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Abstract: Task offloading and resource allocation are the major elements of edge computing.
A reasonable task offloading strategy and resource allocation scheme can reduce task processing
time and save system energy consumption. Most of the current studies on the task migration of
edge computing only consider the resource allocation between terminals and edge servers, ignoring
the huge computing resources in the cloud center. In order to sufficiently utilize the cloud and
edge server resources, we propose a coarse-grained task offloading strategy and intelligent resource
matching scheme under Cloud-Edge collaboration. We consider the heterogeneity of mobile devices
and inter-channel interference, and we establish the task offloading decision of multiple end-users
as a game-theory-based task migration model with the objective of maximizing system utility. In
addition, we propose an improved game-theory-based particle swarm optimization algorithm to
obtain task offloading strategies. Experimental results show that the proposed scheme outperforms
other schemes with respect to latency and energy consumption, and it scales well with increases in
the number of mobile devices.

Keywords: edge computing; collaborative computation offloading; computation resource allocation;
game theory

1. Introduction

With the development of IoT and 5G technology, the availability of mobile devices
is not limited to wired connections, and a great number of new mobile applications with
immersive experiences step into the market, such as virtual reality, connected cars, location
awareness, smart cities, etc. Most of these new applications are deployed on mobile devices
and are sensitive to real-time communication and intensive computation. Considering the
limited resources of mobile devices, it is not feasible to store and process large amounts of
multimodal sensory data on these devices. Traditional cloud computing networks [1] need
to upload all computing tasks to the cloud center for processing, and it is difficult to avoid
problems such as upload delay, network bandwidth, energy loss and data security during
transmission. To account for the lack of cloud computing processing, edge computing
technology has been proposed and has received a lot of attention. Edge computing [2] is
a new computing model that performs computations at the edge of the network close to
the user’s end device, where the edge is any computing and network resource between
the data-generating end and the cloud-centric path. Mobile edge computing (MEC) is
the main branch of edge computing. At present, there is no uniform definition of mobile
edge computing in academia. The concept given by the European Telecommunications
Standardization Institute (ETSI) is that, by deploying edge servers close to mobile users at
the network edge, they can use the wireless access network to provide the required services
and computing functions nearby. The MEC paradigm provides low-latency, mobility and
location-aware support for latency-sensitive applications.

In practice, the processing power and computational resources of edge nodes are
limited, and the computational resources allocated to mobile users by edge nodes depend
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on the load level of edge nodes (i.e., the number of parallel tasks offloaded to edge nodes).
When a great number of mobile devices offload their task demands to the same edge node,
it leads to a higher load on the edge node and increased offload task processing latency. A
reasonable offloading strategy can improve the edge server’s resource utilization and reduce
the offloading task processing latency [3] and system energy consumption [4]. Therefore,
the offloading strategy of mobile users and the resource scheduling of edge servers are
crucial technologies for edge computing. For instance, during the epidemic prevention
and control period, with residents’ itinerary information and body temperature data
monitoring, a reasonable task offloading strategy can allocate data to the best processing
location; therefore, the epidemic prevention department can obtain and process data in a
timely manner, reducing data processing delays. According to the optimization objectives of
offloading decisions, they can be classified into three categories [5]: reducing delay, reducing
energy consumption and balancing delay and energy consumption. Liu et al. [6] researched
systems that allow parallel computing to be performed on mobile devices and MEC servers.
The average delay and energy consumption of task offloading were analyzed using Markov
chain theory. The delay optimization problem was mathematically modeled, and a one-
dimensional search algorithm was proposed to obtain the optimal offloading strategy.
Alam et al. [7] studied the applications of artificial intelligence techniques in task offloading,
proposed an autonomous management framework based on Q-learning techniques and
solved the problem by Markov decision process modeling and deep reinforcement learning
algorithms. Simulation results show that the proposed autonomous deep learning approach
can significantly reduce energy consumption. To minimize the delay while saving energy
consumption, Li et al. [8] considered the service cache and D2D communication models,
and they introduced opportunity networks in a multi-access network; integrated delay
and energy consumption as the overall computational overhead; and designed a sequence-
game-based suboptimal algorithm to solve the problem.

Most of the existing research on MEC computation offloading only considers task
offloading and resource scheduling between mobile devices [9] or between mobile devices
and MEC servers [10] without considering the computational resources and processing
capabilities of remote cloud servers, and the Cloud-Edge collaboration capability is ne-
glected. With cloud providers aggressively expanding their data centers, cloud resources
can be leveraged by deploying high-speed fiber networks. Zhan et al. [11] designed a
decentralized computational offloading algorithm to solve the policy optimization problem
in the case where users do not disclose their personal information. The problem is described
as an observable Markovian decision process, which is solved by a policy-gradient-based
deep reinforcement learning (DRL) approach. Tang et al. [12] considered indistinguish-
able and delay-sensitive tasks and edge load dynamics to formulate the task offloading
problem and proposed a distributed algorithm based on model-free deep reinforcement
learning. However, none of them considered the computational resources and capacity of
cloud servers.

Based on the above problems, this paper studies the Cloud-Edge collaborative system,
which is motivated by minimizing the delay, energy consumption and computing cost, and
it constitutes the task offloading and resource allocation problem for multiple end users to
maximize system utility. The contributions of this paper are summarized as follows:

(1) To address the utility maximization problem, this paper proposes a joint resource allo-
cation and task offloading scheme based on game theory for Cloud-Edge collaboration,
including computational resource allocation and task offloading strategy optimization.

(2) The joint task offloading and resource allocation problem is described as mixed-
integer nonlinear programming that combines task offloading decisions and resource
allocation for offloading users to maximize system utility.

(3) For the joint task offloading and resource allocation problem, an improved particle
swarm optimization algorithm based on game theory is proposed to obtain the task
offloading strategy, which achieves the Nash equilibrium of the multi-user computa-
tional offloading game.
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(4) Other resource allocations and computational offloading schemes are used as compar-
ison schemes for the GTPSO algorithm, and simulation experiments are conducted
under different parameters. The results show that the proposed offloading scheme in
this paper significantly improves the offloading utility of users.

The rest of this paper is organized as follows: Section 2 reviews related work, Section 3
describes the problem, Section 4 presents the computational offloading resource allocation
scheme, Section 5 proposes a multi-user computational offloading game and designs a
computational offloading algorithm, Section 6 evaluates the performance of the algorithm
and Section 7 concludes the work of this paper.

2. Related Work

Many current works have studied the single-user computational offloading prob-
lem [13] or the multi-user single-edge server computational offloading problem. Huang
et al. [13] proposed a dynamic offloading algorithm based on Lyapunov optimization to
improve the performance of mobile edge cloud computing while meeting the execution
time of user tasks. Dinh et al. [14] proposed an optimization framework for offloading tasks
from a mobile device to multiple MEC servers to minimize total task execution latency
and mobile device energy consumption by jointly computing the CPU frequency of the
offload and the mobile device. Cao et al. [15] proposed a method for joint computation
and communication collaboration in a classical three-node MEC system. A protocol to
implement joint computation and communication collaboration was proposed for user
delay time-constrained computation on finite length blocks. You et al. [16] considered the
resource allocation problem of offloading multiple end devices to a single edge server in
MEC and transformed the problem into a convex optimization problem that minimizes
the device energy consumption subject to a time delay constraint. Chen et al. [17] studied
the computational offloading of MEC in ultra-dense networks by exploiting the software-
defined network concept. Guo et al. [18] proposed a distribution strategy to optimize
system performance by jointly minimizing the latency time of mobile computing tasks
and the operational power consumption of edge cloud servers. Some other works address
the multi-user multi-edge server problem. Qiu et al. [19] proposed a new DRL-based
online computational offloading scheme, where both blockchain data mining tasks and
data processing tasks were considered. Wang et al. [20] studied the resource collaboration
of multi-user multi-edge servers under Cloud-Edge collaboration, and the paper proposed
an improved artificial bee colony algorithm (ECBL) to match the best edge server for of-
floading tasks. However, it ignores the processing of task local computation, which causes
additional latency and consumption.

Game theory considers all participants as rational users and is used to design decen-
tralized mechanisms that can effectively solve the problem of multiple rational participants
making decisions on goals. Game theory is currently applied in both scientific research
and life scenarios, providing an effective theoretical basis and solution model for strategic
and economic problems. Chen et al. [21] proposed a framework based on Stackelberg’s
game to maximize the utility of users for the multi-category resource allocation problem
of edge servers. Ma et al. [22] designed a service-oriented resource allocation scheme and
proposed a three-way round-robin game involving users, edge nodes and service providers.
Gu et al. [23] proposed a matching-game-based student project allocation game approach
for the joint wireless and computational resource allocation problem. However, these
works only consider the resource allocation problem between users and edge servers and
do not consider the computational offloading policy problem. Chen et al. [24] considered a
multi-user computational offloading problem in a single-channel wireless environment.
They described the problem as a decentralized computational offloading game and de-
signed a decentralized computational offloading mechanism. The literature [25] considers
a multi-channel environment based on [24] and designs a distributed computational of-
floading algorithm that achieves Nash equilibrium, and it derives an upper bound on time
convergence. Long et al. [26] proposed a multi-objective-computing resource allocation
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and computing offloading scheme based on a game-theoretic framework; however, fac-
tors such as energy consumption and wireless interference to users were not considered.
Hu et al. [27] proposed a game-theoretic-based computational offloading algorithm includ-
ing a task offloading policy and the transmission of the power control of user devices. The
goal of this algorithm is mainly to maximize the number of devices offloaded to the MEC
server, and no actual computational resource allocation is performed.

To address the above shortcomings, this paper considers the heterogeneity of mobile
devices and inter-channel interference in complex networks with multiple users and multi-
ple edge servers and constitutes a joint task offloading and resource scheduling problem that
maximizes system utility, intending to minimize system delay and energy consumption.

3. Problem Description
3.1. System Model

The Cloud-Edge collaboration system is shown in Figure 1, which contains one cloud
computing server, M multi-threaded edge servers and a set of edge servers, which is
M = {1, 2, . . . m . . . M}, and each edge server is equipped with a base station that can han-
dle the computing tasks of multiple end-users simultaneously. N end users, the set of users,
is denoted as N = {1, 2, . . . n . . . N}, and each user has a non-detachable computationally
intensive task τn waiting to be processed. The characteristics of τn are represented as the
parameter tuple τn , (Dn, Cn, Tn), Dn is the input data required by the task, Cn is the total
computation required by the task (i.e., the number of CPU cycles) and Tn is the maximum
tolerable latency of the task. The computing tasks of mobile users can be processed locally
or offloaded to the edge servers for processing. For some special computing tasks that
require larger resource consumption and longer task completion cycles, such as data backup
for large enterprises, the tasks can be directly migrated to cloud servers for processing and
are not considered in the model of this paper. The set of offloading policies is denoted as
S =

{
sn

∣∣∣sn ∈
{

sl
n, sm

n

}
, n ∈ N, m ∈ M

}
; sl

n, sm
n denote local computation and edge server

computation, respectively; and sl
n = 1 if local execution is selected, and sm

n = 1 if edge server
execution is selected.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 22 

 

 

Figure 1. Cloud-Edge collaboration system model. 

3.2. Computational Models 

3.2.1. Local Computing 

If the user n processes the computational task locally, the cost overhead consists of 

only two components: local processing latency and local energy consumption, since no 

offloading of the task is involved. The local computation time is 

��
� =

��

��
�
 (1)

Local processing energy consumption is 

��
� = ����

�  (2)

where ��
� denotes the CPU computing power of the mobile user n (i.e., the number of 

cycles per second) and ��
�  is the energy consumption factor per CPU cycle of the mobile 

device. The overhead cost of the local processing of computational tasks is 

��
� = ��

� ��
� + ��

���
�  (3)

where ��
�、��

� are the weighting factors of delay and energy consumption, satisfying 0 ≤

��
�、��

� ≤ 1 and ��
� + ��

� = 1. Different application scenarios have different reliance on 

delay and energy, and the weighting factors are different. 

3.2.2. Edge Computing 

In this paper, with the Cloud-Edge-end network system, mobile devices communi-

cate with MEC servers through wireless access point connections, and the MEC and cloud 

layer communicate by deploying high-speed cables. The non-orthogonal frequency divi-

sion multiple access techniques are used as a multiple access scheme in the uplink [30]. 

When user � offloads the computational task �� to the MEC server for processing, the 

latency includes the user information set to transfer to the cloud center, the processing 

latency of the cloud center, the uplink transfer latency of the user task and the execution 

latency of the MEC server. Since the cloud center has sufficient computing resources and 

the size of the output results is generally much smaller than the input, we ignore the data 

return latency of the cloud center and edge servers. The set of users offloaded to the MEC 

server is noted as ���� . 

Set the transmission rate from the end-user to the cloud center to a constant value �� , 

the channel bandwidth of BS is ��, �� and ℎ� are the uplink transmission power and 

1

2

.

.

.

.

3

BS/AP Server 2

1

BS/AP Server 1

BS/AP Server M

……

N

1 User information 

2 Resource polling

3 Resource 
information

4 Uninstall policy

5 Task unloading

6 Return results

Figure 1. Cloud-Edge collaboration system model.

The cloud is responsible for the scheduling of task offloading, making offloading
decisions and matching the best edge server for task offloading. The mobile user uploads
the data set In, carrying the computational task information of user n to the cloud center,
which collects the entire data set of computational tasks, polls the edge server for resources,
retrieves them algorithmically and feeds the obtained resource allocation and offloading
policy to the edge server and the end-user. To facilitate experiments and obtain useful data,
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we consider quasi-static scenes or simple moving scenes [28,29]. In mobile scenarios, the
unloading task needs to be completed before the device is moved to another location. We
set the computing power of terminal devices and edge servers to be stable during task
processing, and it may change in different time periods.

3.2. Computational Models
3.2.1. Local Computing

If the user n processes the computational task locally, the cost overhead consists of
only two components: local processing latency and local energy consumption, since no
offloading of the task is involved. The local computation time is

tl
n =

Cn

f l
n

(1)

Local processing energy consumption is

el
n = Cnθl

n (2)

where f l
n denotes the CPU computing power of the mobile user n (i.e., the number of cycles

per second) and θl
n is the energy consumption factor per CPU cycle of the mobile device.

The overhead cost of the local processing of computational tasks is

El
n = βt

ntl
n + βe

nel
n (3)

where βt
n, βe

n are the weighting factors of delay and energy consumption, satisfying
0 ≤ βt

n, βe
n ≤ 1 and βt

n + βe
n = 1. Different application scenarios have different reliance on

delay and energy, and the weighting factors are different.

3.2.2. Edge Computing

In this paper, with the Cloud-Edge-end network system, mobile devices communicate
with MEC servers through wireless access point connections, and the MEC and cloud layer
communicate by deploying high-speed cables. The non-orthogonal frequency division
multiple access techniques are used as a multiple access scheme in the uplink [30]. When
user n offloads the computational task τn to the MEC server for processing, the latency
includes the user information set to transfer to the cloud center, the processing latency of
the cloud center, the uplink transfer latency of the user task and the execution latency of
the MEC server. Since the cloud center has sufficient computing resources and the size
of the output results is generally much smaller than the input, we ignore the data return
latency of the cloud center and edge servers. The set of users offloaded to the MEC server
is noted as No f f .

Set the transmission rate from the end-user to the cloud center to a constant value
rc, the channel bandwidth of BS is Bn, pn and hn are the uplink transmission power and
channel gain of user n, respectively, σ2 is the noise power and ω indicates the interference
brought by other users to user n. ω = ∑i∈No f f \{n}

pihi, then the data uplink transmission
rate is

rn = Blog2(1 +
pnhn

∑i∈No f f \{n}
pihi + σ2 ) (4)

The edge server processing model latency is

tm
n = tc,up

n + tc,sear
n + tm,tran

n + tm,exe
n (5)

where tc,up
n denotes the time of uploading user datasets to the cloud center, tc,up

n = In
rc

; tc,sear
n

is the cloud center processing time, tc,sear
n = Cn

f c ; tm,trans
n is the computational task offload

time to the edge server, tm,tran
n = Dn

rn
; tc,sear

n is the cloud center processing time; and tm,exe
n
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is the edge server processing time, tm,exe
n = Cn

f m
n

, where f m
n is the computational resource

allocated to user n by the edge server.
The energy consumption of the edge server processing task is divided into two parts:

data transmission energy consumption and server computation energy consumption, and
the energy consumption of the cloud computing center is ignored in this paper. The
transmission energy consumption is em,trans

n = pn

(
In
rc
+ Dn

rn

)
; the MEC server computation

energy consumption is em,exe
n = Cnθm

n ; and the total energy consumption is

em
n = em,trans

n + em,exe
n (6)

The overhead cost of offloading the computational tasks to the edge server for pro-
cessing is

Em
n = βt

ntm
n + βe

nem
n (7)

3.3. Optimization Goals

In this paper, two metrics of task processing delay and energy consumption are
considered, and the problem of resource allocation and task offloading is combined to
maximize system utility as the optimization objective. Comparing task latency with the
maximum latency Tn, more remaining time means higher utility. Comparing the offloading
energy consumption with the energy consumption of local processing, higher relative
improvements in energy consumption mean higher utility. The utility function of user n
for local processing versus offloading to the MEC server for processing is expressed as

ul
n = βt

n·
Tn − tm

n
Tn

(8)

um
n = βt

n·
Tn − tm

n
Tn

+ βe
n

el
n − em

n
el

n
(9)

The utility function of the whole system is defined as the cumulative sum of all user
utility values, denoted as

U(F , S) = ∑n∈N un (10)

where the computational resource allocation F =
{

0 < f m
n ≤ F, n ∈ No f f

}
, and the of-

floading policy S =
{

sl
n, sm

n

}
.

The joint resource allocation and task offloading problem is described as a system
utility maximization problem, denoted as

max
F ,S U(F , S) (11)

s.t. C1 : 0 < f m
n ≤ F, ∀n ∈ No f f

C2 : ∑n∈No f f
f m
n ≤ Ftotal , ∀n ∈ No f f

C3 : sl
n+sm

n ≤ 1, ∀n ∈ N

C4 : sn ∈
{

sl
n, sm

n

}
, n ∈ N

where C1 is a constraint on the allocation of computing resources available to user n in the
MEC server, and C2 is a constraint on the overall computing resources in the edge layer.
C3 and C4 are offload policy constraints, and for each computing task, only one offload
policy can be selected at a time.

Problem (11) is a mixed nonlinear programming (MINLP) problem, and it is nonconvex
and NP-Hard. Using the Tammer decomposition method, the problem can be decomposed
into multiple subproblems with separated objectives and constraints. The constraints C1
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and C2 for resource allocation and constraints C3 and C4 for offloading decision S are
decoupled from each other, so Equation (11) can be transformed into

max
S

(U∗(S)) (12)

s.t. C3,C4

where U∗(S) is the optimizing function for the resource allocation problem

U∗(S) = max
F

(U(F , S)) (13)

s.t. C1,C2

Therefore, Problem (11) can be decomposed into a computational resource allocation
problem and a task unloading strategy problem, and the optimal unloading decision and
resource allocation results can be obtained by iterations.

4. Computing Resource Allocation

We propose a game-theoretic-based resource allocation and task offloading scheme
for users who choose to offload and solve their resource allocation problem. According to
the given task offloading policy S that satisfies the constraints, the utility of the set of users
offloading to MEC, Um(F , S), is obtained using the expression um

n for the utility function,
denoted as

Um(F , S) = min
F ∑

n∈No f f

[βt
n
(Tn − tm

n )

Tn
+ βe

n
(el

n − em
n )

el
n

] (14)

To maximize the utility function Um(F , S), which is equivalent to minimizing the
unloading overhead, it can be expressed as

min
F ∑

n∈No f f

(βt
ntm

n + βe
nem

n ) (15)

When a user offloads its computational tasks to the MEC server, the computational
resource allocation problem is expressed as

min
F ∑

n∈No f f

{βt
n(

In

rc
+

Dn

rn
+

Cn

f c +
Cn

f m
n
) + βe

n[pn(
In

rc
+

Dn

rn
) + Cnθm

n ]} (16)

s.t. C1 : 0 < f m
n ≤ F, ∀n ∈ No f f

C2 : ∑n∈No f f
f m
n ≤ Ftotal , ∀n ∈ No f f

The objective function in Problem (15) is denoted as ϕ(F , S), and the first and second-
order derivatives of ϕ(F , S) with respect to f m

n are obtained.

∂ϕ(F , S)
∂ f m

n
= − βt

nCn

( f m
n )2 , ∀n ∈ No f f (17)

∂2 ϕ(F , S)
∂( f m

n )2 =
2βt

nCn

( f m
n )3 , ∀n ∈ No f f (18)

The second-order derivative of ϕ(F , S) with respect to f m
n is constantly greater than

zero, and the constraints C1 and C2 are both convex. Therefore, Problem (16) is a convex
optimization problem satisfying the Slater condition, and the KKT condition can be used
to find the optimal computational resource allocation F ∗. Formulating Problem (16) as a
Lagrange function results in:
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L( f m
n , λ, η) = ∑

n∈No f f

{βt
n(

In

rc
+

Dn

rn
+

Cn

f c +
Cn

f m
n
) + βe

n[pn(
In

rc
+

Dn

rn
) + Cnθm

n ]}+ λ( f m
n − F) + η( ∑

n∈No f f

f m
n −MF) (19)

where λ and η are Lagrange multipliers associated with computational resource constraints
satisfying λ ≥ 0 and η ≥ 0. Solving for the first-order derivative of L( f m

n , λ, η) with respect
to f m

n yields

f m∗
n =

√
βt

nCn

λ∗ + η∗
, ∀n ∈ No f f (20)

Since f m∗
n is coupled with Lagrange multipliers λ∗ and η∗, the gradient descent method

is used to iteratively update λ, η until the computational resource constraints C1 and C2
are satisfied, and the optimal computational resource allocation solution f m∗

n is obtained.
The process is shown in Algorithm 1.

Algorithm 1: MEC computing resource allocation scheme

1: Initialization: very small tolerance ε > 0, λ = λmax, η = ηmax

2: While f m∗
n − f m

n > ε do
3: set f m

n = f m∗
n

4: compute f m
n according to substitute λ, η into (20).

5: If f m
n < F, update λ = λ− ∆λ

∑n∈No f f
f m
n < MF, update η = η − ∆η

6: end while
7: The optimal computation resource allocation scheme can be derived by substituting
λ, η into (20).

8: Output: F =
{

f m∗
n

∣∣∣0 < f m∗
n ≤ F; ∑n∈No f f

f m
n < MF,n ∈ No f f

}
5. Task Unloading Strategy

In this section, a game theory approach and particle swarm optimization algorithm
are used to solve the task unloading policy problem, and an improved game-theory-based
particle swarm optimization (GTPSO) algorithm is proposed to obtain the optimal task
unloading policy.

5.1. Multi-User Task Offloading Game

The task unloading strategy is defined as a game-theoretic problem, denoted as
G =

{
N, (Sn)n∈N, (un)n∈N

}
, where the mobile user N denotes the participant of the game; S

is the set of task unloading strategies of the user; each user has (M+ 1) choices of task process-
ing strategies; sn ∈

{
sl

n, s1
n, · · · sM

n

}
. u(Sn,S−n) is the utility function of user n; and s−n denotes

the set of offloading policies for users other than user n, s−n = (s1, · · · , sn−1, sn+1, · · · sN).
Supposing N rational mobile users, each of whom chooses a task processing strategy that
optimizes its own utility function, the resulting function is

max
s∗n

(u(sn, s−n)) = sl
nul

n + sm
n um

n (21)

Nash equilibrium (NE) is an important concept in game theory, which refers to the situ-
ation where any one participant in a non-cooperative game system chooses the combination
of optimal strategies given that the strategies of other participants are determined.

Definition 1. If given the set S∗ =
{

s∗1 , · · · s∗n, · · · s∗N
}

of unloading strategies, for ∀n ∈ N,
all have

u(s∗n, s∗−n) ≥ u(sn, s∗−n), s∗n ∈
{

sl
n, sm

n

}
(22)



Appl. Sci. 2022, 12, 6154 9 of 20

Then, the set of strategies S∗ is the NE of the game G. A Nash equilibrium is a state
that makes the system stable, and the users in the set of strategies have no incentive to
leave the NE.

Definition 2. If there exists a potential function ψ(s), when the unloading strategy of the partici-
pating users in the game G is changed unilaterally from sn to s

′
n, we can obtain

u(sn, s∗−n)− u
(
s′n, s∗−n

)
= ψ(sn, s−n)− ψ

(
s′n, s−n

)
, ∀n ∈ N (23)

Then, the game G is a potential game. According to the properties of potential games,
there exists a Nash equilibrium for a potential game with a finite set of strategies and finite
improvement, which can be reached in a finite number of improvements.

Theorem 1 . The game G is a potential game with the potential function shown in Equation (24)
and can reach a Nash equilibrium within a finite number of improvements.

ψ(s) = sl
n ∑N

i=1 ul
i +
(

1− sl
n

)(
sm

n um
n + ∑N

i=1&&i 6=n ul
i

)
(24)

Proof. It satisfies sn = sl
n = 1; sn = sm

n = 0 when the user performs computational tasks
locally. sn = sl

n = 0; sn = sm
n = 1 when the user processes computational tasks on the edge

server. For user n, (∀n ∈ N), the potential function should satisfy Equation (24) when the
user’s offloading decision is updated from sn to s′n. We consider the following three cases:

(1) The offload policy for mobile user n is updated from local processing sl
n to edge server

processing sm
n . We can obtain

ψ
(

sl
n, s∗−n

)
− ψ(sm

n , s∗−n) = ∑N
i=1 ul

i − um
n −∑N

i=1&&i 6=n ul
i

= ul
n − um

n

= u
(

sl
n, s∗−n

)
− u(sm

n , s∗−n)

(2) The offload policy for mobile user n is updated from offload to edge server processing
sm

n to local processing sl
n. We can obtain

ψ(sm
n , s∗−n)− ψ

(
sl

n, s∗−n

)
= um

n + ∑N
i=1&&i 6=n ul

i −∑N
i=1 ul

i

= um
n − ul

n

= u(sm
n , s∗−n)− u

(
sl

n, s∗−n

)
(3) The offload policy for mobile user n is updated by edge server sm

n to edge server sm′
n

for processing. We can obtain

ψ(sm
n , s∗−n)− ψ

(
sm′

n , s∗−n

)
=
(

sm
n um

n + ∑N
i=1&&i 6=n ul

i

)
−
(

sm′
n um′

n + ∑N
i=1&&i 6=n ul

i

)
= um

n − um′
n

= u(sm
n , s∗−n)− u

(
sm′

n , s∗−n

)
Combining the above cases, we can obtain that the change in the potential function
always satisfies Equation (23) for changes in the user n offloading decision. Therefore,
the game G is a potential game that can reach Nash equilibrium within a finite number
of improvements, further proving that there exists a set of offloading policies making
the utility function of N rational mobile users optimal in this paper’s complex network
of multi-user multi-edge servers under the Cloud-Edge collaborative architecture. �
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5.2. GTPSO Algorithm

The particle swarm optimization (PSO) algorithm is a stochastic search algorithm for
finding optimal solutions among multiple participating individuals through information
sharing and mutual collaboration [31]. In this section, an improved game-theory-based
particle swarm optimization algorithm (GTPSO) is designed for the task offloading policy
problem in Section 5.1. The improved particle swarm optimization algorithm is first used to
obtain the preprocessing unloading policy, and then the computational resource allocation
is optimized. The two processes of the unloading strategy and computational resources are
iteratively updated with each other until convergence to maximize system utility.

5.2.1. Pre-Processing Offload Strategy

1. Particle encoding

Combined with the system in this paper, an integer encoding mechanism is used, and
the particle swarm size is set to K. Each particle represents a collection of offloading policies.
The particle element represents the location of the edge server to be offloaded by the current
computing task, and the number of particle elements is N. The particle elements take the val-
ues of integers from 1 ∼ M. The velocity vector of particle k = {task1, · · · taskn, · · · taskN}
is Vk = {vk1, vk2, · · · , vkN}; the position vector is Xk = {xk1, xk2, · · · , xkN}; Pbest denotes
the individual optimal solution of the current particle; and Gbest denotes the global optimal
solution of all particles.

2. Fitness function

The fitness function of a particle is typically the objective function of the problem
being solved, and in this paper, the system overhead of offloading tasks to the edge servers
for processing is used as the fitness function, i.e., the total system cost of assigning tasks to
different edge servers, as in Equation (25).

Fitness(V) = min
xn

M

∑
m=1

N

∑
n=1

Em
n (25)

s.t. C1 : 0 ≤ Em
n ≤ Em

total ≤ Emax
C2 : 0 ≤ f m

n ≤ f m
total ≤ fmax

where xn denotes the server number specifically assigned to the task, C1 denotes the energy
constraint offloaded to the task numbered m and C2 denotes the computing resource
constraint assigned to the task numbered m.

Since we ignore task waiting time and consider the existence of load imbalance caused
by multiple users offloading to an edge server, and since the edge server is rational, we
can set the penalty function; therefore, the total system cost increases to relieve the load
pressure when tasks are offloaded to the edge server with a high load.

Fitness(V) = min
xn

M

∑
m=1

N

∑
n=1

Em
n + penalty(V) (26)

penalty(X) = g ∗
M

∑
m=1

∑N
n=1(Em − Emax)

Equation (26) indicates that, if the energy consumption of the task load offloaded to
task number m is higher than the maximum energy consumption of the server, a penalty
function is set to increase the system cost, where X denotes the offloading vector solved for
and g denotes the penalty factor.

3. Algorithm Process

Input:

(1) User set N = {1, 2, . . . N}, MEC server set M = {1, 2, . . . M}, task set τn = (Dn, Cn, Tn).
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(2) Algorithm control parameters: maximum number of iterations maxGen, velocity
boundary v ∈ [−M, M], position boundary x ∈ [1, M], initial inertia factor w and
penalty factor g.

Initialization:

(1) The position vector Xk of each particle and the velocity vector Vk.
(2) The fitness function value Fitness(V) is initialized and updated as the iteration progresses.
(3) Initialize the individual optimal solution and the global optimal solution of the particle,

set the current position of the particle as the individual optimal solution Pbest and
set the position of the particle with the smallest fitness value as the global optimal
solution Gbest.

Iterative Process:

(1) Let the number of iterations y = 1.
(2) While y ≤ maxGen.
(3) Update the velocity; each dimension in particle k independently goes to update the

velocity Vk. If |Vk|> M . Then, when Vk > 0, let Vk = M, and when Vk < 0, let
Vk = −M. The updated formula of particle velocity is:

Vk = wmax ∗Vk + c1 ∗ r1(Pbest − Xk) + c2 ∗ r2(Gbest − Xk) (27)

where c1 and c2 are learning factors and c1 = c2 = 1.5, and r1 and r2 are random
numbers from 0~1.

(4) Update the position. Particle k updates the position Xk independently based on the
velocity information. If the value of Xk is greater than M, then let Xk = M. The
particle updated position equation is:

Xk = Xk + Vk (28)

(5) Update inertia weights. The fixed inertia weight values easily lead the algorithm
to fall into partial optimality. Consider changing the fixed inertia weights in the
standard PSO algorithm to a dynamic adjustment strategy to avoid falling into partial
optimality and to obtain a better solution to the problem. To ensure that the algorithm
starts with a global search in large steps, a large value is initially assigned to w. As the
number of iterations increases, w gradually decreases; therefore, the solution of the
problem can be traded off between the local optimum and the global optimum. The
weights are calculated as in Equation (29):

w = wmax − wmax ∗
y
Y

(29)

(6) Update the particle optimal allocation and global optimal allocation. All particles
are calculated according to Equation (26) after iteration, and if the updated fitness
function value is smaller than the current value, the particle’s individual optimal
allocation Pbest and global optimal solution Gbest are updated.

(7) Update the number of iterations, y = y + 1.
Output: Optimal allocation vector Xk = Gbest and minimum delay Fitness(V).

After multiple iterations, when the number of iterations reaches the maximum or the
optimal solution does not change after the iterations, the best allocation vector Gbest is
obtained, which is the optimal task offloading policy under the current computing resources,
and the obtained task offloading policy is used as the preprocessing task offloading policy.

5.2.2. Policy Update Process

The task offloading policy obtained from the improved particle swarm optimization
algorithm is used as the preprocessing task offloading policy, and the two processes are
iterated over each other until convergence to maximize system utility using Algorithm
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1 to optimize resource allocation under the given offloading policy. Each iteration of the
algorithm consists of two processes:

(1) Resource allocation optimization: The user uses Algorithm 1 to optimize resource
allocation according to the current offload policy and calculates the corresponding
utility values for different offload policies.

(2) Policy update competitions: Based on the optimized computational resources, cal-
culate the utility of each user with different uninstallation policies. The users who
can improve their utility compete for the policy update opportunity in a distributed
form, and the user with the largest utility improvement updates the uninstallation
policy, whereas other users keep the original uninstallation policy and wait for the
next round of decision updates. Using the finite improvement property of the po-
tential game, only one user with the maximum utility improvement is allowed to
update the uninstallation strategy in each iteration. The iteration terminates when
the Nash equilibrium is reached and when all users have no incentive to change their
uninstallation strategies. The uninstallation policy that maximizes the utility of the
system is obtained.

The process is shown in Algorithm 2.

Algorithm 2: GTPSO

1: Input: user set N = {1, 2, . . . N}, M = {1, 2, . . . M}, τn = (Dn, Cn, Tn), n ∈ N;
maxGen, v ∈ [−M, M], x ∈ [1, M], w, g.

2: For each particle
3: Initialize position Xk, Vk, Fitness(V), Pbest, Gbest
4: End For
5: Iteration y = 1
6: DO
7: Update the Vk by (27) and Xk by (28)
8: Update the w by (29)
9: Evaluate particle k
10: If Fit (Xk ) < Fit (Pbestk )
11: Pbestk= Xk
12: End if
13: If Fit(Pbestk ) < Fit(Gbest)
14: Gbest = Pbestk
15: End if
16: k = k + 1
17: WHILE maximum iterations or optimal solution are not changed
18: Output: Pre task offloading strategy S∗

19: t←t+1
20: while S∗(t) 6= S∗(t− 1) do
21: S∗ = S∗(t− 1), set n = 1
22: while n ≤ N do
23: calculate ul

n

(
sl

n, s∗−n(t− 1)
)

by (8)

24: calculate f m∗
n and um

n
(
sm

n , s∗−n(t− 1)
)

by algorithm 1 and (9), respectively
25: compute the best response ∆n(t)
26: n = n + 1
27: end while
28: for each user n, n ∈ N do
29: if user n wins in the t−th iteration,
30: then update sn(t)
31: else sn(t)= sn(t− 1)
32: end for
33: t = t + 1
34: end while
35: Output: Optimal computation resource allocation F ∗ and offloading strategy S∗
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6. Experimental Results and Analysis
6.1. Experimental Setup

To verify the performance of the proposed task offloading scheme, we performed
experimental simulations on a Windows PC using Matlab2021 data analysis and Python
programming software. We considered face recognition or body temperature monitoring
as the user’s computational task and evaluated the overhead of task offloading for the end-
user based on the utility value of the task processing system. Since there is no standardized
experimental platform or data for edge computing, we used self-combining data for our
experiments. Without a loss of generality, we used a centralized cloud server with an
MEC collaboration scheme under a fiber–radio hybrid network. The communication and
computational parameters in this paper were set concerning the literature [32,33], and the
uplink channel gain was generated by the path loss model L(dB) = 140.7 + 36.7loglog10 d[km].
The standard deviation of the log-normal shading was set to 8 dB. Unless otherwise stated,
we chose the input data amount from [200~600] KB randomly, the required CPU cycle
was 1 GHz and the time and energy weighting factors were set to βt

n = 0.2 and βe
n = 0.8,

respectively. Other partial parameters were set as shown in Table 1.

Table 1. Experimental parameters.

Experimental Parameter Numerical Value

Cloud center CPU frequency 20 GHz
Edge server CPU frequency 10 GHz

User CPU frequency 1 GHz
Cloud transmission rate rc 1 us/bit

System bandwidth B 20 MHz
Uplink power p 20 dBm
Channel gain h 0.6~0.8
Noise power σ2 −100 dBm

θl
n 10−9 cycle/J

θm
n 10−10 cycle/J

Penalty coefficient g 10−2

Inertia weight wmax 0.8

The following scenarios were used as comparison scenarios for GTPSO:

1. Exhaustive: This is a brute-force method that finds the optimal offloading scheduling
solution via an exhaustive search of over 2n possible decisions. Since the computa-
tional complexity of this method is very high, its performance is only evaluated in a
small network setting.

2. Task offloading by the particle swarm optimization algorithm (TOPSO): Using the
particle swarm optimization algorithm in [34] for task offloading and introducing
the cloud center for offloading scheduling, the TOPSO scheme does not consider the
resource allocation scheme.

3. Joint Greedy Offloading and Resource Allocation (JGORA): All tasks are offloaded [35],
and each offloaded user greedily selects the subchannel with the highest channel gain
until all users are admitted or until all subchannels are occupied. The JGORA scheme
does not account for the cloud computing processing model.

4. ECBL: The literature [20] proposes an improved artificial bee colony algorithm to
find the optimal allocation scheme. The ECBL scheme considers the cloud-side
collaborative system but does not consider the task local processing scheme.

Performance Evaluation

To verify the suboptimality of the algorithm, GTPSO was compared with other
schemes, and the system utility values of all schemes at different loads for N = 10 and
M = 4 are given in Figure 2. We found that the exhaustive method has the highest utility
value, and the GTPSO scheme has significantly better utility values than the other schemes.
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In addition, with increases in computational load, the computation required for the task
increases, which causes greater latency and energy consumption, and the systematic utility
value decreases overall. There was a performance improvement of 15%, 10% and 7.1%
compared to the TOPSO, JGORA and ECBL schemes, respectively.
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The running time of the program for each scheme is shown in Table 2. The running
time of the exhaustive method greatly exceeds that of the other schemes; therefore, although
the exhaustive method yields the optimal solution, the running time is unacceptable. The
JGORA scheme does not consider the cloud computing processing model and has a higher
running time than the other schemes. The running time of the GTPSO scheme, although
higher, is maintained at the millisecond level and is negligible compared to the total time
(at the second level) of edge computing task execution. Therefore, the GTPSO scheme is the
more practical suboptimal solution with respect to combined performance and runtime.

Table 2. Runtime of schemes (ms).

Scheme Time

TOPSO 3.7 ± 0.2
JGORA 21.2 ±2.5
ECBL 5.2 ± 0.7

GTPSO 11.3 ± 0.4
Exhaustive 3627 ± 36

Figure 3 gives a comparison of the system utilities of different schemes at the termi-
nation of an iteration with a different number of users. The system utility values of all
schemes increase with increases in the number of users. Among all the schemes, the GTPSO
scheme has the best performance because the GTPSO scheme can fully utilize the MEC
and cloud computing resources. The cloud center is responsible for the overall algorithm
scheduling, and the MEC server is responsible for the endpoint task processing, which
jointly optimize the computing resources and offloading strategy.
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Figure 3. System utility against different numbers of users.

Figure 4 gives the average task latency for each scheme at different computational
loads for N = 20 and M = 6. The task processing latency increases as the computational load
increases. Among all the schemes, GTPSO has the smallest latency, followed by the TOPSO
scheme, because the TOPSO scheme does not consider the optimization of computational
resource allocation. The JGORA scheme has the largest latency because it can only offload
tasks to resource-constrained edge servers without considering the scheduling capability
of cloud resources. As the computational load continues to increase, the GTPSO scheme
has more significant advantages.
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Figure 4. Average task delay against computation load.

Figure 5 gives a comparison of the system utility convergence of the GTPSO scheme
with the standard particle swarm algorithm scheme (SPSO) and TOPSO scheme in the
preprocessing strategy stage to evaluate the impact of the improved particle swarm algo-
rithm on the global system utility value. With increases in the number of iterations, the
user’s utility value increases. The TOPSO scheme converges firstly due to ignoring resource
allocation, but the system utility value is lower. The SPSO scheme does not consider the
computational load caused by multiple end tasks offloaded to the same MEC server, and
the system utility value is lower than that of the GTPSO scheme. The GTPSO scheme has
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about 8% and 15% performance improvement compared to the TPSO and TOPSO schemes.
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Figure 5. Import of system utility by PSO.

Figure 6 gives the system convergence of the GTPSO scheme for N = 20 and M = 6
with different amounts of computing resources in the cloud center. The system utility value
gradually increases with the number of iterations and finally converges to stability. As
the amount of cloud computing resources increases, the cloud center performs the policy
schedule faster, the system latency decreases and the utility value increases. Each iteration
of the GTPSO scheme optimizes the two processes of computing resources and offloading
policies to increase system utility until the system reaches Nash equilibrium.
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Figure 6. Impact of cloud resources.

Figure 7 gives the system convergence of the GTPSO scheme for N = 20 and M = 6
with different amounts of edge server computing resources. As the amount of MEC server
resources increases, the computational resources available for offloading tasks become
larger, and the system utility value gradually increases with the number of iterations until
it stabilizes. In addition, as the computing resources of the cloud and edge servers become
larger, the system utility value becomes higher, the number of iterations becomes fewer
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and the convergence becomes faster. In addition, the computing resources of the cloud
server have more influence on the global utility value.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 22 

 

 

Figure 7. Impact of MEC resources. 

Figure 8 gives the time delay and energy consumption for each scenario concerning 

the time delay weight and energy consumption weight for � = 20 and � = 6. Figure 8a 

shows the average task latency versus time weight. ��
�  varies from 0 to 1, and the latency 

of all schemes decreases as ��
�  increases. When ��

�  increases to a certain threshold, the 

average delay decreases to a certain level and then converges. The delay of the GTPSO 

scheme is always kept to a minimum. Figure 8b shows the relationship between the aver-

age task energy consumption and the energy consumption weighting factor. The energy 

consumption of each scheme decreases as ��
� increases. The JGORA scheme converges to 

a level close to 0 at ��
�, and its power control method keeps the user in a smaller range, 

which is more suitable for scenarios with high energy consumption requirements. The 

GTPSO scheme has the smallest energy consumption at ��
�  ≤ 0.4. The GTPSO scheme 

makes a trade-off between latency and energy consumption to reduce the energy con-

sumption of user devices while ensuring low latency. 

 

(a) 

Figure 7. Impact of MEC resources.

Figure 8 gives the time delay and energy consumption for each scenario concerning
the time delay weight and energy consumption weight for N = 20 and M = 6. Figure 8a
shows the average task latency versus time weight. βt

n varies from 0 to 1, and the latency of
all schemes decreases as βt

n increases. When βt
n increases to a certain threshold, the average

delay decreases to a certain level and then converges. The delay of the GTPSO scheme
is always kept to a minimum. Figure 8b shows the relationship between the average
task energy consumption and the energy consumption weighting factor. The energy
consumption of each scheme decreases as βe

n increases. The JGORA scheme converges to a
level close to 0 at βe

n, and its power control method keeps the user in a smaller range, which
is more suitable for scenarios with high energy consumption requirements. The GTPSO
scheme has the smallest energy consumption at βe

n ≤ 0.4. The GTPSO scheme makes a
trade-off between latency and energy consumption to reduce the energy consumption of
user devices while ensuring low latency.
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7. Conclusions 

In this paper, we study the joint task offloading and resource allocation problem in a 

multi-user network under a cloud-side collaborative architecture with the objective of op-

timizing system utility. Since the problem is an MINLP problem, it is difficult to obtain an 

optimal solution, which is decomposed into two sub-problems of computational resources 

and task offloading, and the computational resource allocation problem is solved using 

the KKT condition. For the task offloading policy optimization problem, a GTPSO algo-

rithm is proposed to reduce time complexity while ensuring better performance. The ex-

perimental results show that the GTPSO scheme has good performance with respect to 

delay, energy consumption and system utility. 
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