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Abstract: The modeling and simulation of gearboxes is important for analyzing the dynamic charac-
teristics and designing control strategies of transmission systems. Variable-speed gearboxes include
compound planetary gear trains and clutches, which complicates dynamic modeling. Here, a pro-
cedural bond graph-based modeling method that considers many uncertainties is proposed. The
proposed method yields a constant system–structure model. First, bond graph models of the two
most common planetary gears were summarized, and were used as sub-models of a compound
planetary gear train. Then, the Karnopp friction sub-model of the friction clutch and a relative angular
displacement sub-model of the one-way clutch were constructed. Based on the dynamic coupling
between the sub-models, the modeling steps of the gearbox, including the compound planetary gear
train friction clutch one-way clutch coupling system, are described in detail. Next, the main sources
of uncertainties of gearbox were analyzed and the simulation methods were given. Finally, the novel
uncertain bond graph model was used to simulate the double planetary gearbox; the transmission
ratio before and after the shift was 2.42 and 1.72, compared with the design values of 2.41 and 1.71,
respectively; the deviation is within 5.8%; The average rotating speeds of the output shaft fluctuated
by 6 and 2.5% respectively, which was within a reasonable range, so the effectiveness of the method
is verified.

Keywords: planetary gear trains; clutch; gearbox; uncertain bond graph; dynamic system modeling

1. Introduction

Gearbox modeling is an important step in the design process of transmission systems.
By solving mathematical models, the system’s dynamic characteristics can be analyzed
prior to prototyping, and the gearbox dynamic response characteristics can be effectively
predicted for given input conditions. Then, effective suggestions regarding the design and
control of transmission systems can be provided [1].

The dynamic response of a typical transmission system is affected by many uncer-
tain factors. No mathematical model can account for all factors that affect transmission
systems [2]; adding more components to the model increases the modeling cost and the
model’s complexity, resulting in time-consuming calculations or difficult solutions. There-
fore, from the perspective of the calculation cost reduction and improvement of the system’s
design efficiency, efficient and accurate modeling methods are necessary for designing and
evaluating gearboxes.

Much research has been performed in the field of gearbox modeling and the dy-
namic response of gear trains. The Lagrange equation approach and the bond graph (BG)
method [3] are common modeling techniques in the field of gear system modeling and
simulation. When dealing with complex kinematic layouts, the BG model can intuitively
represent the kinematic relationship between a system’s parts, and an abstract dynamic
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equation is obtained using Lagrange’s law [4]. Based on the causal relationship between
the components of a BG model, the algebraic relationship between the flow variables and
potential variables can be inferred for obtaining dynamic model equations [5]. So far, bond
graph theory is widely used in the analysis of a variety of engineering systems. Benjamin
et al., used bond method to analyze the influence of different excitations on the vibration
level of a helicopter’s semi-active suspension [6]. Barjuei [7] constructed the bond graph
model of an exoskeleton actuator and extended it to the dynamic modeling of all types of
wearable robot actuators. In the research of modeling and Simulation of gear trains, for
example, Deur [8,9] modeled a four-speed automatic transmission using the BG theory
methods, and used it for analyzing the system response dynamics in the case of wheels,
for fully applied brakes and for the brake-off scenario [10]. The shift of a 10-gear gearbox
was analyzed in [11], and an extra clutch was utilized for improving the shifting perfor-
mance using the BG theory methods. Ivanovic [12] proposed a method for transforming
device-mapping BG models into conceptual torque-path BGs. The BG method was used
in [13] for optimizing the double-transition shift control, and different control strategies
were proposed. A systematic design method was explored in [14] for synthesizing the
configuration schemes of multi-row and multi-speed AT based on the lever analogy. Li
et al. [15] considered three subsystems: a planetary gear train (PGT), clutch, and inertia
rotor, proposed a standardized modeling process, and verified the effectiveness of this
method on example gearboxes. A wind turbine gearbox was modeled in [16] using the
BG method, to develop a framework for transmission chain modeling, and the parameters
were synthesized in Monte Carlo simulations. The transmission path of vibrations in
aero-engines was analyzed in [17] using the BG theory methods, to efficiently diagnose
and minimize noise and vibration in the design stage. Tan [18] discussed the effects of
stiffness, damping, and inertia on the dynamic response of gear trains, based on the bond
graph method.

The existing research mainly focuses on linear models and on the dynamic response
analysis of gear trains. The influencing factors that are considered in these models are
relatively few, and the proposed modeling methods have strict requirements for configuring
gear trains; in addition, the guidance modeling process is not universal. Moreover, with
the wide application of new-generation gearboxes, the engagement and disengagement of
configured clutches yields variable model structures, which imposes limitations on dealing
with this problem. Given the limited documentation and research in this field, this study
proposes a general and efficient dynamic modeling method for a gearbox that includes a
compound planetary–friction clutch—a one-way clutch.

The main objective of this paper was to present a modeling method for the uncBG
model of a variable-speed gearbox with a friction clutch and a one-way clutch. To verify
the effectiveness and rationality of this method, a double-row double planetary gearbox
was used as an example for modeling and simulations.

The remainder of this paper is organized as follows. Section 2 introduces a double-row
double planetary gearbox as the research object. In Section 3, the construction process of
the BG models of two commonly used PGTs is presented. The friction clutch model and the
one-way clutch model are introduced in Sections 4 and 5, respectively. Section 6 presents
the coupling methods for the three basic models. Then, the main uncertainties of the system
are analyzed, and the construction method of the uncertain BG (uncBG) model is presented
in Section 7. Subsequently, in Section 8, the uncBG modeling method is used for simulating
a two-gear gearbox, and the solution results are evaluated. Finally, the study conclusions
are summarized.

2. Research Object

Taking a double-row double planetary gearbox as the research object, it can realize two
gear speed output under the condition of constant input speed (high-speed transmission
ratio: 1.71, low-speed transmission ratio: 2.41), which is commonly used in high-speed
helicopter transmission systems. A one-way clutch was installed between the ring and
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housing. The input and output ends of the friction clutch were integrated with the ring gear
and housing, respectively, and a uniform load mechanism was arranged between the input
shaft and the sun gear. The transmission system controlled the separation and engagement
of the friction clutch by adjusting the hydraulic pressure, to realize the gear shift. Its
three-dimensional diagram and structural schematic diagram are shown in Figure 1. R1, P1
and S respectively represent the ring gear, planetary gear and sun gear in the first PGT, R2
and P2 respectively represent the ring gear and planetary gear in the second PGT.
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3. BG Models of PGTs

PGTs are characterized by high loads and large transmission ratios. A PGT can split
power when transmitting it, and ensures that the input and output shafts are on the
same horizontal line. Therefore, PGTs are used in most mechanical power transmission
systems, such as automobiles, aerospace vehicles, and machine tools. The difficulty of PGT
modeling is that the planetary gear rotates around the central gear with the star carrier. The
BG method provides a reasonable method for PGT modeling [10]. Two commonly used
PGT-based BG models are described below.

3.1. Single-Pinion PGT

The most common and widely used PGT has a single planetary gear transmission
mechanism between the ring gear and the sun gear. The kinematic relationship between the
single-pinion PGT (S-PGT) components is shown in Figure 2. The following relationship
can be obtained by assuming equal linear velocities at the gear meshing point [13]:

ωprp = (ωc −ωs)rs (1)

ωprp = (ωr −ωc)rr (2)

the characteristic equation is

ωs − (β + 1)ωc + βωr = 0 (3)

Here, ωp, ωs, and ωr are the rotation speeds of the planetary gear, the sun gear, and
the ring gear, respectively. The parameters rp, rs, and rr are the pitch radii of the planetary
gear, the sun gear, and the ring gear, respectively. The parameter β is the PGT parameter,
defined as β = zr/zs (zr: number of teeth of the ring gear; zs: number of teeth of the sun
gear). The kinematic relationship between the parts is fundamental for establishing the
BG model. A good dynamic model of a PGT also should consider the effects of the gear
moment of inertia, rotational damping, and meshing stiffness.

As shown in Figure 3, there are four one-nodes in the bonding diagram model of
a single-pinion PGT, representing the sun gear, the planet carrier, the ring gear, and the
planetary gear. An independent PGT cannot accomplish power transmission, and should be
combined with input equipment (e.g., motor and engine), a clutch, and other components.
Therefore, the sun gear, the ring gear, and the planetary carrier can be used as the input
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components. The first three can be connected to an external system as an input or output
power part; the key causality was not considered in the present study. The R and I elements
on each one-node represent the rotational damping and the moment of inertia of the
corresponding part, respectively; the 0-node represents the meshing point; finally, C on
node 0 represents flexibility.
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Figure 3. BG model of the S-PGT.

When the contact between gears is regarded as an elastic contact, the BG model features
three energy-storage parameters. The parameter θsp is the relative angular displacement
between the planet and the sun, while θrp is the relative angular displacement between the
planet and ring. The parameters τs, τr, and τc are the torques of the sun gear, the ring gear,
and the planetary carrier, respectively.

For node 1, the rotation speeds for all the keys are the same, and the algebraic sum of
the torques is 0, as shown in Figure 3.

.
θsp = ωc −ωs + ωpTF2 (4)

.
θrp = ωc −ωr −ωpTF1

−1 (5)

For node 0, the torques for all the keys are the same, and the algebraic sum of the
rotation speeds is 0. The torque balance equation of the S-PGT is as follows:

τs = θspC−1
sp − Is

.
ωs − Rsωs

τr = θrpC−1
rp − Ir

.
ωr − Rrωr

τc − Ic
.

ωc − Rcωc = τsp + τrp

τrpTF1 = Ip
.

ωp + Rpωp + τspTF−1
2
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According to the motion characteristics of the S-PGT, the torques on the sun gear
and ring gear are applied in the same direction. The carrier torque is opposite the sun
gear torque.

3.2. Double-Pinion PGT

The double-pinion PGT (D-PGT) has two planetary gear transmissions between the
ring and the sun. The kinematic relationship between the D-PGT components is shown
in Figure 4. P1 and P2 are planetary gears meshed with the sun gear and the ring gear,
respectively. The other symbols are the same as for the S-PGT.
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The following relationship can be obtained by assuming equal linear velocities at the
gear meshing point:

ωp1rp1 = (ωc −ωs)rs (6)

ωp2rp2 = (ωr −ωc)rc (7)

ωp1rp1 = ωp2rp2 (8)

the characteristic equation is:

ωs − (1− β)ωc − βωr = 0 (9)

The BG model for the elastic contact in the D-PGT is shown in Figure 5. Node 1 was
added to the BG of the S-PGT, to represent an additional planetary gear. Here, θsp is the
relative angular displacement between the planet and the sun, while θrp is the relative
angular displacement between the planet and ring. The parameter θp is the relative angular
displacement between the two planets.
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Similarly, the speed and torque equations for the D-PGT can be obtained as follows:

.
θsp = ωc −ωr + TF3ωp1 (10)

.
θrp = ωc −ωr −ωp2TF−1

1 (11)
.
θp = ωp2 −ωp1 (12)

the torque balance equation for the D-PGT is

τs = θspC−1
sp − Is

.
ωs − Rsωs

τr = θrpC−1
rp − Ir

.
ωr − Rrωr

τc = Ic
.

ωc + Rcωc + τsp + τrp

τpTF−1
2 = τspTF3 + Ip1

.
ωp1 + Rp1ωp1

τp = τrpTF−1
1 − Ip2

.
ωp2 − Rp2ωp2

The power transmission paths for the D-PGT and S-PGT are similar. The difference is
that using additional planetary gears changes the direction of the torque acting on the ring
gear; for the D-PGT, the torque on the ring gear is opposite in direction to the torque on the
sun gear.

Causality is not accounted for by the above two common PGT BG-based models,
because a complete transmission system usually adopts a multi-level PGT combination,
needs a power source to input power, and requires clutches to cooperate, for realizing the
gear-shifting operation. There is no fixed mode for the matching method of a multi-stage
PGT with a power source and a clutch. Therefore, the sun gear, the gear ring, and the planet
carrier in the PGT are arranged with interfaces that can be connected to the outside, serving
as an effort/flow source in BG-based models.

4. The Friction Clutch Model
4.1. The Karnopp Friction Model

The wet friction clutch is an important part of many mechanical transmission systems,
such as vehicles, ships, and helicopters. The engagement characteristics of the friction clutch
importantly affect the stability of the transmission system [19]. In a more detailed modeling
of the clutch, it is usually necessary to consider the oil film hydrodynamic lubrication and
the micro-convex elastic contact model. Transmission system studies usually consider the
influence of the clutch control mode on the dynamic response.

When a clutch is used in a transmission system, the structural changes of the clutch
under the two working conditions of disengagement and engagement directly determine
the discontinuity of the structure of the transmission system dynamic model, which makes
computer simulations quite challenging [20]. When the clutch is disengaged (that is, τf = 0),
the driving and driven parts do not affect each other. When the clutch is engaged, under
the action of hydraulic pressure p(t), the friction plate and the mating steel plate exhibit
the sliding friction, and there is a nonlinear relationship between τf, ωrel (relative angular
velocities of the driving ωg and driven ωd parts) and p(t). When the clutch is engaged,
the driving and driven parts are regarded as a fixed connection; τf is determined by the
external torque Te, and does not exceed the torque capacity of the clutch Ts. In this case,
the relationship between τf and ωrel cannot be determined, and a classical method to solve
this problem is to replace the friction curve near the zero relative speed with an inclined
straight line passing through the origin, which leads to the classical friction model, shown
in Figure 6a [7]. However, this method may exhibit numerical stiffness problems, and
makes it difficult to solve the system step-by-step using the conventional explicit method;
on the other hand, the implicit method can easily deal with this issue.
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The Karnopp model, shown in Figure 6b, can effectively address the above numerical
stiffness problem. A small range of ωrel = 0 accessories is defined as |ε|. In this range,
τf does not depend on ωrel, but only on Te and Ts. Hence, the Karnopp model can be
described as:

τf =


Tf slip = f (ωrel , p(t)) |ωrel | > ε

Tf stick =

{
Tssgn(Te)

Te

|ωrel | ≤ ε, |Te| > Ts

|ωrel | ≤ ε, |Te| ≤ Ts

(13)

where the slipping friction function Tf slip(ωrel , p(t)) . is defined as [21]:

Tf slip = Fnµ(t)sgn(ωrel) (14)

here, Fn represents the positive pressure loaded on the friction plate, while µ(t) is the
dynamic friction coefficient.

Fn = N f Apre p(t) (15)

µ(t) = µc + (µs − µc) exp
[
−(ωrel/ωs)

δ
]

(16)

In the above, Nf is the number of active friction surfaces, Ap is the piston area, re

is the equivalent clutch radius (re = 2(r3
o − r3

i )/3(r2
o − r2

i )), µc is the Coulomb friction
coefficient, µs is the static friction coefficient, ωs is the Stribeck velocity, and δ is the Stribeck
shape factor. For δ = 1, the Tustin model [22] is obtained; for δ = 2, the Gauss exponential
model [23] is obtained.

4.2. The Friction Model for Hydraulic Clutches

The engagement pressure of a wet multi-disc wet friction clutch is generated by the
hydraulic pressure acting on the piston. The characteristics of the engagement pressure
directly affect the value of Tfslip transmitted by the clutch during the engagement process.
Hydraulic loading takes less time than the time for completing the engagement of the clutch.
Therefore, in research studies, the hydraulic pressure is typically modeled as a constant
or as a linear function [19,24]. However, in practice, the hydraulic loading mode affects
Tfslip. By fitting the experimental data of actual loads, Wang [25] obtained the functional
relationship between the axial outward load and time. In addition, the influence of the
loading mode of the exponential curve on the transmission torque was studied [26]. The
expressions for the step curve, linear function, and exponential curve are as follows:

p0(t) = Pmax (17)

p1(t) = aPmaxt (18)

p2(t) = Pmax[1− exp(−bt)] (19)
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where Pmax is the maximal bonding pressure, and t is the hydraulic loading time; a and b
are some factors. The Karnopp model is shown in Figure 7, and it is based on Equations (13)
and (14), respectively.
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Here, ωg and ωd are the rotational speeds of the parts in the gear train, τf is the torque
transmitted by the friction clutch to the gear train, and p(t) is the external excitation of
the gearbox, which is controlled by the hydraulic system. To more accurately represent
the actual working process of the friction clutch, the model in Figure 7 also includes the
following two components: (1) when the hydraulic pressure p(t) = 0, τf = 0 regardless of
the relative speed ωrel; (2) the capacity torque of the friction clutch is Ts = Fnµs, and in the
static friction state, Tstick ∈ [−Ts, Ts].

5. The One-Way Clutch Model

A one-way clutch is a mechanical clutch that is mainly composed of an inner ring, a
circular array wedge, an outer ring, and a spring. Its structural characteristics prevent it
from rotating in one direction, whereas the resistance when rotating in the other direction
is negligible [27,28]. To simplify the modeling process, the one-way clutch in the present
study was modeled as a nonlinear spring with discontinuous stiffness. The inner ring was
simplified as an inertial part without elastic damping, the outer ring was simplified as a
grounding part without inertia and elasticity, and the circular array wedge was simplified as
a nonlinear elastic damping part without inertia. Accordingly, zero stiffness was assumed
in the disengaged state, while a finite linear stiffness was assumed in the engaged state,
provided there was relative speed or displacement between the inner and outer parts of
the one-way clutch, and provided there was rotational damping. The relative rotation
speed [29] or the relative angular displacement [30] between the outer and inner rings
could be used for judging the working state. Here, the mathematical model of the one-way
clutch was an angular displacement difference model, and the expressions for the torque
τo of the one-way clutch were as follows:

τo =

{
Ko(θir − θor) + Co

( .
θir −

.
θor

)
θir > θor

0 θir ≤ θor
(20)

where θir is the torsion angle of the inner ring, θor is the torsion angle of the outer ring,
and Ko and Co are the stiffness and damping, respectively. When the one-way clutch was
engaged, the wedges were in close contact with the inner and outer rings. The clearance
angle of the clutch during engagement owing to the inertia and edge deformation was
ignored. The block diagram of the angular displacement difference model of the one-way
clutch is shown in Figure 8.
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In the model, ωir and ωor are, respectively, regarded as the rotational speed of the
parts affixed to the inner ring and the outer ring, respectively, which could be obtained
from the gear train model, and τo was the torque transmitted by the one-way clutch to the
gear train.

6. Coupling the Clutch Models to the PGT Model

Taking the two common PGT models (namely, the friction clutch model and the one-
way clutch model) as the basic models, the dynamic model of the transmission can be
established by coupling, as shown in Figure 9. However, in actual modeling, it is not easy
to obtain the dynamic model directly from the structural diagram (e.g., Figure 1). Therefore,
based on the structure and relationships in the diagram, a method for determining the
relationships between the basic models is proposed here.
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Step 1. Model of compound PGT
For transmissions with composite PGTs, there are many structural interconnections

between PGT elements or members, which can yield different transmission ratios. Tak-
ing two individual PGTs as an example, there are six possible structural connections, as
listed below: ring gear carrier, sun gear ring gear, sun gear sun gear, carrier–carrier, ring
gearing–gear, and sun gear carrier. In addition, there are some special structures, such as
connecting the planetary gears of two PGTs, or sharing a ring gear.

Features: The kinematic equation of a composite PGT must be based on the connection
mode between the constituting PGTs. The two affixed parts are considered as a whole,
and the speed is the same. Each part is represented by node 1, and each meshing point
is represented by node 0, considering factors such as the meshing stiffness, rotational
damping, and flexibilities of parts. In this way, a dynamic model of a composite PGT
is established.

Step 2. Determine the external excitation and output of the gear train.
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As shown in Figure 9, the external excitation received by a composite PGT model
includes the speed of the input shaft ωin, the load torque of the output shaft τout, the
torque of the friction clutch τf, and the torque of the one-way clutch τo; Te, ωg, and ωd are
transmitted to the wet friction clutch dynamic model; ωir and ωor are transmitted to the
one-way clutch dynamic model.

Features: In addition to the connection ports with the friction clutch and the one-way
clutch, each composite PGT has two ports (ωin and τout).

Step 3. Analyze the input and output of the hydraulic friction clutch.
As shown in Figures 7 and 9, under the hydraulic pressure p(t), the friction clutch starts

to work, the friction coefficient µ(t) is related to ωg and ωd in the gear train model, and the
sliding friction torque Tfslip is transmitted to the gear train. However, when

∣∣ωg −ωd
∣∣ ≤ ε,

the friction clutch receives an external torque Te from the gear train.
Features: There are three connection ports (Te, ωg, and ωd) between each friction

clutch and the gear train, as well as an external port (p(t)).
Step 4. Connection between the one-way clutch and the transmission system.
It can be seen from Figures 8 and 9 that the one-way clutch is a passively controlled

mechanism. Driven by ωir and ωor in the gear train, the working mode is determined
according to the angle difference between the inner and outer rings. When θir > θor, The
torque is transmitted to the gear train. Otherwise, no torque is transmitted.

Features: There are two connection ports (ωir, ωor) between each one-way clutch and
the gear train, and no external ports exist.

The design scenario consists of subjecting the gearbox to an upstream torque that
models the torque from the rotor, and a downstream flow source that models the rotational
speed imposed by the engine. The hydraulic pressure is applied by the control system. The
final multi-system coupled transmission system model is shown in Figure 10.
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7. UncBG Model of a Variable-Speed Gearbox
7.1. Uncertain Factors

There are many sources of uncertainty that cause the vibration response of the gearbox;
they may originate from any phase of the task analysis, design, manufacturing, or operation.
Taking the helicopter power system as an example, the complete power transmission system
is shown in Figure 11. The rotation speed of a typical helicopter rotor is in the order of a
few hundred revolutions per minute, whereas the optimal speed of a conventional engine
is nearly ten thousand revolutions per minute. At present, the rotor speed of high-speed
helicopters needs to be adjusted for meeting the requirements of hovering and high-speed
flight. A variable-speed gearbox is usually required for accommodating the two rotational
speeds [31], and the realization of this function usually requires the cooperation of the
friction clutch and one-way clutch [32,33].
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The above analysis reveals that in addition to the uncertain factors such as the gear
meshing and tooth surface contact fluctuations at the tooth level in the gearbox, there is
also the effect of external excitation, including the engine speed fluctuations, load torque
fluctuations, and the aerodynamic torque variation of the rotor. It is worth noting that the
transmission system is realized through the hydraulic clutch during the shifting process;
thus, the uncertainty of the loading hydraulic fluctuation will also contribute. Finally, the
manufacturing errors in the production process of parts, and assembly errors during the
gearbox assembly process will directly affect the dynamic characteristics of the transmission
system. Therefore, ignoring the uncertainty in a dynamic model will significantly affect the
quality and cost of the corresponding transmission system [34].

The time-varying meshing stiffness is the main source of uncertainty in the gear
transmission modeling. The meshing phenomenon is responsible for the gearbox noise. In
gear transmission, the meshing stiffness changes with time owing to the transition between
single- and double-teeth meshing zones, which is related to the geometric and physical
characteristics of gear teeth.

The widely used methods for calculating the time-varying meshing stiffness of gears
are the Ishikawa deformation formula, the mathematical elasticity method, the ISO stan-
dard, and the energy method. In addition, many analytical methods have been developed,
especially numerical methods (such as the finite element method), for calculating the mesh-
ing stiffness. In this work, the average tooth stiffness was calculated using the formula
in the ISO standard. In the process of gear transmission, there is a periodic alternation
between the single-tooth and double-tooth meshing states, which leads to regular changes
in the gear meshing stiffness. Therefore, the time dependence of the meshing stiffness is
expressed by the Fourier series, as follows:

k(t) = kav +
n

∑
i=1

(k2i sin(iωt)) = kav +
n

∑
i=1

ki cos(iωt + ϕi) (21)

here, kav is the average meshing stiffness; ki is the ith harmonic amplitude of the stiffness;
ω is the meshing frequency; and ϕi is the initial phase of ith harmonic. In addition,

ϕi = arctan(−k2i−1/k2i), ka =
√

k2
2i−1 + k2

2i.
The first harmonic term in Equation (21) is taken as the meshing stiffness used for the

uncertainty analysis, and Figure 12 shows the meshing stiffness of the involute gear.

k(t) = kavg + ka cos(ωt + ϕ1) (22)
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In this approach, the meshing stiffness values for a single pair of teeth and a double
pair of teeth are calculated according to the calculation method of tooth stiffness of the
involute gear in the ISO formula draft. The end face coincidence degree is obtained through
the geometric parameters and pressure angle of the meshing gear to obtain the average
meshing stiffness kavg and stiffness variation amplitude ka.

The mathematical expression of this stiffness form is relatively simple; it can effectively
reflect the influence of the actual meshing stiffness on the system to a certain extent, and is
widely used in research studies on gear nonlinear dynamics.

7.2. UncBG Model

The modeling method described above does not consider how uncertainties influence
the transmission system’s responses, and the obtained coupling dynamic model cannot
provide reliable decisions regarding the control system. Uncertain BG (uncBG), which was
developed by Kam and Dauphin Tungay [35], can address this problem. Uncertainty in the
uncBG model is not suitable for source components, and is mainly used for reconstructing
the passive components, for obtaining an invariant linear model with unsteady parameters.

The internal and external excitations were introduced into the uncBG model as follows:

1. The variable rigidity of each C-element in the BG model is considered. In this step,
the uncertainty caused by the time-varying meshing stiffness k(t) is introduced into
the BG model. Before that, the meshing stiffness in the meshing line direction must be
the torsional stiffness in the circumferential direction, which is expressed as follows
(where i, j represents a pair of meshing gears, while rb is the base circle radius):

Cij(t) = 1/kij(t)r2
b = 1/

[
kijav + kij1 cos

(
ωijt + ϕij1

)]
r2

b (23)

2. According to the structural characteristics of the compound PGT, different fluctuations
(0.02–0.05%) are set for each TF element, for simulating the influence of manufacturing
and assembly errors on the system’s response:

TF′ =

{
TFi + 0.005TFirandn with uni f orm load mechanism
TFj + 0.002TFjrandn without uni f orm load mechanism

(24)

3. Considering the speed fluctuation of the engine, a random signal is added to the
working speed for simulating uncertain factors; the amplitude of the random signal is
set to 0.2% of the working speed:

S′ f a = S f a + (0.004rand− 0.002)S f a (25)
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4. In the form of harmonics, the driving hydraulic pressure of the friction clutch is
increased by 2%, to represent the uncertainty of the driving hydraulic pressure (where
th is the time at which the hydraulic pressure completes the loading process, and Th
is the period of the hydraulic fluctuation):

p(t) =

{
pi(t) t ≤ th

Pmax + 0.02Pmax sin( 2π
Th

t) t > th
(i = 0, 1, 2) (26)

The above four methods were introduced into the original BG model (shown in
Figure 10), for obtaining the uncBG model, as shown in Figure 13.
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8. Modeling and Numerical Verification of the Variable-Speed Gearbox
8.1. UncBG Model of a Double-Row Double Planetary Gearbox

According to the power flow path and structural characteristics of the gearbox, differ-
ent nodes and energy storage elements were set based on the BG theory, and appropriate
source elements were selected. Finally, the causal relationship between the nodes and
elements was determined. The uncBG model of the gearbox was established, as shown in
Figure 14.
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Figure 14. Double-row double planetary uncBG model.

There were three TF elements, corresponding to the three gear meshing points in the
gearbox: TF1 = rp1/rs, TF2 = −rr2/rp2, TF3 = −rr1/rp1. Different meshing points were set to
different fluctuation values, according to whether there was a uniform load mechanism:
∆TF1 = 0.005TFl × randn, ∆TF2 = 0.002TF2 × randn, ∆TF3 = 0.002TF3 × randn.
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State variables are physical variables used to characterize the variables of a system
with respect to time. The correspondence between mechanical variables and generalized
variables is shown in Table 1. The corner marks of the different elements correspond to the
number of keys in the bond graph. The differential and algebraic equations can be derived
from the uncBG model shown in Figure 14. The friction clutch model and the one-way
clutch model are shown in Figures 7 and 8, respectively. An exponential curve was selected
for simulating the hydraulic loading characteristics of the friction clutch. The nominal
values are listed in Tables 2 and 3.

Table 1. Correspondence between mechanical variables and generalized variables.

Generalized Variables Mechanical Variables

Meaning Symbol Meaning Symbol

effort variable e torque τ

flow variable f angular velocity ω

generalized displacement q angular displacement θ

generalized momentum p moment of inertia J

Table 2. Compound PGT parameters.

Parameter Value Unit

rs: Sun base circle radius 108.75 mm
rp1: Planet P1 base circle radius 22.5 mm
rp2: Planet P2 base circle radius 57.35 mm
rr1: Ring R1 base circle radius 153.75 mm
rr2: Ring R2 base circle radius 185 mm

M: modulus 2.5 mm
Js: Sun inertia 0.0358 kg·m2

Jp: Panetary inertia 0.0033 kg·m2

Jr1: Ring R1 inertia 0.1825 kg·m2

Jr2: Ring R2 inertia 0.3243 kg·m2

Jc: Carrier inertia 0.0326 kg·m2

Table 3. Numerical simulation parameters.

Subsystem Parameter Value Unit

Engine Input speed Sfa 628 rad/s

Rotor Load torque Se 2670/3765.5 Nm

Friction clutch

Hydraulic pressure Pmax 0.8 MPa
Exponential curve factor b 14 /

Number of friction plates Nf 6 /
Inner radius of friction plate ri 77.5 mm
Outer radius of friction plate ro 110 mm

Piston cavity area Ap 0.028 m2

Dynamic friction coefficient µc 0.1 /
Stribeck coefficient δ 0.02

Static friction coefficient µs 0.12 /

One-way clutch Torsional stiffness Ko 2.8 × 105 Nm/rad
Torsional damping coefficient Co 0.01 Nm·s/rad

State variable: X =
[

q5 p8 p14 q17 q21 p23 p26
]T.

Input variable: U =
[
S′ f a Se Seo Se f

]T.
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State space equations:

.
q5 = ωin − 1

I8
p8 − TF1

′ 1
I14

p14
.
p8 = 1

C5(t)
q5 − R7

1
I8

p8 − 1
C17(t)

q17 − 1
C21(t)

q21 − Se
.
p14 = TF1

′ 1
C5(t)

q5 − R13
1

I14
p14 − 1

TF2
′

1
C17(t)

q17 − 1
TF3
′

1
C21(t)

q21
.
q17 = 1

I8
p8 +

1
TF2
′

1
I14

p14 − 1
I26

p26
.
q21 = 1

I8
p8 +

1
TF3
′

1
I14

p14 − 1
I23

p23
.
p23 = 1

C21(t)
q21 − R24

1
I23

p23 + Seo
.
p26 = 1

C17(t)
q17 − R28

1
I26

p26 + Se f (p(t))

(27)

On expressing the abovementioned differential Equation (27) with state space equa-
tions for matrices and vectors, we obtain:

.
X = AX + BU (28)

Here, A is a seven-order matrix containing all the coefficients of the state variable on
the right-hand side of Equation (27). B is the matrix comprising the coefficients of the input
variable on the right-hand side of Equation (27).

The derived mathematical model is a multi-energy domain shift dynamics model with
uncertain factors, including mechanical energy and hydraulic energy, involving uncertain
factors such as input random signal, driving hydraulic fluctuation, time-varying meshing
stiffness, and comprehensive error.

A mathematical model based on the bond graph model was established in MAT-
LAB, and specific parameters adopted in the simulation are presented in Tables 2 and 3.
Figure 15a shows the shift dynamics simulation scheme of the double-row double planetary
gearbox. Based on Figure 14 and Equation (27), the Simulink scheme of the compound
planetary train based on the bond graph was obtained, as shown in Figure 15b, and the
Runge–Kutta method was used to solve the shift model.
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8.2. Results and Discussion

The simulation results are shown in Figures 16 and 17, respectively. Figure 16 shows
the rotating speeds of the output shaft, planetary gear, ring gear R1, and ring gear R2.
Before and after gear shifting, the average rotating speeds of the output shaft were 260
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and 366 rad/s respectively, with fluctuations of 6 and 2.5%, and the transmission ratio
was 2.42 and 1.42 respectively; The rotating speeds of the planetary gears were 1779 and
1264 rad/s respectively, with fluctuations of 2.5 and 1.7%. The average rotating speeds
of the ring gear R1 were 0.1 and 182 rad/s respectively, and the average rotating speeds
of ring gear R2 were 256 and 0.001 rad/s respectively. During the gear-shifting process,
different parts exhibit different dynamic responses of speed increase or deceleration. The
steady-state values of output shaft, planetary gear, ring gear R1, and ring gear R2 rotating
speed were close to the theoretical values. The deviation between the two gear transmission
ratios obtained by simulation and the design value is within 5.8%, and rotating speed of
each part is continuous during the shift process. The above analysis results show that
shows the correctness of the uncBG model of the gearbox and the continuity of the shift
process simulation. Figure 17 shows the angular acceleration of the output shaft, planetary
gear, ring gear R1, and ring gear R2. Obviously, the angular acceleration of the planetary
gear varies the most. In the actual gearbox, the planetary gear rotates at a high speed
while rotating with the carrier; therefore, the vibration is obvious, and the theoretical
results of the uncBG model are in agreement with the actual situation. Theoretically, ring
gear R1 is affixed before shifting, but the simulation results show that there is angular
acceleration, which may be related to the uncertain factors and the model of the one-
way clutch. Theoretically, ring gear R1 rotates freely before shifting, and is affixed after
shifting. The simulation results in Figure 17 show that ring gear R1 has acceleration before
shifting while the acceleration is zero after shifting, which is consistent with the theoretical
analysis results.
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9. Conclusions

According to the structural characteristics of the variable-speed gearbox, the dynamic
relationships between the main functional components were decoupled, and the basic
models of the composite PGT, friction clutch, and one-way clutch were constructed. The
standardized modeling process of the BG model was developed and presented based on the
kinematic and dynamic relationships between the system’s components; a modular rapid
modeling and analysis method applicable to this type of gearbox was obtained, which
can simulate the gearbox shifting process, containing multiple energy domains with a
continuous model and solving the problem that the conventional physical equations cannot
be continuously simulated in the complex integrated variable speed gearbox shifting
process. Meanwhile, various uncertainties, such as errors (design, manufacture, and
assembly errors), time-varying stiffness, input speed variations, and hydraulic fluctuations
were introduced into the BG model, yielding the uncBG model. As demonstrated with the
example of a double-row double planetary gearbox, the uncBG method was effective for
the dynamic modeling of a gearbox. Furthermore, it will likely facilitate the shift dynamics
analysis, control strategy design, and other related research.
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