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Abstract: Transition zones on railway lines are localities with gradual changes in the construction
layers in the connections between a fixed track and ballasted track or between a wide track and
various railway objects, e.g., tunnels, bridges, culverts, etc. The different type of construction of
transition zones causes a shock wave when the train passes, which can cause undesired effects on the
stability of its construction, durability, and passengers’ comfort. For this reason, railway opera-tors
pay increased attention to the construction inspection of these transition sections. The research deals
with the description of the transition zones, methods, and results of their monitoring in experimental
sections of the railway corridors. Innovative aspects are the measurements made using precise
geodetic instruments as well as continuous measurements with the KRAB trolley. The analyses of
measurements in the experimental sections of the track show whether the stability of the geometric
spatial position is ensured.

Keywords: railway engineering; transition zones; construction modification; safety; inspection;
continuous measurements

1. Introduction

Railway transition zones (TZ) are places with a higher probability of deformation of the
geometric and structural arrangement of the track because the change in the construction
of the railway superstructure and substructure will cause a different distribution of forces
when changing from the “soft” to the “solid” type of structure. The behavior of the
structural layers changes under different wheel pressures and dynamic forces. The solution
is in designing structural modifications that distribute and eliminate these forces in a certain
short section of track.

A typical example of a transition zone is the construction between ballasted and fixed
tracks where the types of particular construction layers change and are supplemented by
suitable subgrade, stabilization (for example cement bound materials—CBM), granular
layers (unbound granular materials—UGM), geo-accessories, etc.

The railway surface creates waves in the longitudinal direction under traffic loading
and the greatest effect arises under a locomotive, which pushes a sinusoidal shock wave. In
the case of a homogeneous railway structure, the deflection wave has a smooth course in the
longitudinal direction. The problem occurs when the wave hits a solid obstacle, which may
be the different construction of the railway body. The effect of the forces depends on the
type of transition structure, operating speed, the built-in materials, and the overall quality
of the construction. Otherwise, defects in spatial geometrical track position will occur.

The solution to this problem is in an individual approach to the process of designing
the constructional layers of the transition structure and a very precise calculation of physical
influences. Inserting other constructional elements into the railway body should help to
eliminate or minimize the occurrence of destructive forces acting on the transition zone,
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such as various reinforced concrete slabs or tubs, reinforced subbase layers, various granular
layers, geological or synthetic reinforcement, etc.

2. Elimination of Unwanted Shock Wave Forces

Over the last twenty years, various designs of transition zone shapes have been made
in the world, which were intended to increase the stability of the railway body and its
structural layers. In particular, it is a matter of ensuring the long-term stability of the spatial
geometric position of the track (GPT). An important factor is the shape of the transition
zone elements, which are optimized according to Figure 1, for example.
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On the railway line, it is possible to drive on the tracks in both directions, and therefore
we recognize two driving directions that will affect the strength and direction of these effects
of the shock wave. The train can run in the direction from the ballasted trackbed to the fixed
track, where when reaching this point it seems to hit an obstacle, and the forces breaking the
GPT are created here. The train run can also be reversed. From the fixed point, it would “jump”
into the trackbed and push the structural layers and thus deform the GPT (part representing
the elastic deformation of the structure as reversible and undesirable as irreversible).

The optimization of the shape of the structural layers of the railway body is usually
performed by reinforced concrete slabs and tubs on the longitudinal slope. The designers
design the shape and size of these concrete elements, including the base layers of the
various fractions and the stabilization of the construction materials.

3. Troubleshooting in Transition Zones

The authors, who have recently addressed the issue, individually approach the design
proposals with calculations from different perspectives. For example, an overview of the
proposed building elements in some countries is provided in [1], which shows the values of
technical characteristics of the materials used in each layer. In the literature, transitions from
the railway bed to concrete building structures, such as bridges, are addressed. The authors
summarized the summary of methods used in the design of TZ in different countries of the
world, which they compared with the lines in Portugal.

Some manufacturing companies design prefabricated products for their use in TZ, such
as Getzner Engineering [2], whose products are optimized, including fastening materials for
track superstructure, trackbed, base layers, and calculations are performed within realistic
finite element methods (FEM models).

The literature dealing with TZ includes [3–8], which solve various approaches to
the design of structural layers in TZ [3], such as the transition from ballasted to fixed
track in [4], ballast material and insulation layers in TZ, including gluing trackbed grains
with reinforcement (see [5]). Modeling of railway track temperature regime in winter
periods with real heat-technical values for different climatic characteristics was published
by Hodas [6]. Research at Rohmbergk Rail [7] addressed a comprehensive design as a
V-TRAS module, which allows the transition between the terminating trackbed and the
connection to the solids of the fixed track or the bridge.

In [8], the designs of longitudinal profiles of TZ are solved as solutions by jumps,
linear, or their cosine course, on which they verified the vertical displacements of GPT
between ballasted track and bridge structures, or culverts. In [9], the research focused on
the modifications and maintenance of TZ, where the rail decreases in TZ or their elevation
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heights were adjusted. The action of forces and pressures from the wheels is addressed
in [10], where the dynamic stress system with continuously welded rails (CWR), which
arises from a moving train, was evaluated.

The transition from the embankment to the bridge objects is dealt with in [11], where
there are solutions of types of trackbed to bridge, such as trackbed to fixed track. Special
structural designs are proposed in [12], where CBM and UGM materials with a certain
concrete chamber in front of the bridge are designed between the given structures, such as
ballasted track to bridge, fixed track to bridge, etc. The authors examine in detail the stress
of these elements of transition zones using computer models, which compares the behavior
of structures with and without TZ.

3.1. Rail Bed Transition to a Fixed Track

Research tasks took place mainly in these areas of railway practice, such as numerical
modeling of transit zones and comparison of models of these transit zones with “in-situ”
heavy laboratory models built at the university. The main focus of the presented research
in the paper are geodetic measurements of the spatial position of track axes in transit zones
from the point of view of surveyors and continuous measurements on corridor lines by
measuring trolleys from the point of view of railway engineers.

A collision of fixed-type railway structures occurs mainly on a wider line, or at railway
stations. The proposed building element mitigates the undesirable effects of the shock
wave of the train and will have the shape of a reinforced concrete slab (such as a concrete
tub for ballast) for the railway line according to Figure 2. The proposed lengths of lTZ
for individual speeds are calculated in Table 1, including the final concrete block in the
required form for terminating the fixed track.

Table 1. Design lengths of transition zones between fixed and ballasted tracks.

V (km/h) Length lTZ (m)

120 16.67
140 19.45
160 22.22 1

200 27.78
250 34.73
300 41.67

1 Figure 2 at V = 160 km/h.

The structural layers of the transition zone with built-in building elements and base
layers are proposed in Figure 2 (corridor tunnel in Trencianske Bohuslavice) with a longi-
tudinal slope of the reinforced concrete slab (tub with ballast), where the thickness of the
trackbed changes from 250 to 350 mm below the storage area of the basement [13].

3.2. Ballasted Trackbed and Bridge Structures

For bridge structures, the establishment of transition zones is also important from a
design point of view, especially at high speeds of already V ≥ 160 km/h, not only on the
line type of ballast-fixed track but for all buildings that form a certain type of obstacle that
reduces the effects of the shock wave in the railway body (Figure 3a). Deformations of
the spatial geometric position of the track (GPT) can occur during the shock wave impact
(Figure 3b) [2].

These objects need to be protected by a building intermediate stage between two
different structures of the railway body (ballasted–fixed track) by inserting a reinforced
concrete slab or by modifying the material of the railway top and bottom, for example,
according to Figure 4. The reinforced concrete slab is placed on the support protrusion
already created during the construction of the bridge or it is concreted at the support. Care
should be taken behind the supports of bridges and culverts as there is a risk of a significant
drop in the layers of material due to poor compaction. The new transition zone cannot load
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the bridge object with additional forces and also transmit the effects of the shock wave, as
deformations of the bridge object could occur.
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There is also a design of the TZ type of ballasted and fixed tracks with a reinforced
concrete tub, but this would be demanding, as there are a large number of bridge structures,
culverts, etc. on the railway line, which are close in height to the track gradient. Transitional
reinforced concrete tubs are inserted mainly if the ballasted track changes to the fixed track
of the bridge object [11].

3.3. Tunnel Objects with a Fixed Track

The transition zones of the tunnel portals are particularly important (if there is a
conflict between the ballasted and fixed track too) [13,15], as it is necessary to ensure
increased security of the train entry into the interior of a tunnel track. The TZ will be placed
in front of the tunnel portals and will also be used as an entry for rescue teams into the
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tunnel tube (in case of rescue or maintenance works). If there is a trackbed (ballast) in
front of the tunnel, a transition zone will be built as a reinforced concrete tub (Figure 5) to
eliminate the shock wave on the portals. If there is also a fixed track in front of the tunnel,
the transition reinforced concrete tub will be built further from the tunnel portal in this
ballast to the fixed structural layer change transition (then there is no impact on the tunnel),
but the fixed track and tunnel transition must be completed in front of its portals.
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In railway practice, there are usually several construction objects in close succession,
for example, a line led in a tunnel passes to a bridge object (Figure 5c), etc., and there is
usually a line formed by a fixed or ballasted track between the objects. Railway tunnels are
generally designed for higher line speeds so that they can be used to increase speeds in
future line modernizations and the speed in the tunnel will not be reduced in the future. An
example is the built double-track railway tunnel in Figure 5b,c in Trencianske Bohuslavice,
which is designed for the speed of V = 200 km/h, whereas the modernized main European
Va corridor Bratislava–Zilina is currently driven at V = 160 km/h.
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4. Diagnostics of Transition Zones in the Experimental Section by Geodetic Methods

Since 2017, six geodetic measurements of transition zones, at the ends of the fixed tracks,
have been carried out in the locality “Trencin—A new railway bridge” in Figure 6, [16]. The
measurements of TZ took place in the section towards “Bratislava” on the right side of the
river Váh in 122.219–122.239 km (both track axes) and in the section towards “Zilina” on
the left side in 122.748–122.768 km in track axis no. 1 and 122.763–122.783 km in track axis
no. 2. Height measurements were performed on both track axes (no. 1 and no. 2) and both
their rails, with detailed points being signaled in the longitudinal direction of the track at a
distance of about 5 m from each other, which represents every eighth fastening of the rail
to the sleeper. Measurements were performed with a DNA03 digital leveling device with
a unit standard deviation m0 = 0.3 mm, which represents the accuracy of determining the
elevation of a 1 km long leveling. To maintain the accuracy and unambiguity of the results,
when comparing the individual measuring stages, the calculated height changes of the track
were determined separately for the right and left rails (with cant D of the track curve).
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Evaluation of height changes of transition zones. The most critical parts of the con-
struction of a fixed track for the height changes of the track, affected by the traffic load, are
the transition zones, i. j. between a fixed track and the classic construction of a railway
superstructure with a ballast bed. In the transition zone in the part towards “Bratislava” in
KM-position in Figure 6a, four points Pi in track axes no. 1 and no. 2 are measured, the
final height changes of which are shown by the graphs of time dependence in Figure 7a,b.
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(b) Track axis no. 2.

The transition zone in the part of the track towards “Zilina” are in Figure 6, and
the height changes are shown by the time dependence graphs in Figure 8. Their relative
position of TZ is shifted in the longitudinal direction in the photo in Figure 6b.
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5. Continuous Monitoring and Analysis of Track Geometry Quality in Transition Zones

The main task of VEGA research [13] at the Department of Railway Engineering
is to monitor the behavior of the spatial geometric position of the track axes on several
experimental sections on the main railway corridor Bratislava-Zilina-Kosice in the Slovak
Republic (within the European Corridor Va). The first sections of TZ are located within the
construction of the double-track tunnel “Turecky Vrch” in Trencianske Bohuslavice city in
Figures 2b and 5b (measurements 2012–2022), and the second experimental area is located
on the construction of a double-track railway bridge in Trencin in Figure 6b (measurements
2017–2022). The purpose of monitoring is to measure the spatial geometric position of the
track axes, immediately after the incorporation of building elements into the transition
zones. Experimental measurements of these transit zones were performed continuously
by a KRAB measuring trolley [17] with a step of 250 mm with wavebands λ = 1 ÷ 25 m in
Figure 9 within a complete section of the track.
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of continuous measurements of height changes LHD; (b) Photo [Hodas].

Operating deviations of geometric quantities in the evaluation of measurement results
are defined in three stages; V = 160 km/h are shown in Table 2 [18]:

- degree AL—Alert Limit: if the value is exceeded, it is necessary to assess the detected
change and plan future adjustments,

- degree IL—Intervention Limit (Corrections): if the value is exceeded, maintenance
works are performed,

- degree IAL—Immediate Action Limit: measures need to be taken to ensure that the
risk is reduced to an acceptable level.
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Table 2. Operating deviations AL, IL, and IAL [18] at speed of V = 160 km/h.

Parameters of Inspection

Operating
Deviations

Marginal
Operating
Deviations

AL
(mm)

IL
(mm)

IAL
(mm)

TG Track gauge +15/−4 +20/−6 +25/−7
RD Rail deformation - ±4 ±5

LHD Longitudinal height deviations 1 ±7 ±10 ±17
TD Track direction ±6 ±8 ±10
TC Track cant ±5 ±6 ±8

1 Figure 9a for the longitudinal height deviations (LHD).

The paper presents the results of monitoring the course of heights behavior in track
axes in transition zones (longitudinal height deviations—LHD) in our experiment for speed
on railway corridors in the Slovak Republic V = 160 km/h. Other monitoring parameters
(track gauge—TG, rail deformation—RD, track direction—TD, and track cant of rails—TC)
were also monitored by the KRAB measuring trolley according to the [18] standard but
are not the subject of this text. During the measuring run, the following so-called primary
track values are [17]:

- gauge (potentiometer transducer on the left wheel),
- alignment (lateral versine) of the right rail,
- top (vertical versine) of the right rail,
- cant (new, high reliable, and precise inclinometer),
- track gradient (option),
- track distance (odometer-optical encoder),
- measuring speed.

The following items of geometry inspection were available:

- actual alignment and level in wavebands λ = 1 ÷ 25 m,
- separation of all geometric signals into long wave (λ > 25 m) and short wave (λ < 25 m) parts,
- so-called section evaluation—statistic evaluation of the track geometry based on

standard deviation and quality index,
- table of local defects, print out of geometrical lay, and tables.

At the end of the evaluation of the measurements [13], we can state that the transition
zones, using the proposed building elements, represent an increase in the quality and
sustainability of the spatial geometry of the track, which is proven by Figures 10 and 11.
TZ objects are built in places where it is necessary to reduce the effects of the shock wave,
which is caused by trains running in contact with fixed obstacles (fixed track, bridge, tunnel,
culvert, etc.).

The results of measurements in the experimental track sections show that the stability
of the geometric position is ensured (in our case the vertical alignment). According to
the results of the inspection, it is proven that all the parameters of the limit deviations in
Table 2 were met (for a multi-year period). Reasons for material drops and elevations of
the railway body material in the transition zones are described in detail in the analysis of
measurements, where the resulting height shifts of the track axes in the TZ are also located
(in contrast to this continuous monitoring by KRAB). For the first time, the tracks were
tamped before the facilities were put into operation during the period of August 2017 (new
buildings). Due to the confirmed stability of the geometric position and height, during the
monitoring by continuous measurement with the measuring trolley KRAB [17], the second
tamping of the tracks took place in November 2021, depending on the criteria in Table 2
(the tamping works had to be done after 4 years).
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The height shifts of the particular points Pi by geodetic measurements are always
related to the first point depending on the KM-positioning of the axis of the track. The
predominant direction of travel of the trainsets (approx. 90%) is shown in Figures 7–11,
using the arrow sign “→ TRAINS”. All objects of the transition zones are designed in the
longitudinal slopes of the gradient, and the part towards “Zilina” is located in the arches.
In track axis no. 1 is radius R1 = 1007 m with cant D1 = 107 mm, and in track axis no. 2 is
R2 = 1000 m with cant D2 = 108 mm. The height shifts of the tracks are mainly influenced
by the predominant direction of the train’s operation and their location in the curves with
the cant (Figure 6a).

The graph in Figures 7a and 10a show that the trains push the gravel bed against
a fixed track (concrete block at the end of TZ) in the direction of the rising gradient in
the section with +10.718‰. Conversely, in Figures 7b and 10b, we can see that the train
“jumps” from a fixed track into a reinforced concrete tub with a gravel bed, pushing out the
material. The track gradient of axis no. 2 in this section decreases with a longitudinal slope
of −10.695‰ in the opposite direction of train travel.

Figure 10a shows that the train “jumps” from the concrete block of the fixed track to
the tub with the ballast of TZ in the descending direction of the track level at a gradient of
−11.543‰. From Figures 8b and 11b, it is clear that if the train in a given section is running
on a rising level slope, it pushes the material of the trackbed against the concrete block of
the fixed track.

All these monitored points behave depending on the shock wave in Figure 3a. It is,
of course, that the gradient of the tracks in the whole section, not only in the section of
TZ, is adjusted to the designed heights regularly according to the required criteria of the
STN 73 6360-2 [18], and depending on the inspection results.

6. Conclusions

Problem statement. The designed structural modifications of the objects in the tran-
sition zones significantly improve the conditions for maintaining the spatial geometric
position of the track axes in the correct designed position and heights [15,18]. Despite these
measures, the construction will not avoid the height changes of the track level, which is
necessary after non-compliance with the criteria in Table 2 to adjust to the designed heights
using tamping machines.

Case study description. During the inspection of the tracks in the mentioned sections,
it is obvious that during the operation on the track, the heights in a certain part of the
transition zone change by compressing the material and also by pushing it with impact
force. As a rule, the extrusion of the material in the direction of the sinusoidal curve takes
place behind the concrete block of the fixed track at each of the transition zones, as we can
see in Figures 7–11. The shock wave represents a large destructive force arising from the
wheels of heavy train traffic, and also, the higher the train speed, the greater the force.

The space position diagnostics and inspection of the section near the new bridge in
Trencin started with the first measurement before the line was put into operation in August
2017. The subsequent further measurement took place during operation in November 2017,
and all these measurements are still taking place today.

Main results. These sections must be adjusted by tamping throughout the operation
so that deformation does not occur in the transition zone with the destruction of railway
and building material. With a well-built transition zone, it is not necessary to adjust the
track axes frequently and repeatedly, as research has shown.
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