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Abstract: Realizing the rapid measurement of coal moisture content (MC) is of great significance.
However, existing measurement methods are time-consuming and damage the original properties of
the samples. To address these concerns, a coal MC intelligent measurement system is designed in this
study that integrates microwave spectrum analysis and the distance-weighted k-nearest neighbor
(DW-kNN) algorithm to realize rapid and non-destructive measurement of coal MC. Specifically, the
measurement system is built using portable microwave analysis equipment, which can efficiently
collect the microwave signals of coal. To improve the cleanliness of modeling data, an iterative
clipping method based on Mahalanobis distance (MD-ICM) is used to detect and eliminate outliers.
Based on multiple microwave frequency bands, various machine learning methods are evaluated,
and it is found that coal MC measurement using broad frequency signals of 8.05–12.01 GHz yields
the best results. Experiments are also carried out on coals from different regions to examine the
regional robustness of the proposed method. The results of on-site testing with 27 additional samples
show that the method based on the combination of microwave spectrum analysis and DW-kNN has a
potential application prospect in the rapid measurement of coal MC.

Keywords: coal moisture content; microwave spectrum; distance-weighted k-nearest neighbor;
non-destructive measurement

1. Introduction

Coal is a significant energy resource. For most countries, the coal-based energy struc-
ture will be maintained for a long time [1,2]. Hence, enhancing the coal utilization efficiency
is one of the best solutions to alleviate the contradiction between energy consumption and
environmental protection [3]. The moisture content (MC) of coal is closely related to its
calorific value. In the process of coal coking and burning, both excessive and low MC
will cause many problems, including reduced coal utilization efficiency, environmental
pollution, and energy waste [4,5]. Therefore, rapid and accurate measurement of coal MC
is of great significance.

The coal MC measurement methods can be mainly divided into direct and indirect
methods. The direct measurement method is the standard gravimetric method, which is
commonly known as a loss-in-weight method, and it can be mainly divided into nitrogen
drying and air drying [6]. The standard gravimetric method evaporates free (surface)
moisture by drying coal at a controlled temperature and weighing it regularly to determine
the dry weight. This is a laboratory measurement method, which can provide a high
measurement accuracy. However, this method is time-consuming and can affect the original
properties of a coal sample, which is not conducive to rapid and online measurement of coal
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MC. Currently, the conventional indirect measurement methods mainly include neutron [7],
conductance [8], capacitance [9], and infrared reflection [10]. The principle of coal MC
measurement by the neutron method is based on measuring the hydrogen content in a
coal sample. However, in addition to water, many other chemical impurities in coal also
contain hydrogen [11]. In addition, this method relies on expensive equipment due to
the risks of using radioactive neutron sources. The conductance and capacitance methods
are susceptible to changes in various factors, such as temperature, density, and electrolyte
content, which leads to a poor accuracy without compensation strategies [12,13]. The
infrared reflection method has a good determination effect on the moisture content of
mixed liquid samples; however, it is limited to the measurement of surface moisture of
small solid samples (penetration depth within microns) [14]. The characteristics of the
aforementioned methods are summarized in Table 1. Due to the shortcomings of these
methods, there is an urgent need for a measurement method that can rapidly and accurately
determine coal MC.

Table 1. The measurement methods of coal moisture content.

Methods Nondestructive Accuracy Time Consumption Others

Drying [6] No Very high Very long Not suitable for online measurement.

Neutron [7,11] Yes Medium to high Short Nuclear license required;
High relative investment.

Conductance [8,12] Yes Medium Short Susceptible to changes in various factors;
The equipment must be re-calibrated frequently.

Capacitance [9,13] Yes Medium Short Same as conductance.

Infrared reflection [10,14] Yes Medium to high Short Surface dependent;
Medium influence from particle size.

The microwave method is a new method for MC determination, and has gradually
developed into an independent rapid and non-destructive measurement technology with
the development of microwave electronics and microwave measurement technology. The
microwave method has the advantages of being safe, stable, non-destructive, and contact-
less, and it has been successfully applied to many MC measurement applications, including
food crops, light industrial products, and building materials. For instance, Li et al. [15] used
the traveling-standing wave attenuation method to predict the grain MC. They established
temperature and bulk density calibration models based on the maximum field attenua-
tion of the transmission traveling-standing wave. Xiang et al. [16] derived a calibration
equation for determining the MC of cotton and polyester blended fabrics and predicted
and evaluated the MCs of different fabrics under the condition of a 10-GHz microwave
propagating in free space. Piuzzi et al. [17] used a microwave method to characterize the
dielectric constants of two types of stones in building structures at different humidity levels.
The obtained laboratory results could be used to derive MC-relative dielectric permittivity
calibration curves that could be employed for noninvasive on-the-field moisture monitoring
of structures made of the two types of stones.

The free-space transmission measurement method with the antenna group as a signal
transceiver and the air as a signal transmission medium has been the most used method in
the microwave MC measurement [18]. The main principle of this method is to establish
the relationship between the dielectric properties (dielectric constant ε′ and dielectric loss
factor ε′′) of the measured sample and the microwave parameters (attenuation and phase
shift). Cutmore et al. [19] investigated an online measurement method of moisture in
black coal, brown coal, and iron ore using low-frequency microwave technology and
trialed at a coal export facility. Ponte et al. [20] determined the MC of different types of
coal by measuring the phase shift of microwaves passing through the sample. However,
the above studies only selected a single-point frequency signal or narrow bandwidth
microwave signals as the calibration signals. The shape and size of coal particles can vary
greatly. The experimental results have shown that the instability of coal samples can lead to
random noise interference, which can severely affect the expression of effective information
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when there are fewer data points [21]. These problems can bring many difficulties in
the quantitative analysis of coal MC. Therefore, the microwave measurement method
based on a single-point frequency signal or narrow bandwidth signals is not suitable
for solving the problem considered in this study. With the development of microwave
technology and the popularization of vector network analysis equipment, it has become
more convenient to obtain the microwave spectrum of the measured sample under broader
bandwidth microwave signals rapidly [22,23]. The existing research has shown that the
application of a multi-frequency microwave measurement is conducive to improving the
range and accuracy of the MC measurement of the sample under test (SUT) [24]. Moreover,
the development and popularization of machine learning and neural network methods
have brought greater advantages for processing multi-dimensional complex nonlinear
data [25,26].

To address the above problems, this study innovatively combines microwave scattering
parameters with the distance-weighted k-nearest neighbor (DW-kNN) algorithm to design
a measurement system that realizes rapid and non-destructive measurement of coal MC.
To the best of our knowledge, no prior work has employed broad bandwidth microwave
signals combined with machine learning algorithms to measure the MC of coal. The main
contributions of this paper are as follows:

(1) Portable microwave analysis equipment is used to design a measurement system
that can efficiently generate and measure broad bandwidth microwave scattering
parameters containing 133 frequency points from 8.05 GHz to 12.01 GHz and visualize
the microwave spectra.

(2) To improve the cleanliness of modeling spectrum data, an iterative clipping method
based on Mahalanobis distance (MD-ICM) is used to detect and eliminate abnormal
samples, i.e., outliers. To overcome the problem of information leakage due to the
limited samples, this study uses the nested cross-validation (NCV) method to evaluate
the performance of the proposed method.

(3) Based on multiple microwave frequency bands, typical machine learning regression
models are also evaluated. The comparative experimental results show that using
broad bandwidth microwave signals for coal MC measurement can achieve better
results.

(4) In order to examine the regional robustness of the proposed method, experiments are
also carried out on coal from different regions. The designed measurement system can
realize rapid and non-destructive measurement of coal MC regardless of coal origin.

The rest of the paper is organized as follows. Section 2 introduces the materials and
methods, including the measurement principle, measurement system and procedure, and
data analysis. Section 3 presents and discusses the experimental results. Finally, Section 4
concludes this paper.

2. Materials and Methods
2.1. Measurement Principle

The polarization phenomenon of the SUT dielectric can change the dielectric properties
of the SUT and the energy of the applied electromagnetic field [27]. The SUT composition
can be obtained by measuring changes in the mentioned values. The interaction diagram
of the SUT and electromagnetic waves is presented in Figure 1.
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Figure 1. The interaction diagram of the SUT and electromagnetic waves. (a) The schematic diagram
of the interaction; (b) The propagation channel is equivalent to a two-port network.

As shown in Figure 1a, it is assumed that the electromagnetic waves propagate through
the air medium and are perpendicularly incident to the interface (s = 0) of the SUT with
a thickness of L. Part of the incident waves are reflected into the air medium, and the
remaining part is transmitted through the interface (s = 0) to the inside of the SUT. The
wave transmitted into the SUT can also be reflected or transmitted to the interface (s = L).
This propagation channel is equivalent to a two-port network, as shown in Figure 1b. Thus,
part of the electromagnetic waves incident to the SUT surface will be reflected on port 1
and indicated by the reflection coefficient (S11); yet, the other part will pass through the
SUT and be transmitted to port 2, which is indicated by the transmission coefficient (S21).
The reflection and transmission coefficients are respectively expressed as:

S11 =
Γ(1− T2)

1− Γ2T2 , (1)

S21 =
T(1− Γ2)

1− Γ2T2 , (2)

where Γ is the reflection coefficient at the SUT interface (s = 0), and T is the transmission
coefficient inside the SUT, which is also called the propagation factor.

The Nicolson-Ross-Weir method [28,29] gives the key equations for determining the
relative permittivity εr and magnetic permeability µr, as follows:

µr =
1 + Γ

Λ(1− Γ)

√
1

λ2
0
− 1

λ2
c

, (3)

εr =
λ2

0
µr

(
1

λ2
c
+

1
Λ

)
, (4)

1
Λ

= −
[

1
2πL

ln
(

1
T

)]2
, (5)

where λ0 and λc are the wavelengths corresponding to the free-space propagation frequency
and the cutoff frequency, respectively.

By substituting Equations (1) and (2) into Equations (3)–(5), the relative permittivity of
the SUT (non-magnetic medium) can be obtained by:

εr =

(
1− Γ
1 + Γ

)2
=
[(

j
c

ωL

)
ln(T)

]2
, (6)
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where c is the free space velocity and ω is the angular frequency.
The S11 and S21 are generally expressed in a complex form consisting of real and

imaginary parts. Therefore, the dielectric constant of the SUT can also be expressed as a
complex number, which is called complex relative permittivity (εr = ε′r − jε′′r ).

2.2. Measurement System and Procedure

The measurement system based on the microwave free-space transmission, which
was used in this study, is shown in Figure 2. A portable Vector Network Analyzer (VNA,
MS46122B-020, Anritsu, Japan) was used to generate and measure broad bandwidth mi-
crowave signals. A mechanical calibration kit (TOSLKF50A-20, Anritsu) was employed to
calibrate the VNA using the short-open-load-through (SOLT) method to correct the system
error. A pair of identical standard-gain horn antennas (EIA standard-WR90 waveguide
type) were fixed on a linear slide rail and connected to the transmitting and receiving ports
of VNA through a coaxial cable. A rectangular container (material: Polymeric Methyl
Methacrylate, PMMA) with an open-top was used to hold coal. The VNA was connected to
the computer through a USB-interface data transmission line, and the measurement control
and further signal processing were performed by the computer.

Figure 2. The measurement system based on microwave free-space transmission, including 1. Vector
Network Analyzer for generating and measuring broad bandwidth microwave signals, 2. Computer
for controlling measurement progress and processing signals, 3. Rectangular Container for holding
coal samples, 4. Horn Antenna for receiving and transmitting signals, and 5. Linear Slide for fixing
the antennas.

The coal samples used throughout this experiment were manually collected com-
mercial coals from six different regions in China, including Henan province (Region-A),
Shandong province (Region-B), Shanxi province (Region-C), Inner Mongolia (Region-D),
Guizhou province (Region-E) and Shaanxi province (Region-F). According to the standard
for measurement of coal moisture content [6], the commercial coal samples of each group
were sieved through a 13-mm sieve to obtain the experimental coal samples. To obtain coal
samples with different MCs, three steps were performed on the experimental coal samples:
(1) Sample drying. The experimental coal samples were dried in a forced-air oven at 108 °C
for two hours to obtain completely dry coal samples. (2) Moisture addition. An appropriate
amount of water was added to the dry coal samples in order to obtain coal samples with
specific moisture content. Constant stirring was required at this point to mix the coals and
water evenly. (3) Static diffusion. Put the coal samples obtained in the previous step into
a sealed bucket for 12 h to ensure that the water was fully diffused in the coal samples.
The processes of static diffusion and subsequent microwave signal acquisition were both
carried out at the normal temperature of 25 °C.

The coal samples after diffusing were taken out and packed into the rectangular
container for microwave signal acquisition. During the signal acquisition, the VNA gen-
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erated microwave signals containing 133 frequency points from 8.05 GHz to 12.01 GHz
with a 30-MHz interval. When microwaves penetrated the coal sample successively, the
microwave scattering parameters of coal were sequentially recorded. After the signal acqui-
sition, the MC of the coal samples was measured according to the method of standard [6]
and used as the standard reference value. The above processes of sample preparation were
repeated to obtain the sample for the next moisture level. In this experiment, a total of 294
original microwave spectrum curves were obtained, as shown in Figure 3.

Figure 3. The original microwave spectrum curves: each spectral curve corresponds to a coal sample
with one specific moisture content.

2.3. Data Analysis

In this paper, the process of data analysis combined with machine learning methods
mainly includes outlier detection and elimination, data split, data modeling and model
testing. The purpose of outlier detection and elimination is to improve the cleanliness of
the data for accurate subsequent modeling. Data split is to randomly divide the data set
into training sets and test sets according to a certain proportion. The training set is used for
subsequent data modeling, while the test set is used to test the trained model to verify the
effect of the model. Next, the methods used in this paper are introduced in detail.

In practical applications, experimental spectral data may contain random noise fluctu-
ations in different frequency bands. These fluctuations can be caused by environmental
changes or incorrect operation during the spectral data collection process. When the noise
fluctuation exceeded a certain threshold range, the signal was considered an outlier signal.
The existence of outliers could interfere with the spectral feature extraction by machine
learning models, and the prediction results could be adversely affected. Therefore, it was
necessary to detect and eliminate abnormal samples. To address this problem, an iterative
clipping method based on Mahalanobis distance (MD-ICM) was employed.

The Mahalanobis distance (MD) indicates the similarity between a point and a cluster
of points [30]. It accounts for the distribution and correlations of the cluster data while
keeping the scale-invariant features [31]. Let xi be the ith sample in the spectral data
Xm×n = [x1,x2,. . . ,xm]T , where m denotes the number of samples, and n denotes the number
of frequency points. Then, the MD value between xi and γ is calculated by:

D(xi, γ) =
√
(xi − γ)TΦ−1(xi − γ), (7)
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where γ and Φ are the mean and the covariance matrix of the spectral data, respectively,
and they are expressed as follows:

γv =
1
m

m

∑
i=1

xv
i , v = 1 . . . n, (8)

Φ =
1

m− 1
(Xm×n − γ)T(Xm×n − γ), (9)

where γv and xv
i are the vth element of γ and the sample xi, respectively.

The selection of distance threshold determines whether outliers can be effectively
detected and eliminated. According to the Pauta criterion, outliers can be detected under
the 3σ threshold (i.e., three times the MD standard deviation between a sample and the
mean) with a confidence probability of 99.73% if the distance between the target sample
and the mean spectrum follows the Gaussian distribution [32].

The specific steps of the MD-ICM diagnostic are as follows:

1. Calculate the MD, mean, and covariance matrix of the spectral data by Equations (7)–(9),
respectively;

2. Calculate the mean and standard deviation of the MDs by Equations (10) and (11),
respectively:

χ =
m

∑
i=1

D(xi, γ)/m, (10)

σ =

√
1
m

m

∑
i=1

(D(xi, γ)− χ)2; (11)

3. Compare D(xi, γ) with the threshold; if |D(xi, γ)− χ| > 3σ, sample xi is considered
an outlier;

4. After outlier detection, repeat the above steps until no outlier is found.

There is a strong nonlinear and complex relationship between the microwave signals
and coal MC. Therefore, it is difficult for traditional linear fitting methods to establish an
accurate relationship model between them. In response to this problem, a coal MC analysis
method based on the DW-kNN algorithm is proposed.

The k-nearest neighbor (kNN) is a machine learning method for predicting continuous
data based on sample spacing in the feature space, which has been widely used in the
fields of data classification and regression analysis. This method is independent of the
distribution and linearity of data, and the prediction results are limited only by the range
of training samples [33,34]. The DW-kNN algorithm is weighted by the distance of samples
based on the traditional kNN algorithm. In other words, the closer the neighbors are, the
greater their distance weight is. Compared with the methods that do not consider the
distance weight, the DW-kNN algorithm can overcome several misevaluated limitations
and further improve the accuracy of the regression model [35].

The calculation steps of the DW-kNN method are as follows.
First, calculate the Euclidean distance d between the data to be predicted ϕ and the

training data by:

d(ϕ, δp) =

√√√√ n

∑
q=1

(ϕq − δpq)2, (12)

where ϕq and δpq denote the qth dimension data corresponding to the data to be predicted
and the pth training spectrum data sample, respectively.

Then, according to the Euclidean distance, calculate the distance weight ζp by:

ζp =
1

[d(ϕ, δp)]2
. (13)
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Finally, obtain the prediction result ψ(ϕ) as the weighted average of k nearest samples by:

ψ(ϕ) =

k

∑
p=1

ζp · ψ(δp)

k

∑
p=1

ζp

, (14)

where ψ(δp) represents the true moisture value of a training sample δp.
In this study, the coefficient of determination (R2), the mean absolute error (MAE)

and the root mean square error (RMSE) were used to evaluate the performance of the
proposed method.

2.4. Nested Cross-Validation Method

Feature selection can affect the accuracy of machine learning models. For the DW-kNN
algorithm, the nearest neighbor number k is a fundamental factor affecting the accuracy.
Under a small k value, the DW-kNN algorithm was equivalent to the prediction with a
small number of training samples, and only a small part of useful data could be captured,
which could lead to the high overall complexity of the model and overfitting. On the
contrary, under a larger k value, the training samples far from the sample to be tested could
also be processed by the model, leading to a wrong prediction [36,37]. Therefore, choosing
an appropriate k value is crucial for achieving the high prediction performance of a model.

The NCV is a well-known method for estimating the generalization ability of a model,
especially when the amount of data is limited [38]. In the field of classification and re-
gression analysis, the NCV has been used to select data features and adjust model hyper-
parameters to avoid model overfitting [39,40]. The NCV typically includes two types of
loops: an inner loop, which is used to optimize hyperparameters of a model, and an outer
loop, which is used to evaluate model performances using unprecedented test data. The
schematic diagram of the NCV is shown in Figure 4.

Figure 4. The schematic diagram of the Nested Cross-validation method: the inner loop is used to
optimize hyperparameters of the model and the outer loop is used to evaluate model performances
using unprecedented test data, and D1–D6 represent the divided 6 groups of data respectively.

The dataset was divided into six outer folds, each of which was retained for outer
testing, while the remaining five folds were used in the inner loop as an outer training set.
In the inner loop, the five folds were used as a validation set in turn, and the remaining
data were used for inner training. The hyperparameters were constant in each inner cross-
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validation and were evaluated by the average R2 obtained from the validation set. The
hyperparameters corresponding to the best prediction effect of the model in the inner
loop were selected to test the test set. After repeating the above loops, six groups of
outer loop results were obtained, and the performance of the model was evaluated by the
average indices.

3. Results and Discussion
3.1. Outlier Detection

As mentioned previously, the existence of outliers can interfere with the spectral
feature extraction by machine learning model and adversely affect prediction results. There-
fore, the MD-ICM was used to detect and eliminate outliers. Since the number of samples
in each group was less than the feature dimension, the principal component analysis (PCA)
was performed to reduce the dimension before outlier detection. It should be mentioned
that PCA was used only for outlier detection, and in the subsequent experiments, the model
input was still the original feature dimension. The principal components representing more
than 99.99% of the variance were retained to overcome the disadvantage of fewer data.

The process of outlier detection is shown in Figure 5. In the first iteration, one sample
with a distance longer than 3σ was detected and eliminated, as shown in Figure 5a. Then,
the 3σ value was recalculated, and in the second iteration, another outlier sample was
detected and eliminated, as shown in Figure 5b. In the third iteration, no outliers were
detected, and the iteration ended, as shown in Figure 5c. Hence, a total of two outliers were
detected and eliminated from this dataset. The same process of outlier sample elimination
was used for the remaining data, and the obtained results are listed in Table 2. Finally,
a total of 13 outliers were eliminated from 294 data samples of the six datasets. After
the outlier elimination, the six datasets were mixed into one dataset containing 281 data
samples to facilitate the application of the NCV method in the subsequent analysis.

Figure 5. The process of outlier detection, including (a) The first iteration; (b) The second iteration;
(c) The third iteration. D(xi, γ) represents the Mahalanobis distance between samples xi and γ; χ

and σ represent the mean and standard deviation of the Mahalanobis distances, respectively.

Table 2. The results of outlier detection.

Sample Label
Index of Outliers

1st Iteration 2nd Iteration 3rd Iteration 4th Iteration

Region-A 49 42 \ \
Region-B 14/28 \ \ \
Region-C 7 \ \ \
Region-D 21 \ \ \
Region-E 49 35 42 \
Region-F 35/42 7 49 \

Note: “\” means stop iteration.
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Table 3 shows the comparison of experimental results before and after data preprocess-
ing. The measurement effect corresponding to the combination of DW-kNN for regression
and MD-ICM for outlier detection is better than that without data preprocessing. This
shows that the individual inferior spectral data caused by inevitable factors could interfere
with the spectral feature extraction by machine learning models. These problems will seri-
ously affect the prediction results. Through the detection and elimination of outliers based
on the MD-ICM, inferior spectral data can be avoided, and the accuracy of the prediction
results of coal MC can be effectively improved.

Table 3. The comparison of experimental results before and after data preprocessing.

Preprocessing R2 MAE RMSE

Untreated 0.8962 0.2564 0.3182
MD-ICM 0.9106 0.2374 0.2940

3.2. Comparison with Different Methods

To verify the effectiveness of the proposed method in predicting the coal MC further,
comparative experiments were carried out using typical machine learning regression
models, including random forest (RF), support vector regression (SVR), partial least squares
(PLS), AdaBoost, XGBoost, decision tree (DT), and kNN. In all experiments, the NCV
method was used to adjust the parameters of the models. To avoid accidental errors, each
experiment was repeated six times, and the average results were used to evaluate the
performances of the models, as shown in Table 4.

Table 4. The average results of different models.

Model R2 MAE RMSE

RF 0.8874 0.2674 0.3306
SVR 0.8745 0.2851 0.3507
PLS 0.8735 0.2877 0.3504

AdaBoost 0.8965 0.2601 0.3172
XGBoost 0.8850 0.2697 0.3333

DT 0.8665 0.2895 0.3586
kNN 0.8956 0.2592 0.3180

DW-kNN 0.9106 0.2374 0.2940

As shown in Table 4, the overall average prediction result of the DW-kNN model
was the best among all the models; it achieved R2 of 0.9106, MAE of 0.2374, and RMSE
of 0.2940; still, the R2 values of the other models were all less than 0.9. The repeated
experimental results of different models are presented in Figure 6, where it can be seen
that the results of all comparison models were acceptable except for the DT model, which
had a slightly worse performance than the other models—both single-sample results and
average results were poor. When the sample MC is high, the electromagnetic waves react
violently with moisture and thus show natural fluctuations in high frequency bands. These
fluctuations will lead to the generation of unstable decision trees in the process of model
training, which will seriously affect the robustness of the model. The results obtained by
AdaBoost and kNN models are second only to those obtained by DW-kNN models. This
shows that the microwave signals corresponding to similar coal MCs are highly correlated.
Proper weight distribution can overcome the influence of fluctuation and improve the
measurement effect. Moreover, the box size and the extreme value difference obtained by
the DW-kNN model were small, which indicated that this model had good stability. This
result further demonstrates that the DW-kNN model can achieve good results in coal MC
prediction.



Appl. Sci. 2022, 12, 6199 11 of 15

Figure 6. The repeated experimental results of different models, including random forest (RF),
support vector regression (SVR), partial least squares (PLS), AdaBoost, XGBoost, decision tree (DT),
k-nearest neighbor (kNN) and distance-weighted kNN (DW-kNN): (a) The results responding to
the coefficient of determination (R2); (b) The results responding to the mean absolute error (MAE);
(c) The results responding to the root mean square error (RMSE).

3.3. MC Measurement of Coals from Different Regions

In the above-presented experiments, the sample data were mixed and then randomly
divided into the test and training sets. Thus, the two datasets contained coal samples
from the same region, so it was impossible to determine whether the coal origin had an
impact on the model detection effect. Therefore, additional experiments based on the coal
origin were carried out to test the model’s predictive effect on the MC of coal samples from
unknown areas further.

These experiments also used the NCV method, but the difference was that the samples
in the test dataset were from different regions compared to the training dataset. The
prediction effects of the models were also evaluated by the average results of the NCV
method. The test results of different models are given in Table 5, where it could be seen that
the results of the same model varied greatly when the MC of coals from different regions
was predicted. The maximum difference obtained by RF model was less than that of DT
model, which indicated that the performance effect of integrated learning was better than
that of single learning. The difference in R2 value was the largest for the kNN model, and
it was 0.1094. However, the smallest difference in R2 value was achieved by the DW-kNN
model, and it was 0.0533, which is significantly smaller than that of the kNN model. This
shows that adding weight factors plays an important role in processing nonlinear locally
correlated data.
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Table 5. The test results of different models for coal samples from different regions.

Model
R2 of the Test Set Maximum

Difference
Average

R2
Average

MAE
Average
RMSERegion-A Region-B Region-C Region-D Region-E Region-F

RF 0.9161 0.8845 0.8619 0.8519 0.8998 0.8955 0.0642 0.8850 0.2798 0.3364
SVR 0.9041 0.8814 0.8106 0.8369 0.8997 0.9125 0.1019 0.8742 0.2835 0.3495
PLS 0.8924 0.8753 0.8240 0.8437 0.9009 0.9028 0.0788 0.8732 0.2879 0.3525

AdaBoost 0.9056 0.9101 0.8550 0.8526 0.8938 0.9393 0.0867 0.8927 0.2682 0.3228
XGBoost 0.9263 0.8880 0.8574 0.8640 0.8772 0.8830 0.0689 0.8827 0.2737 0.3396

DT 0.9075 0.8639 0.8435 0.8260 0.8296 0.8473 0.0815 0.8530 0.3136 0.3803
kNN 0.9374 0.9044 0.8607 0.8280 0.8947 0.9287 0.1094 0.8923 0.2595 0.3216

DW-kNN 0.9316 0.9102 0.8924 0.8783 0.9090 0.9311 0.0533 0.9088 0.2417 0.2993

In addition, regarding the average result, the prediction effect of the DW-kNN model
was the best among all the models; its R2, MAE, and RMSE were 0.9088, 0.2417, and 0.2993,
respectively. Moreover, for coals from different regions, the R2 values obtained using the
DW-kNN model were all above 0.875. Consequently, the coal origin can affect the MC
detection performance, but the DW-kNN model can accurately extract features related to
the coal MC and can reduce this influence.

3.4. Performance of Different Frequency Bands

To explore the influence of widths and types of frequency band on the measurement
of coal MC, comparative experiments based on multiple frequency bands combined with
the aforementioned machine learning algorithms were also carried out. As mentioned
in Section 2.2, each original microwave spectrum curve contained 133 frequency points
in the range of 8.05 GHz–12.01 GHz. Therefore, 133 frequency points were divided into
seven narrow bandwidth signal bands that were independent of each other, and each band
contained 19 frequency points for testing the correlation with the coal MC. Each band was
analyzed using the six-fold NCV method, and the results are shown in Table 6.

Table 6. The experimental results based on different frequency bands.

Frequency Bands
R2 MAE RMSE

RF SVR PLS AdaBoost XGBoost DT kNN DW-kNN (DW-kNN) (DW-kNN)

8.05–8.59 GHz 0.8751 0.8644 0.8647 0.8766 0.8707 0.8376 0.8701 0.8869 0.2610 0.3265
8.62–9.16 GHz 0.8679 0.8678 0.8519 0.8607 0.8671 0.8323 0.8749 0.8810 0.2664 0.3314
9.19–9.73 GHz 0.8618 0.8626 0.8475 0.8814 0.8587 0.8346 0.8777 0.8843 0.2696 0.3363
9.76–10.3 GHz 0.8763 0.8652 0.8446 0.8765 0.8785 0.8482 0.8797 0.8942 0.2603 0.3170

10.33–10.87 GHz 0.8779 0.8625 0.8626 0.8825 0.8740 0.8466 0.8772 0.8856 0.2634 0.3318
10.9–11.44 GHz 0.8746 0.8623 0.8524 0.8803 0.8733 0.8223 0.8810 0.8985 0.2493 0.3092
11.47–12.01 GHz 0.8669 0.8626 0.8618 0.8851 0.8779 0.8376 0.8779 0.8856 0.2679 0.3284
8.05–12.01 GHz 0.8874 0.8745 0.8735 0.8965 0.8850 0.8664 0.8956 0.9106 0.2374 0.2940

As shown in Table 6, although the machine learning algorithms used were different,
the broad bandwidth microwave signals can significantly improve the accuracy of coal
MC measurement compared to the narrow bandwidth signals. From the analysis results
based on the DW-kNN algorithm, it can be seen that the R2 values obtained using the
narrow bandwidth signals were all lower than 0.9; the best R2 result was 0.8985, and it
was achieved for the signal band of 10.9 GHz–11.44 GHz, but it was still less than the best
result of 0.9106 obtained using the broad bandwidth microwave signals. This indicates
that appropriately increasing the number of frequency points can not only provide more
features related to the coal MC but can also improve the accuracy of regression analysis.
Similarly, the MAE and RMSE values obtained using the broad bandwidth microwave
signals were better than those of the narrow bandwidth signals, which showed that using
broader bandwidth microwave signals to predict the coal MC had smaller errors, and
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the prediction results were closer to the actual values. Thus, using broader bandwidth
microwave signals to predict coal MC can ensure greater advantages.

3.5. Further Evaluation on Additional Data

To better verify the effectiveness of the proposed measurement method of coal MC,
on-site testing was carried out using the designed measurement system. The coal samples
(validation samples) collected from the site were sieved through a 13-mm sieve and then
packed into the rectangular container for microwave signal collections. The true MCs
of the validation samples were obtained by standard laboratory methods [6]. A total of
27 verification experiments were carried out, and the corresponding 27 groups of coal
validation samples were independent of the previous 281 normal data. The scatter results
of the true and the predicted MCs are shown in Figure 7a. The R2, MAE, and RMSE values
of the verification experiments are 0.8583, 0.2903, and 0.3541, respectively. Verification
experiments based on different methods and based on different frequency bands were
also carried out on the verification samples, and the results are shown in Figure 7b,c,
respectively. It should be noted that the same calculation process was repeated 6 times to
reduce accidental errors. Although the results of the validation experiment were reduced
compared with those of the laboratory, the DW-kNN method still achieved the best results,
indicating that the proposed method can effectively measure the MC of coal.

Figure 7. The results of the verification experiments: (a) The scatter results of the true and the
predicted moisture contents using DW-kNN model; (b) Verification experiments based on different
methods; (c) Verification experiments based on different frequency bands using DW-kNN model; R2

represents the coefficient of determination.

3.6. Discussion

The research results of this paper can provide technical guidance for coal washing
and processing industries to reduce labor costs and realize efficient automation of coal
production and transportation. First, it could be seen that the designed coal moisture
content measurement system is able to be applied on the experimental site basically through
the verification experiment in Section 3.5. Moreover, the measurement process is carried out
in an open-air environment, and the horn antenna is resistant to environmental pollution.
These advantages provide a reference for online measurement and control in the production
processes, such as the measurement of coal moisture content during belt transport.

4. Conclusions

In this paper, a rapid and non-destructive measurement system for coal MC is de-
signed, and the verification experiments are carried out in the routine range of MC by
combining with machine learning techniques. The designed measurement system can
efficiently generate and measure broader continuous-frequency microwave signals and
visualize the spectra. To improve the cleanliness of modeling spectrum data, an iterative
clipping method based on Mahalanobis distance (MD-ICM) is used to detect and elimi-
nate outliers. Comparative evaluation of typical machine learning regression models is
performed. The results show that proper weight distribution is able to effectively overcome
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the influence of microwave oscillation in high frequency band. Moreover, the DW-kNN
algorithm can process imbalanced data well and show higher generalization performance
in MC determination of coal samples from unknown regions. Based on multiple microwave
frequency bands, different regression models are evaluated. The comparison results show
that the proposed method based on the DW-kNN algorithm using broader bandwidth
microwave signals for coal MC measurement performs best, achieving an R2 of 0.9106,
MAE of 0.2374 and RMSE of 0.2940. Finally, on-site testing was carried out using the
designed measurement system, which proves its availability and reliability.

Although the proposed method has not been widely applied in real applications, the
measurement accuracy demonstrates that it is of great potential in on-line measurement
and control of coal MC. It can provide technical guidance for the development of rapid
and non-destructive determination devices of coal MC in the coal washing and processing
industries.
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