI)
sequences is proposed. With such a framework, the complexity of the sequence representation
learning neural network decreases, the overfitting problem of deep learning for small samples cases is
solved effectively, and superior classification performance is achieved. Specifically, a data conversion
module was designed to convert a two-dimensional sequence into a three-dimensional image, which
expands the modeling area and greatly reduces the computational complexity. The transfer learning
method was utilized to freeze or fine-tune the parameters of the pre-trained neural network to
reduce the risk of overfitting in the cases with small samples. Hierarchical feature extraction can
be performed automatically by combining the sequence representation learning modules with a
weighted cross-entropy loss. Experiments were conducted both with individual imaging sites
and combining them, and the results showed that the classification average accuracies with the
proposed framework were 73.73% and 72.02%, respectively, which are much higher than those of the
existing methods.

Keywords: ADHD; representation learning; sequence; pre-trained; convolutional neural network

1. Introduction

Attention deficit hyperactivity disorder (ADHD) is a common childhood disease with
neurodevelopmental and mental disorders [1], and it is characterized by a lack of sustained
attention, high impulse, and hyperactivity. ADHD disease involves the influence of en-
vironmental, neurological, and genetic factors as well. The neural mechanism of ADHD
disease is incompletely known, and the traditional diagnosis still depends on the analysis of
clinical interviews and patients’ behaviors. There is a significant challenge to this diagnosis
method, which is that the diagnosis is based on subjective behavioral criteria and this
process is time-consuming. In addition, it requires in-depth domain knowledge. As human
brains are similar with a large complex network that controls and monitors the whole
body’s system, researchers are attempting to explore the mechanism of brain nerve diseases
and diagnose them objectively by studying brain activities. In brain function research,
brain functional imaging technology is commonly used to provide insight into the neural
mechanism of cognition and emotion. In recent years, many different imaging methods
have been applied to research on brain functional activities, such as electroencephalogram,
magnetoencephalogram, and functional magnetic resonance imaging (fMRI). fMRI is a
new neuroimaging method based on the blood-oxygen-level-dependent (BOLD) imaging
principle, and it is also a non-invasive imaging technology that has the characteristic of
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the accurate positioning of brain functional activation areas. Therefore, fMRI is considered
to be the most suitable brain function imaging for determining the functional activities of
brain regions.

The accurate identification of ADHD will contribute to the early treatment and tar-
geted treatment of the disease. In recent years, many achievements have been made in the
classification of brain neurological diseases based on fMRI imaging and machine learning.
The representation of data is one of the key parts of machine learning, data mining, and
other fields, as its performance affects the achievable efficiency significantly. The structure
of the human brain is complex, and the neurons in various functional brain areas interact
with each other. At present, the classification of ADHD is generally based on the functional
connectivity between brain regions for feature extraction and support vector machine
(SVM) [2] for classification. Traditional neuroimaging data classification usually requires
several preprocessing steps, such as subject selection, feature extraction, and feature selec-
tion. These steps require a large amount of domain knowledge and many skilled selection
methods and will bring about the problem of experimental reproducibility [3,4].

Currently, representation learning, known as feature learning, based on deep neural
networks (DNNs), has become a hot spot. The representation learning method does not
need explicit data transformation, and the internal representation of data can be learned
implicitly as well. Deep learning (DL) implements layer-by-layer representation transfor-
mation on massive amounts of training data by constructing a DNN with multiple hidden
layers. On the other hand, automatically learned data representation has a strong descrip-
tion ability. Hence, with the support of extraordinary computing power, massive data, and
complex models, the DL method has been successfully applied to image processing, speech
recognition, intelligent search, and other fields with large amounts of training data.

However, for practical applications constrained by time, environment, and other
limitations, it is usually difficult to obtain large-scale data. Generally, the sample sizes of
most fMRI data sets are relatively small. In the case of a few training samples, DL has the
risk of easy overfitting, and the effectiveness of the algorithm will be significantly reduced.
As a result, existing DL algorithms that have excellent performance in cases where there is
a large number of samples are not suitable for image analysis and processing with only a
small number of samples.

To tackle the issue that large samples are needed in a DL algorithm while the number
of ADHD samples is usually small, a novel end-to-end fMRI sequence representation learn-
ing framework for ADHD classification is proposed. In the proposed framework, three
main innovations of this method are involved: (1) through the data conversion module, the
two-dimensional sequence is converted into a three-dimensional image, which not only
expands the modeling area of the adjacent regions of interest (ROIs) for the subsequent con-
volution operation but also greatly reduces the computational complexity of this algorithm;
(2) aimed at the problem of a few ADHD samples, the transfer learning method is used to
freeze or fine-tune the parameters of the pre-trained neural network for reducing the risk
of overfitting; and (3) our representation learning framework can automatically perform
hierarchical feature extraction, where combining the sequence representation learning
modules with a weighted cross-entropy loss at the low level and high level can capture
the activity characteristics of regions and the relations among them. Furthermore, this
framework does not use traditional data augmentation for deep learning and complex
representation selection technology. Hence, it is simple, effective, and easily applied for the
diagnosis of other brain nerve diseases as well.

2. Related Work

Being one of the key parts of ADHD classification, much work has been conducted
on the representation extraction of fMRI data, which can be divided into two categories,
namely hand-crafted feature methods and automatic representation learning methods by
deep learning.
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2.1. Hand-Crafted Feature Methods

Traditional classification methods of neuroimaging data are usually based on hand-
crafted features. Functional connectivity between brain regions is a representation of
fMRI signals. Researchers have proposed different calculation methods for functional
connectivity, among which the correlation of different brain regions is the most common
one. In [5], the research team at Yale University proposed the functional connectome
method to calculate the correlation coefficient for the BOLD signal sequence of the ROIs
in the whole brain, and then a connection matrix was constructed as the representation of
interregional connectivity, which can be effectively applied to behavior prediction, such
as memory and emotion tasks. In [6], Riaz et al. proposed a novel scheme to learn the
functional connectivity of two brain regions through a similarity measurement network.
In addition to structural MRI data and fMRI data, the fusion of phenotypic information,
such as gender, age, and IQ, can improve classification accuracy [7]. Khan et al. proposed a
knowledge distillation and representation selection method for ADHD classification in [8].

In general, a hand-crafted feature method for fMRI data usually includes feature
extraction, feature selection, etc., which require exquisite design skills and in-depth domain
knowledge of brain neuroscience.

2.2. Representation Learning Methods

Recent DL has a very good performance in many kinds of application fields. DL
can implement layer-by-layer representation transformation on massive training data by
constructing a DNN with multiple hidden layers, and its algorithm is good at dealing with
highly complex data that may interact in a highly nonlinear way at multiple levels. On the
other hand, the automatically learned-based data representation has a strong description
ability. DL can automatically learn relevant high-level representations from raw data, which
makes DL successfully be applied in the biomedical field [9]. When it is applied to some
medical fields with a large amount of data, DL has great potential. Therefore, there is a
growing trend to apply representation learning in biology [10]. DNNs have successfully
been applied to the automatic detection of skin cancer and breast cancer [11,12]. The
DeepMind company proposed an AlphaFold system based on a DNN for protein structure
prediction [13]. In [14], Ji et al. proposed convolutional kernels with an element-wise
weighting mechanism to extract deep features of the functional connectome. In [15], Riaz
et al. proposed an end-to-end DeepFMRI framework for ADHD classification that consists
of a feature extraction network, a function connection network, and a classification network.
In [16], Zhang et al. proposed a method of combining a convolutional neural network with
attention to identify ADHD.

3. Materials and Methods

In this paper, an end-to-end fMRI sequence representation learning framework is
proposed for ADHD classification. This framework is illustrated in Figure 1, and three
main parts are involved: an fMRI data preprocessing module, a data conversion module,
and a sequence representation learning neural network. The operation of the sequence rep-
resentation learning neural network involves three steps. Firstly, the channel representation
learning module uses a 1 × 1 × s convolution operation to extract the low-level features of
the sequence. Then, the pre-trained neural network based on the transfer learning method
is used to extract the high-level features of the sequence. Finally, the classification of healthy
control (HC) and ADHD is realized by multi-layer perceptron (MLP).
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images. Finally, the sequence representation learning neural network accomplishes the representa-
tion learning and ADHD classification. 

3.1. Data Sets 
In this paper, the experimental data came from the published Neuro Bureau ADHD-

200 data set (ADHD-200 sample) [17], where the data were collected from eight independ-
ent imaging sites, including 947 individuals, and the collected information includes struc-
tural MRI data, resting fMRI data, age, gender, IQ, hand habits, and other phenotypic 
information. According to the American Psychiatric Association 1994 standard, ADHD in 
these data sets is divided into three subtypes: inattention subtype, hyperactive impulse 
subtype, and complex subtype. In this paper, the three subtypes are uniformly called 
ADHD, and binary classification experiments for HC and ADHD were carried out. Mean-
while, ADHD-200 also provides benchmark test data of six imaging sites for competition. 

To facilitate comparison with current mainstream methods, this study only used five 
data sites: Kennedy Krieger Institute (KKI), NeuroImage Sample (NI), New York Univer-
sity Child Study Center (NYU), Oregon Health and Science University (OHSU), and Pe-
king University (Peking). In these five imaging sites, both training data sets and bench-
mark test data sets are included. The statistical data of each imaging site used in our ex-
periments are shown in Table 1. The training data set provided by the Peking imaging site 
included three subsets, Peking_1, Peking_2, and Peking_3, and the sample numbers for 
these three subsets were 85, 67, and 42, respectively. In addition, some imaging sites col-
lect multiple operation data for one participant, while some imaging sites only collect one 
operation datum for a single participant; therefore, only data named run1 were used in 
our experiment. In the training set of the NYU imaging site, one participant was not 
marked by gender. Therefore, the sum of the female and male training samples from the 
NYU site is 215, which is 1 less than the total samples 216. It can be seen from Table 1 that 
the number of samples in the ADHD-200 dataset is small and the samples are imbalanced. 

Table 1. Overview of the data sets used in this study. 
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Figure 1. Flow chart of the methodology: Firstly, by operating the fMRI data preprocessing module,
the original four-dimensional fMRI data are converted into a two-dimensional time series of ROIs.
Then, the data conversion module converts the two-dimensional time series into three-dimensional
images. Finally, the sequence representation learning neural network accomplishes the representation
learning and ADHD classification.

3.1. Data Sets

In this paper, the experimental data came from the published Neuro Bureau ADHD-
200 data set (ADHD-200 sample) [17], where the data were collected from eight independent
imaging sites, including 947 individuals, and the collected information includes structural
MRI data, resting fMRI data, age, gender, IQ, hand habits, and other phenotypic information.
According to the American Psychiatric Association 1994 standard, ADHD in these data
sets is divided into three subtypes: inattention subtype, hyperactive impulse subtype, and
complex subtype. In this paper, the three subtypes are uniformly called ADHD, and binary
classification experiments for HC and ADHD were carried out. Meanwhile, ADHD-200
also provides benchmark test data of six imaging sites for competition.

To facilitate comparison with current mainstream methods, this study only used five
data sites: Kennedy Krieger Institute (KKI), NeuroImage Sample (NI), New York University
Child Study Center (NYU), Oregon Health and Science University (OHSU), and Peking
University (Peking). In these five imaging sites, both training data sets and benchmark test
data sets are included. The statistical data of each imaging site used in our experiments are
shown in Table 1. The training data set provided by the Peking imaging site included three
subsets, Peking_1, Peking_2, and Peking_3, and the sample numbers for these three subsets
were 85, 67, and 42, respectively. In addition, some imaging sites collect multiple operation
data for one participant, while some imaging sites only collect one operation datum for a
single participant; therefore, only data named run1 were used in our experiment. In the
training set of the NYU imaging site, one participant was not marked by gender. Therefore,
the sum of the female and male training samples from the NYU site is 215, which is 1 less
than the total samples 216. It can be seen from Table 1 that the number of samples in the
ADHD-200 dataset is small and the samples are imbalanced.

Table 1. Overview of the data sets used in this study.

Imaging Site Training Set Benchmark Test Set
Age Female Male HC ADHD Subtotal Age Female Male HC ADHD Subtotal

KKI 8–13 37 45 60 22 82 8–12 1 10 8 3 11
NI 11–22 17 31 23 25 48 13–26 13 12 14 11 25

NYU 7–18 75 140 98 118 216 7–17 13 28 12 29 41
OHSU 7–12 36 43 42 37 79 7–12 17 17 28 6 34
Peking 8–17 50 144 116 78 194 8–16 18 32 27 23 50
Total - 215 403 339 280 619 - 62 99 89 72 161

The number of subjects, scanning parameters, and equipment used varied across these
different imaging sites. Detailed information about fMRI data acquisition parameters and
instructions is available in Table 3 in [18]. For example, when the fMRI instrument was



Appl. Sci. 2022, 12, 6211 5 of 17

scanning, the participants in the NI and NYU sites were asked to keep their eyes closed,
the participants in the KKI and OHSU sites were asked to keep their eyes open and fixate
on an image, and the participants in Peking site were asked to keep their eyes closed or
fixate. The variations in these imaging sites, as described above, lead to the heterogeneity
of fMRI data, which increases the difficulty of ADHD classification.

3.2. fMRI Data Preprocessing

It is very complex to preprocess the original fMRI data. In order to encourage re-
searchers in statistics, computer science, and other fields to use the data set, three forms of
preprocessed data are provided on the NITRC platform for direct download [18,19]. These
three preprocessing methods are Athena, Burner, and NIAK. The NIAK preprocessing
pipeline [20] was used in this paper. NIAK preprocessing includes slice time correction,
motion correction, spatial normalization of anatomical structure image, coregistration, ex-
traction of mean/std/mask for functional images, correction of slow time drifts, correction
of physiological noise, resampling of functional data, and spatial smoothing.

The original fMRI data were four-dimensional data including three dimensions in
space (i.e., x, y, and z) and one dimension in time. The brain was divided into small
three-dimensional voxels or regions, and the activity records for each region formed a
time series. The NIAK preprocessing used the region-growing algorithm to generate
functional brain parcellations, and the original four-dimensional fMRI data were converted
into two-dimensional time series, which represented the signal value of each ROI at a
certain time point. Then, the preprocessed fMRI data become a sequence of multiple
ROIs, XTS = [x1, x2, . . . , xm], where m is the number of ROIs, xi = [a1i, a2i, . . . , asi]

T is the
sequence of the ith ROI, s is the length of the sequence, and XTS can be expressed as a
two-dimensional matrix:

XTS =


a11 a12 . . . a1m
a21 a22 . . . a2m

. . .
as1 as2 . . . asm

 (1)

The NIAK pipeline provides ROI sequences with two different resolutions, namely
ROI1000 and ROI3000. The ROI3000 data set was used in our experiment, where 2843 (near to
3000) ROIs were generated by setting the brain region segmentation threshold to 330 mm3.

3.3. Data Conversion

In traditional fMRI classification methods, a two-dimensional correlation coefficient
matrix is often established by calculating the Pearson correlation coefficient of the time
series between two ROIs, and then the correlation coefficient matrix or its upper/lower
triangular matrix is generated for further classification processing. As we know, convo-
lutional neural networks (CNNs) have been successfully applied to image classification,
image segmentation, and other fields, and it can also be used to model local neighborhood
relations. However, if the convolution operation is directly performed on the preprocessed
fMRI two-dimensional sequence XTS, the convolution kernel 3 × 3 can only establish the
relationships among three time-step sequences and three adjacent ROIs. Therefore, the
modeling area is too small.

The data conversion module was introduced to convert the two-dimensional sequence
matrix, XTS, into a three-dimensional image XIMG. As shown in Equation (1), the one-
dimensional vector [aj1, aj2, . . . , ajm], noted as vj, represents the signal values of m ROIs
at the jth time point. Hence, according to the row-first method, the vector, vj, can be
transformed into a two-dimensional matrix, bj, with a size of r × r by a reshaping function,
where r =

⌈√
m
⌉

and the insufficient bits are filled with 0. Therefore, the preprocessed fMRI
two-dimensional sequence, XTS, composed of vectors vj (j = 1, 2, . . . , s) at s time points,
can be converted into a three-dimensional image XIMG of r × r × s, which is stacked by s
two-dimensional matrices bj (j = 1, 2, . . . , s) according to the time axis. Obviously, the third
dimension of the three-dimensional image XIMG is the same as the second dimension of the
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two-dimensional sequence XTS, which refers to the time dimension. A diagram of the data
conversion is presented in Figure 2. The specific conversion method was as follows: the
BOLD values of all 2843 ROIs at a time point in the dotted box on the left were converted
into a two-dimensional image of 54 × 54 on the right.
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Figure 2. Data conversion: The BOLD values of all 2843 ROIs at a time point in the dotted box on the
left were converted into a two-dimensional image of 54 × 54 on the right by a reshaping function. A
54 × 54 image can represent 2916 ROIs, and the actual number of ROIs was 2843, which is less than
2916. Therefore, the last 73 small squares in the 54 × 54 image are marked with gray, indicating no
corresponding ROIs there (value is 0).

3.4. Sequence Representation Learning Neural Network

The proposed sequence representation learning neural network includes a channel
sequence representation learning module, a pre-trained convolutional neural network, and
an MLP classifier. They are detailly deduced in following.

3.4.1. Channel Sequence Representation Learning Module

The channel sequence representation learning module extracts the channel sequence
representations of the fMRI data by operating convolution with a 1 × 1 × s kernel on the
three-dimensional image, XIMG. This module can effectively capture the discriminative low-
level representations from different ROIs. The number of channels of three-dimensional
image XIMG is s. Among the five imaging sites involved in this experiment, the value of
s was between 73 and 257. Because the output of the channel sequence representation
learning module was used as the input of the pre-trained neural network in the next
module and also considering the fact that the number of input channels of the commonly
pre-trained neural network is generally 3, it was necessary to compress the number of
channels, s, into 3, where the three-dimensional image of h × w × s was converted into the
three-dimensional image of h× w× 3. The diagram of the channel sequence representation
learning module is shown in Figure 3.

3.4.2. Pre-trained Convolutional Neural Network

Our method uses a pre-trained CNN for automatic representation extraction. Brain
neurons in various functional regions interact with each other, which results in a complex
internal correlation of the original fMRI data. CNN is one of the most popular neural
networks. It has the characteristics of local connection and weight sharing [21]. Based on
its local connection characteristics, CNN can capture the brain neuron interaction patterns
between various ROIs. The parameter weight-sharing mechanism greatly reduces the
number of parameters of neural network. The sample size of fMRI data is usually small.
Hence, when the CNN network is operated on fMRI data, overfitting will occur if a network
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is trained from scratch. Therefore, the pre-trained CNN model was used in our model
based on transfer learning, which can transfer knowledge to a new environment.
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where the number of convolution kernels is 3.

Generally, the layers of the neural network are deeper, and the representation ability
of the model is higher, but the gradient of the deep network may disappear. To overcome
this drawback, the Residual Network (ResNet) [22] with identity mapping was proposed
by He et al. Based on a plain network, the ResNet is built by inserting a shortcut connection
between two convolution layers. ResNet has many structures with varying depths, such
as 18, 34, 101, and 152. ResNet34 network mainly contains 33 convolutional layers and a
fully connected layer. When ResNet34 was used as a pre-trained neural network for the
representation learning of this framework, its last fully connected layer should be removed.
The length of the extracted high-level representation vector is 512.

ResNet performs well in many computer vision tasks. Therefore, it has become a
classic backbone applied to the construction of various types of neural networks. The
pre-trained ResNet model trained on the large-scale ImageNet dataset has been successfully
applied for many scenarios. There are a number of ResNet models that can be chosen, which
include ResNet18, ResNet34 and ResNet101. Considering complexity and performance, in
the experiments we conducted in this study, we chose the ResNet34 model, which showed
satisfactory performance with moderate complexity.

3.4.3. MLP Classifier

For binary classification problems, neural networks often use a fully connected (FC)
layer and a SoftMax activation function to build a trainable MLP classifier. As shown in
Figure 1, after the image representation f is extracted at the last layer of the pre-trained
neural network, it is sent to the MLP classifier to classify HC and ADHD. Let the length of
image representation f be n, and the FC in the MLP classifier maps an n-dimensional repre-
sentation vector f to a two-dimensional vector y, where each dimension of y corresponds to
one category. This model uses cross-entropy as the loss function of representation learning
neural network. The cross-entropy can be calculated as:

L = −1
k

k

∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (2)

where k is the number of samples, yi is the expected output category of samples, and ŷi
is the actual output category of samples. Cross-entropy is used to describe the distance
between the actual output and the expected output. When the probability distribution of
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the actual output and the expected output is closer, the value of cross-entropy is smaller,
and vice versa. The cross-entropy loss function evaluates the prediction of individual
samples and then averages the results of all samples.

If the samples are imbalanced, the value of cross-entropy is dominated by the category
with a large number of samples, which is disadvantageous to classification. Using the
weighted cross-entropy loss function can solve the problems caused by sample imbalance
to a certain degree. The weighted cross-entropy loss function, Lα, is defined as:

Lα = −1
k

k

∑
i=1

[αyi log(ŷi) + (1− yi) log(1− ŷi)] (3)

where α is the weight. In ADHD classification, the number of ADHD samples is less than
the number of HC samples and, generally, α is set to be greater than 1, indicating that
increasing the weight of ADHD samples can reduce missed diagnoses.

3.5. Evaluation Metrics

For the binary classification problem, the samples can be divided into true positive
(TP) cases, false positive (FP) cases, true negative (TN) cases, and false negative (FN) cases
according to the combination of their real categories and prediction categories, where
TP represents the number of samples in which positive cases are correctly predicted to
be positive, TN represents the number of samples in which negative cases are correctly
predicted to be negative, FP represents the number of samples in which negative cases are
incorrectly predicted to be positive, and FN represents the number of samples in which
positive cases are incorrectly predicted to be negative. There are many evaluation metrics
to evaluate the ADHD classification performance.

Accuracy (ACC) is the most common classification evaluation metric, which is the
number of correctly classified samples divided by the number of all samples. It is measured
as in Equation (4). Generally speaking, the higher the accuracy, the better the classifier.

ACC =
TP + TN

TP + TN + FP + FN
(4)

Sensitivity (SEN) refers to the proportion of correctly identified positive cases in all
positive cases, which is shown in Equation (5). High sensitivity means a low missed
diagnosis rate.

SEN =
TP

TP + FN
(5)

Specificity (SPC) refers to the proportion of correctly identified negative cases in all neg-
ative cases, which is shown as Equation (6). High specificity means a low misdiagnosis rate.

SPC =
TN

TN + FP
(6)

4. Results

Five ADHD classification experiments were performed on data from five imaging
sites. Our experiments adopted the PyTorch framework, and the graphics card was
GeForce GTX1050.

4.1. Experimental Setup

In our experiments, imaging sites’ data are taken from KKI, NI, NYU, OHSU, and
Peking of ADHD-200. The time sequence length of the data for each imaging site was
different, among which the time sequence length of OHSU was the shortest, and its value
was 73. The deep learning network requires a fixed length of an input signal. Therefore,
all experiments only took the front part sequence of each imaging site’s data, and the time
sequence length s was set to 73.
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An end-to-end fMRI sequence representation learning framework was constructed
to classify ADHD, which is shown in Figure 1. Specifically, the preprocessed fMRI data, a
sequence of multiple ROIs, XTS, was firstly passed to the data conversion module, where
XTS was converted into XIMG by a reshaping function. Then, the three-dimensional image,
XIMG, was fed into the channel sequence representation learning module, which was a
convolutional layer with three 1 × 1 × s kernels. Next, it was connected by the pre-trained
CNN, which produced the image feature f as output and was followed by a rectified linear
unit (ReLU). Finally, the feature f was sent to the MLP classifier to classify HC and ADHD.
The MLP classifier was composed of a fully connected layer and an activation layer. The
training of the representation learning neural network needs to set up a loss function,
an optimizer, and so on. ResNet34 is used as the pre-trained CNN in our model. The
nn.crossentropyloss() function of the torch library was used as a loss function, where this
cross-entropy is a negative log-likelihood loss function based on the log transformation of
the SoftMax() activation function, and weight α equals 2 or 3. During the neural network
training, the batch size of the samples was set to 32, the learning rate lr was 3 × 10−5,
the number of epochs was 14, and the Adam optimization method was adopted. In the
experiments, the following two schemes commonly used in ADHD classification were
taken: (1) training and test on individual imaging site data and (2) training on combining
site data and test on individual benchmark test data.

4.2. Classification Experiment of Training and Test on Individual Imaging Site Data

Each of the five imaging sites (i.e., KKI, NI, NYU, OHSU, and Peking) had a training
set and benchmark test set. The ADHD classification experiment of the training and test
on individual imaging site data, individual site experiment for short, refers to the training
data using the training set of a single imaging site and the test data using the benchmark
test set of this same imaging site. During the training of the representation learning neural
network, all of the parameters of the pre-trained neural network in the individual site
experiment were frozen, which was mainly based on two considerations. On the one hand,
it can alleviate the overfitting problem of the deep neural network with a small number of
training samples; on the other hand, by freezing all of the parameters of the pre-trained
neural network, verifying the applicability of the proposed method can be focused on. In
the individual site ADHD classification experiments, the weight α in the cross-loss function
was set to 3.

Table 2 shows the comparison of the ADHD classification results of different methods
in the individual site experiments, where the last column is the average classification
accuracies. It can be seen from Table 2 that our method achieved the best results with
KKI, NYU, and OHSU, reaching a state-of-the-art performance with an average accuracy
of 73.73%.

Table 2. Classification accuracies (%) comparison of different methods in the individual
site experiments.

Method KKI NI NYU OHSU Peking Average

Dey et al. (2014) [1] 54.55 48 - 82.35 58.82 60.93
Fusion of fMRI and non-imaging data

(2018) [7] 81.8 - 60.9 - 64.7 69.1

DeepFMRI (2020) [15] - 67.9 73.1 - 62.7 67.9
Knowledge distillation-based (2021) [8] 60 70 73.3 71 73,3 69.52

Our proposed method 81.82 64 80.49 82.35 60 73.73

To evaluate the proposed method more comprehensively, other performance metrics,
such as specificity and sensitivity, had also been exploited on all five imaging sites. To com-
pare with the existing methods, all the results with our proposed method in the individual
site experiments are presented in Table 3. The fMRI data had the dual characteristics of
imbalance and high dimension. In the high-dimensional feature space, the data distribution
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was sparser and contained more redundant and irrelevant features. It was usually difficult
to obtain effective information from the preprocessed fMRI data, which made it more diffi-
cult to identify ADHD. Therefore, the sensitivity of all the methods in Table 3 was generally
not high. Compared with the other three methods, our proposed method achieved better
performances on all five test sets, which means that our method has better generalization
ability when applied to different data sets. Especially, the classification accuracy and sen-
sitivity on NYU were significantly better in our method than in the other methods. The
confusion matrices of the classification results in the individual site experiments are shown
in Figure 4. It can be observed from Figure 4c that most samples of HC and ADHD in the
NYU data set could be classified correctly, the reason for which was perhaps because the
samples of ADHD in NYU were more than that of HC.

Table 3. The specificity (%), sensitivity (%), and accuracy (%) comparison of different methods in the
individual site experiments.

Evaluation
Metrics Methods KKI NI NYU OHSU Peking

Specificity

Dey et al. (2014) [1] 62.5 64.29 - 89.29 92.59
Fusion of fMRI and non-imaging

data (2018) [7] 75.0 42.8 41.6 - 92.6

DeepFMRI (2020) [15] - 71.4 91.6 - 79.1
Our proposed method 87.5 71.43 75 92.86 59.26

Sensitivity

Dey et al. (2014) [1] 33.33 27.27 - 50.00 20.83
Fusion of fMRI and non-imaging

data (2018) [7] 100 45.4 68.9 - 33.3

DeepFMRI (2020) [15] - 63.6 65.5 - 48.1
Our proposed method 66.67 54.55 82.76 33.33 60.87

Accuracy

Dey et al. (2014) [1] 54.55 48 - 82.35 58.82
Fusion of fMRI and non-imaging

data (2018) [7] 81.8 44 60.9 - 64.7

DeepFMRI (2020) [15] - 67.9 73.1 - 62.7
Our proposed method 81.82 64 80.49 82.35 60

4.3. Classification Experiment of Training on Combining Site Data and Test on Benchmark Test Data

The ADHD classification experiment of training on combining site data and test on
benchmark test data, combining site experiment for short, refers to combining the training
data of all five imaging sites in Table 1 as the training set to train the model and then taking
the benchmark test data set of each imaging site used in the competition of ADHD-200
as the test set for the classification experiment. For example, in the NYU classification of
the combining site experiment, there were 619 training samples, which were obtained by
combining the training data of these five imaging sites (i.e., KKI, NI, NYU, OHSU, and
Peking) shown in Table 1, and there were 41 test samples, which were the benchmark test
set of the NYU imaging site. In the combining site experiment, the weight of the cross-loss
function α was set to 2. The ADHD classification results on the combining site experiment
of different methods are displayed in Table 4, which shows that the proposed method
performed well in general compared to the most advanced methods, especially in the case
of the OHSU data set, where the recognition accuracy was much higher than the other
methods and also achieved an average accuracy of 72.02%, a state-of-the-art performance.
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Table 4. Classification accuracies (%) comparison of the different methods in the combining
site experiment.

Method KKI NI NYU OHSU Peking Average

ADHD-200 (2012) [23] 61.9 56.95 35.19 65.37 51.05 54.09
Fusion of fMRI and non-imaging data

(2018) [7] 81.8 - 56.1 - 60.7 66.2

DeepFMRI (2020) [15] - 60 65.8 - 43.1 56.3
SC-CNN-Attention (2020) [16] 77.7 75.3 60.4 64.4 65.2 68.6

Our proposed method 81.82 68 70.73 73.53 66 72.02

The specificity, sensitivity, and accuracy of the proposed method in the combining site
experiment are shown in Table 5. Increasing the training samples, the sensitivities of NI
and Peking were significantly improved compared to the individual site experiments. At
the same time, it can also be observed that the imbalance of the test sets in KKI and OHSU
was severe, and the number of ADHD samples in these test sets was small, which resulted
in the low sensitivity of KKI and OHSU in the combining site experiment. The confusion
matrices of the classification results in the combining site experiment are shown in Figure 5.
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Table 5. The specificity (%), sensitivity (%), and accuracy (%) of our proposed method in the
combining site experiment.

Evaluation Metrics KKI NI NYU OHSU Peking

Specificity 100 50 66.67 82.14 51.85
Sensitivity 33.33 90.91 72.41 33.33 82.61
Accuracy 81.82 68 70.73 73.53 66

Appl. Sci. 2022, 12, 6211 12 of 18 
 

Table 4. Classification accuracies (%) comparison of the different methods in the combining site 
experiment. 

Method KKI NI NYU OHSU Peking Average 
ADHD-200 (2012) [23] 61.9 56.95 35.19 65.37 51.05 54.09 

Fusion of fMRI and non-imaging data 
(2018) [7] 81.8 - 56.1 - 60.7 66.2 

DeepFMRI (2020) [15] - 60 65.8 - 43.1 56.3 
SC-CNN-Attention (2020) [16] 77.7 75.3 60.4 64.4 65.2 68.6 

Our proposed method 81.82 68 70.73 73.53 66 72.02 

The specificity, sensitivity, and accuracy of the proposed method in the combining site 
experiment are shown in Table 5. Increasing the training samples, the sensitivities of NI and 
Peking were significantly improved compared to the individual site experiments. At the 
same time, it can also be observed that the imbalance of the test sets in KKI and OHSU was 
severe, and the number of ADHD samples in these test sets was small, which resulted in the 
low sensitivity of KKI and OHSU in the combining site experiment. The confusion matrices 
of the classification results in the combining site experiment are shown in Figure 5. 

Table 5. The specificity (%), sensitivity (%), and accuracy (%) of our proposed method in the com-
bining site experiment. 

Evaluation Metrics KKI NI NYU OHSU Peking 
Specificity 100 50 66.67 82.14 51.85 
Sensitivity 33.33 90.91 72.41 33.33 82.61 
Accuracy 81.82 68 70.73 73.53 66 

 

   
(a) (b) (c) 

 

  
(d) (e) 

Figure 5. The confusion matrices of the classification results in the combining site experiment: (a) 
KKI data set; (b) NI data set; (c) NYU data set; (d) OHSU data set; (e) Peking data set. 
Figure 5. The confusion matrices of the classification results in the combining site experiment:
(a) KKI data set; (b) NI data set; (c) NYU data set; (d) OHSU data set; (e) Peking data set.

4.4. Comparative Experiment of Pre-trained Network Freezing and Pre-trained Network
Fine-tuning

As the pre-trained network was trained on a large data set, it was usually used to
keep the network structure unchanged but with fine-tuned weight by transferring the
knowledge to another scene effectively. Considering the small number of samples in
the individual site experiment, the mode by freezing all the pre-trained neural network
parameters was adopted to reduce the number of updatable parameters in this paper.
Freezing is an effective way to avoid the probable overfitting when only a few training
samples are available in the deep neural network. Relatively speaking, there are a few more
samples in the combining site experiment, so the method of fine-tuning the pre-trained
neural network parameters was adopted in the combining site experiment.

The statistics of the trainable and untrainable parameters in the representation learning
neural network are shown in Table 6, where the pre-trained network was ResNet34 and the
time-series length s was set to 73. Obviously, the number of parameters for each submodule
in the freezing mode and that in the fine-tuning mode were equal. It can be seen from
Table 6 that the number of untrainable parameters in the pre-trained neural network in the
fine-tuning mode was zero, which means all parameters would be updated in the network
training process. For the freezing mode, the number of trainable parameters was 1245,
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where its value was the sum of 220 parameters of the channel sequence representation
learning module and 1025 parameters of the MLP classifier. Because the channel sequence
representation learning module was realized by a 1 × 1 × s convolution operation, and
the number of convolution kernels was 3, when s = 73, the number of the convolution
layer parameter was 73 × 3 plus a bias; that is, the number of parameters of the channel
sequence representation learning module was 220. Through a full connection layer, the
512-dimensional representation vector f extracted by the pre-trained network ResNet34
was mapped to a vector y with a length of 2, so the number of parameters for the MLP
classifier was 1025.

Table 6. Parameter number statistics of the representation learning neural network in the freezing
mode and fine-tuning mode.

Statistical Item Representation Learning Neural Network Freezing Fine-Tuning

Sub module
Channel sequence representation learning module 220 220

Pre-trained neural network (ResNet34) 21,284,672 21,284,672
MLP classifier 1025 1025

Trainable/untrained
Trainable parameters 1245 21,285,917

Untrainable parameters 21,284,672 0

Total number of parameters 21,285,917 21,285,917

To verify the effectiveness of the sequence representation learning network proposed
in this paper, the ADHD classification experiments of the pre-trained network freezing
and pre-trained network fine-tuning are carried out in this section. The pre-trained net-
work ResNet34 and the MLP classifier were used. These two methods were recorded as
freezing_mlp and finetuning_mlp, respectively. At the same time, the SVM classification ex-
periment directly using the preprocessed fMRI sequence data XTS as input was performed,
and the method was recorded as raw_svm. The comparison of the ADHD classification
experimental results of the above three methods is shown in Figure 6.
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raw_svm method: (a) accuracy of the individual site experiments; (b) accuracy of the combining site
experiment. The freezing_mlp method and finetuning_mlp method significantly outperformed the
raw_svm method, which benefits from the strong description ability of the DNN.
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As can be seen from Figure 6, in the individual site experiment, little difference exists
between the freezing mode and fine-tuning mode in the classification accuracy for the
five sites. The average classification accuracies of freezing_mlp, finetuning_mlp, and
raw_svm were 73.73%, 72.58%, and 64.76%, respectively. In the combining site experiment,
the classification accuracy of the fine-tuning mode was generally higher than that of the
freezing mode for all sites, where the average classification accuracies of freeze_mlp, fine-
tune_mlp, and raw_svm were 66.2%, 72.02%, and 58.28%, respectively.

4.5. Comparative Experiment of Weight Setting in Cross-Entropy Loss Function

As explained in Section 3.4.3, to alleviate the problem of sample imbalance, this method
uses weighted cross-entropy as a loss function. In both the individual site experiments and
the combining site experiment, the classification results with different weights are shown
in Figure 7. As described in Section 4.4 above, because the freezing mode in the individual
site experiment was slightly better than the fine-tuning mode, only the classification results
of the freezing mode were listed in the individual site experiments, and the classification
accuracies with different α values are shown in Figure 7a. Similarly, the fine-tuning mode
in the combining site experiment was slightly better than the freezing mode, so only the
classification results of the fine-tuning mode were listed in the combining site experiment,
and the classification accuracies with different α values are shown in Figure 7b. Figure 7a,b
show that the overall classification accuracy improved with the increasing weight α of the
ADHD samples in the cross-entropy loss function on the condition that α > 1. Although the
data imbalance at the different imaging sites was different, the overall performance of the
classification in the individual site experiments was optimal for each test data when α was
equal to three. On the other hand, compared to α = 1, α = 4, and raw_svm, the classification
accuracy in the combining site experiment remained the highest in most sites (three of five)
with the same setting, α = 3. However, setting α = 2 seemed to be optimal for the overall
performance of classification in the combining site experiment.
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Figure 7. Classification results of weight α in cross-entropy loss function with different values:
(a) accuracy of the individual site experiments; (b) accuracy of the combining site experiment. With
the increase in weight α of the ADHD samples in the cross-entropy loss function, for instance,
when setting α > 1, the overall classification of the individual site experiment accuracy could be
improved. Owing to the heterogeneity of the fMRI data, the classification accuracy of the combining
site experiment appeared to fluctuate with different α values. For the overall performance of the
classification, setting α = 3 in the individual site experiments and α = 2 in the combining site
experiment seemed optimal.
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4.6. Computational Complexity

The computational power needs to be considered when running the deep learning
algorithm. The computational complexity of the deep learning algorithm is generally
measured by the number of floating-point operations (FLOPs).

In our proposed method, firstly, the two-dimensional time sequence matrix, XTS, was
transformed into a three-dimensional image, XIMG, by the data conversion module, and
then the sequence feature learning neural network was conducted for representation learn-
ing and classification. Because the data conversion module performed the conversion from
XTS to XIMG by a reshaping function quickly and this module did not involve parameter
learning, the cost time of the data conversion module was ignored. Therefore, the FLOPs of
the proposed method refer to the FLOPs of the sequence representation learning neural
network. In this paper, the ptflops [24], a FLOPs counter for convolutional networks in
the PyTorch framework, was used to calculate the computational complexity of the neural
networks. Table 7 shows the FLOPs of our proposed method.

Table 7. The FLOPs of our proposed method.

Submodule Output Shape Computational Complexity
of the Submodule

Total Computational
Complexity

Data conversion (54, 54, 73) 0

267.697 MFLOPs
Channel sequence representation

learning module (54, 54, 3) 0.639 MFLOPs

Pre-trained neural network (ResNet34) (512) 267.057 MFLOPs
MLP classifier (2) 0.001 MFLOPs

5. Discussion

In this paper, we proposed an fMRI sequence representation learning framework
and demonstrated its application to ADHD classification. The sequence representation
learning framework was mainly composed of an fMRI data preprocessing module, a
data conversion module, and a sequence representation learning neural network. The
data conversion module transformed the two-dimensional sequence, XTS, into the three-
dimensional image, XIMG, the rationale for which can be described from three aspects. First,
if a 3× 3 convolution kernel is used for the convolution operation on the three-dimensional
image, XIMG, the relationships among the nine adjacent regions of interest can be modeled,
and the modeling area becomes larger than that of the convolution operation on the two-
dimensional sequence, XTS. Second, the channel sequence representation learning module
can easily and effectively capture the discriminative low-level channel-wise features of the
fMRI data by the operating convolution with a 1 × 1 × s kernel on the XIMG. Three, after
the operation of the data conversion and the channel sequence representation learning, the
image size was much smaller than XTS. Therefore, the computational complexity of the
convolution operation on the pre-trained neural network was greatly reduced.

Aimed at the problem of a few ADHD samples, the transfer learning method was
used to freeze or fine-tune the pre-trained neural network parameters to reduce the risk
of overfitting. We have leveraged a transfer learning strategy where a deep network
model such as ResNet is pre-trained using a large-scale natural image dataset, such as the
ImageNet dataset [25], given the fact that different types of images share common features.
This strategy has been successful in many applications, including those for medical data,
for example, the detection of erythema migrans [26]. Further, there are two main reasons
why our proposed framework with the pre-trained ResNet model trained on the ImageNet
dataset can achieve satisfactory classification performances. One of the reasons may be
that the ImageNet dataset is massive. The model trained from large-scale data sets has
better representation ability. Generally, the layers of the neural network are deeper, and the
representation ability of the model is higher. Another reason may be that the ResNet with
deep layers can capture discriminative features for ADHD classification. To explore the
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effectiveness of the sequence representation learning network based on transfer learning,
we carried out experiments using the pre-trained network freezing method and pre-trained
network fine-tuning method and compared them with the raw_svm method. As can be
seen from Figure 6, in general, both in the individual site experiment and the combining site
experiment, the classification accuracies of the freezing_mlp and finetuning_mlp proposed
in this paper were higher than that of the raw_svm method.

To alleviate the problem of sample imbalance, the proposed method used weighted
cross-entropy as a loss function. To explore the influence of weight α in the cross-entropy
loss function on the classification performance, the individual site experiment and the com-
bining site experiment with different α values were conducted. The results are presented
in Figure 7a,b, which show that with the increase in weight α of the ADHD samples in
the cross-entropy loss function, for instance, when setting α > 1, the overall classification
accuracy can be improved. Generally speaking, the classification accuracy increases with
the increase in the number of training samples. However, due to the heterogeneity of the
fMRI data induced by the differences in the image acquisitions across the different sites,
such as MRI scanners and pulse sequences, compared with the individual site experiment,
the classification accuracy of the combining site experiment did not always improve with
the increase in the number of training samples, and the classification accuracies appeared
to fluctuate with different α values. Despite these challenges induced by the imbalance of
samples and data heterogeneity, our method can achieve a robust classification performance
in the individual site experiments and the combining site experiment.

The experimental results showed that in the case of a few training samples and sample
imbalance, the proposed method is efficient and feasible, which can effectively extract the
discriminative representations of a brain region time series. It is worth noticing that the
proposed method did not use the traditional data augmentation for deep learning and
complex representation selection technology to improve the effect.

Due to the lack of interpretability of the deep neural network, it was still unable
to reveal the corresponding pathological neurobiological mechanism from the hidden
representation in a deep neural network, which will also be an important research direction
of deep learning applied to medical image processing in the future.

6. Conclusions

To tackle the issues that DL needs large samples, and the medical samples of ADHD
are small and imbalanced, an fMRI sequence representation learning framework was pro-
posed and applied to ADHD classification. The ADHD-200 classification average accuracies
of the proposed method for individual imaging site experiments and the combining imag-
ing site experiment were 73.73% and 72.02%, representing state-of-the-art performance.
The experimental results showed that our proposed method could effectively extract the
discriminative representations for ADHD classification. The proposed method is simple
and effective, which can be easily extended to the diagnosis of other brain nerve diseases.
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