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Abstract: This paper proposes a novel active disturbance compensation framework for exactly po-
sitioning control of electro-hydraulic systems (EHSs) subject to parameter deviations, unknown
dynamics, and uncertain external load without velocity measurement mechanism. In order to accu-
rately estimate and then actively compensate for the effects of these uncertainties and disturbances
on the system dynamics, a combination between an extended sliding mode observer (ESMO) and a
linear extended state observer (LESO) is firstly established for position control of EHSs. In addition,
an inherited nonlinear filter-based trajectory planner with minor modifications is utilized to overcome
the barriers of inappropriate desired trajectories which do not consider the system kinematic and dy-
namic constraints. Furthermore, for the first time, the command filtered (CF) approach and prescribed
performance control (PPC) are successfully coordinated together and dexterously integrated into
the backstepping framework to not only mitigate the computational cost significantly and avoid the
“explosion of complexity” of the traditional backstepping design but also satisfy the predetermined
transient tracking performance indexes including convergence rate, overshoot, and steady-state error.
The stabilities of the observers and overall closed-loop system are rigorously proven by using the
Lyapunov theory. Finally, comparative numerical simulations are conducted to demonstrate the
advantages of the proposed approach.

Keywords: active disturbance compensation control (ADCC); extended sliding mode observer
(ESMO); linear extended state observer (LESO); command filtered approach (CFA); prescribed
performance control (PPC); electro-hydraulic system (EHS); trajectory planner (TP)

1. Introduction

In recent decades, electro-hydraulic systems (EHSs) have been widely employed in
various applications such as construction machinery [1], hydraulic presses [2], robot manip-
ulators [3], aircraft [4], and so forth which require tremendous force/torque, remarkable
physical endurance, and high-reliability [5,6]. Hence, achieving high-accuracy tracking per-
formance as one of the control problems for such EHSs has attracted considerable attention
from researchers in both academia and industry [7]. However, it is still a challenging task
owing to some disadvantages including high nonlinearity, parameter deviations, modeling
errors, unmodeled dynamics, and unknown external loads. In addition, the shortage of
state information is also another hindrance to attaining the desired tracking precision
since some system states, e.g., velocity and acceleration, may not be directly measured for
reducing the system cost or exactly observed due to the influence of measurement noise.
It is worth noting that nonlinear control methods, namely feedback linearization control
(FLC) [8,9], sliding mode control (SMC) [10,11], and backstepping control (BSC) [12–14]
are powerful tools to deal with nonlinearities in system dynamics of EHSs based on their
model compensation abilities. Remarkably, among the aforementioned control techniques,
the backstepping framework is the most appropriate methodology to construct a controller
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for high-order nonlinear EHSs by virtue of its recursive procedure. Nonetheless, there
are three main impediments that restrict the applicability of backstepping controllers in
real applications. Firstly, for high-order nonlinear systems, a backstepping framework-
based control strategy cannot achieve the desired tracking qualification in case of abruptly
changing reference trajectories. Secondly, the computational complexity is inevitable when
adopting the conventional backstepping technique because it is required to analytically
calculate the derivative of virtual control at each iteration. Finally, in the absence of
disturbances and uncertainties, a backstepping controller is able to achieve asymptotic
stability, however, the tracking performance indexes including settling time, overshoot,
and steady-state error are not explicitly exhibited.

It is worth noting that under the circumstance of a steep reference trajectory, it is
relatively difficult for traditional backstepping controllers to achieve a satisfactory transient
performance owing to the system kinematic and dynamic constraints. To ensure the feasi-
bility of the tracking trajectories, several algorithms [15–19] have been introduced to online
generate the optimally practicable tracking trajectories, which consider both dynamic and
kinematic restraints. Hence, the tracking performance was significantly enhanced as a
result. For the second drawback of the backstepping framework, to efficiently reduce
the computational complexity of the conventional backstepping due to the repeatedly
analytic derivative calculation of virtual control law at each step, dynamic surface control
(DSC) technique can be considered as a noticeable tool, which was originally introduced
in [20]. The essential principle of this concept is to use a first-order filter for the virtual
control at each backstepping iteration, and consequently, the first-order derivatives of
virtual control laws are calculable. This control technique has been successfully adopted in
previous works [21–24]. However, due to the lack of filter error compensation mechanisms,
only bounded stability is achieved when using the DSC approach. As a solution to this
problem, the command filter (CF) approach integrated into the backstepping design was
originally developed in [25], and has been utilized in various applications such as hydraulic
systems [26], active suspension systems [27], wind turbine hydraulic pitch systems [28,29],
and so on in recent years. Finally, to address the problem of how to satisfy the prede-
termined transient performance indexes, prescribed performance control (PPC) can be
considered as a potential solution that guarantees the convergence of the output tracking
errors to a predefined small region by taking the transient and steady-state characteristics
of tracking errors into account. The key concept of the PPC is that the tracking error of
the original system is transformed into a new coordinate system by using a monotonically
increasing function. Then, the original tracking error can be constrained within a prescribed
region if the transformed system is stable. Due to its merits, PPC has been utilized in many
practical applications such as turntable servomechanisms [30], vehicular platoons [31],
robot manipulators [32], MEM gyroscopes [33], pneumatic active suspension [34], electro-
hydraulic systems [35–39], and so on. However, it should be highlighted that it is really
difficult to realize a PPC algorithm in the case of a step-shaped reference trajectory without
adopting a trajectory planner. Furthermore, achieving a prescribed high-accuracy tracking
performance of an EHS in the presence of disturbances and uncertainties, and the lack of
system state information, is still exceedingly challenging.

In general, to actively cope with unknown disturbances in EHSs, the employment
of disturbance observers (DOBs) is a valuable solution. For instance, in [6], two linear
disturbance observers (LDOBs) were constructed to compensate for the effects of both
mismatched and matched disturbance in the dynamics of the EHSs, and consequently
the tracking performance is significantly improved. In [40], a nonlinear disturbance ob-
server (NDOB) was integrated into the controller to alleviate the effects of external dis-
turbances and the equivalent interactive force on the piston rod of the hydraulic actuator.
Kim et al. [41] proposed a high-gain DOB-based backstepping controller for EHSs, in which
two high-gain DOBs were constructed to enhance the system tracking performance. In ad-
dition, an adaptive DOB [42] was established based on a “sign” of the error function to
compensate for the time-varying disturbance, an asymptotic tracking performance was
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achieved correspondingly. However, due to the deficiency of full system state information,
separate state observers are essentially required. This leads to complicating the design
and subsequently reducing the reliability of the control system. Recently, extended state
observers (ESOs) developed by J. Han [43] which possess valuable characteristics such
as simple structure, ease for implementation, and effortless tuning procedure, have been
broadly employed for EHSs in estimating both immeasurable states and lumped uncertain-
ties in the system dynamics. In particular, in [44], output feedback nonlinear robust control
based on an ESO for EHSs was introduced to cope with both system nonlinearities and
modeling uncertainties. However, only lumped matched disturbance in hydraulic pressure
dynamics was compensated in this work. In the same way, in [45], an ESO-based adaptive
controller with a continuous LuGre friction compensation for an EHS was established.
Besides, it should be emphasized that extended sliding mode observers (ESMOs) with
precious features of robustness against uncertainties, finite-time convergence of estimation
have been applied to a wide range of applications including Markovian jump linear sys-
tems [46], interior permanent magnet synchronous motor (IPMSM) [47], three-phase power
converters [48], surface-mounted permanent magnet synchronous motors (SPMSMs) [49],
descriptor stochastic systems [50], and so on. For the hydraulic applications, in [51], a com-
bination of an ESMO and an ESO was integrated into an admittance controller for hydraulic
robots. Specifically, in this control scheme, the ESMO was adopted in the outer loop to
observe not only contact force with an environment but also the joint velocities which are
proven to be robust against unknown friction force in hydraulic actuators. Meanwhile,
an ESO was employed to address matched disturbance in hydraulic systems. Nonethe-
less, it can be observed that ESMOs have not been applied in EHS control systems in
the literature.

Motivated by the above discussion, a novel trajectory adjustment mechanism-based
active disturbance rejection control (ADRC) aiming to achieve high-accuracy tracking
performance for EHSs with hydraulic rotary actuators (HRAs) in the presence of immea-
surable velocity and lumped uncertainties caused by parameter deviations, modeling
errors, and unknown external disturbances is originally proposed in this article. The main
advantages of the proposed control strategy are summarized as follows:

1. A novel trajectory adjustment mechanism-based active disturbance compensation
control framework with prescribed tracking performance is introduced to achieve
a high-accuracy tracking performance for an EHS subject to disturbances, model
uncertainties, and both kinematic and dynamic constraints.

2. Compared to the conventional ESO [44,52], with the same observer bandwidth,
an ESMO is developed for to estimate the angular velocity more accurately and
better react against unknown fast-changing external loads in the mechanical system.
In addition, a new disturbance rejection mechanism in which a LESO and an ESMO are
combined to obtain a better estimation performance. Accordingly, a higher precision
tracking capability is achieved.

3. As a corrective version of an approach in [34], for the first time, the PPF and CF
approaches are successfully coordinated in the backstepping framework for EHSs
to not only efficiently reduce the computational burden and avoid the “explosion of
complexity” but also guarantee the prescribed tracking performance.

4. The stability of the closed-loop system is rigorously demonstrated using the Lyapunov
theory. The superiority of the suggested method is convincingly validated through
comparative numerical simulation results in MATLAB/Simulink environment.

The rest of the article is structured as follows. In Section 2, the system modeling and
control problem placement are provided. The observers, i.e., an ESMO and a LESO; trajec-
tory adjustment mechanism; and control strategy are developed in Section 3. Comparative
numerical simulations are conducted in Section 4. Finally, Section 5 concludes this paper.
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2. System Modeling and Problem Placement

The control system architecture of the considered EHS is illustrated in Figure 1. The an-
gular position of the inertial load is exactly measured by a high-resolution encoder, whereas
two pressure transducers are adopted to precisely observe the pressures in the two cham-
bers of the HRA. The main control element of the system is a high-bandwidth servo valve
used to manipulate the motion of the inertial load.

A
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u t( )

Q
2

Q
1

Ps P = 0T

Controller

P
1 P

2
q

u t( )

Desired

TrajectoryServo Valve
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Inertial

Load

HRA

(a) (b)

Figure 1. The studied electro-hydraulic system configuration. (a) The architecture of the EHS control
system; (b) The hydraulic circuit of the considered EHS.

2.1. System Modeling

Applying the second Newton’s law, the motion dynamics of the inertial load can be
derived by

Jθ̈ = DmPL − Bθ̇ − A f S f (θ̇)− τd (1)

where J and θ denote the inertial moment and angular position of the load, respectively; Dm
and PL = P1 − P2 correspond to the radian displacement and pressure difference, i.e., load
pressure, between two chambers with P1 and P2 signify the pressures in the forward and
reverse chambers of the HRA, respectively; B reflexes the total viscous friction coefficient;
A f represents the magnitude of Coulomb friction with known shape defined by the S f
function [52]; and τd is the lumped uncertainty due to unknown external load, model
uncertainties, and parametric deviations.

The load pressure dynamics are given by [53]

Vt

4βe
ṖL = −Dm θ̇ + QL − CtPL + q(t) (2)

where Vt is the total control volume of the HRA, βe represents the effective buck modulus
of the hydraulic fluid, Ct denotes the internal leakage coefficient, q(t) reflexes the grouped
uncertain term caused by modeling errors and parameter deviations, and QL is the load
flow rate which is defined by [53]

QL = kqxv

√
(PS − sign(xv)PL) (3)

where kq = Cdw
√

1/ρ is the flow gain, Cd represents the discharge coefficient, w is the
spool valve area gradient, and ρ is the density of the hydraulic fluid. xv denotes the valve
spool displacement which is proportional to the control signal u applied to the servo
valve [44,52,54], i.e., xv = kuu, ku > 0 is the servo valve coefficient; kt = kqku signifies the
total flow gain with respect to u; PS is the supply pressure; and sign(•) is the standard
signum function.
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Set x = [x1, x2, x3]
T ∆
= [θ, θ̇, DmPL/J]T as the system state vector. According to (1)–(3),

the whole system dynamics can be obtained in the state-state representation as

ẋ1 = x2

ẋ2 = x3 + f2(x) + d1(t)

ẋ3 = f3(x) + g3(x, u)u + d2(t)

(4)

where f2(x), f3(x), g3(x, u), d1(t), and d2(t) are given by

f2(x) = −
B
J

x2 −
A f

J
S f (x2)

f3(x) = −
4D2

mβe

JVt
x2 −

−4βeCt

Vt
x3

g3(x, u) =
4Dmβekt

JVt

√
1
ρ
(PS − sign(u)

J
Dm

x3)

d1(t) = τd/J; d2(t) =
4Dmβe

JVt
q(t)

2.2. Problem Statement

The primary control objective is to design a control law that can achieve a prescribed
tracking performances including overshoot, convergence rate, and steady-state tracking
error under the effects of disturbances on the mechanical and hydraulic systems with both
smooth and non-smooth desired reference trajectories and the nominal system parameters
are assumed to be known.

To facilitate the control and observer design, the following reasonable assumptions
are given as

Assumption 1 ([6,7]). The pressures P1, P2 and the load pressure PL are bounded by the supply
pressure PS to guarantee that the function g3(x, u) is strictly positive.

Assumption 2 ([52]). The mismatched and matched lumped disturbances d1(t) and d2(t) are bounded,
and their first-order derivatives are bounded by constants; i.e.,

∣∣ḋ1(t)
∣∣ ≤ δ1 and

∣∣ḋ2(t)
∣∣ ≤ δ2.

Assumption 3 ([44]). The function f2(x) and f3(x) are globally Lipschitz with respect to x2;
and g3(x) is also Lipschitz in the working condition. Their Lipschitz constants are k f2 , k f3 ,
and kg3 , respectively.

Lemma 1. Consider the following Lyapunov function V satisfying

V̇ ≤ −aVγ (5)

where a > 0 and 0 < γ < 1. It can be recognized that, V converges to origin in finite time t f
determined by

t f ≤
V1−γ(0)
a(1− γ)

(6)

Proof. The inequality (5) can be rewritten as

V−γV̇ ≤ −a⇔ 1
1− γ

dV1−γ

dt
≤ −a

⇒ dV1−γ ≤ −a(1− γ)dt
(7)
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Integrating both side of (7), the converging time is bounded by

t f =
V1−γ(0)
a(1− γ)

(8)

This completes the proof of Lemma 1.

Lemma 2 ([6]). Considering a Lyapunov function V that satisfy the following inequality

V̇ ≤ −aV + b (9)

where a and b are positive constants.
The function V reaches a region whose bound is determined by b/a as t → ∞, i.e., globally

ultimately uniformly bounded stability (GUUB) is achieved.

3. Active Disturbance Rejection Control Design

The proposed control strategy is illustrated in Figure 2. In order to actively com-
pensate for the effects of both lumped mismatched and matched uncertainties and the
lack of angular velocity measurement, the two observers, i.e., an ESMO and a LESO, are
constructed. Consequently, the estimated velocity and generalized disturbances are fed
back into the main controller whose input generated from a trajectory planner. Inherited
from [19], a nonlinear variable structure filter-based trajectory planner with minor modifi-
cations is developed to relax the demand on smooth reference trajectory of the conventional
backstepping technique by considering the kinematic constraints of the physical system.
The designs of observers, trajectory planner, and main control strategy will be deliberately
presented in the following sections.

Trajectory

Planner

(32) (33)

Backstepping

Controller

(45) (51) (58)

Hydraulic

System

(4)

Constraints

ESMO

(12)

LESO

(24)

u

x2
^

x3

x2
^

d1

^

d2

^

u ua

x1

xr
xd

Mixed Observer

Saturation

x1d
+

.
x1d

.
x1d

+
..

x1d

_..
x

1
x3

_

Figure 2. The proposed control scheme.

3.1. Observer Design
3.1.1. Extended Sliding Mode Observer Design

Consider the mechanical system which is constituted by the first two equations of (4) as

ẋ1 = x2

ẋ2 = x3 + f2(x) + d1(t)
(10)

By extending xe1 = d1(t) as a new state and h1(t) as the derivative of xe1, the system
dynamics (10) can be rewritten as

ẋ1 = x2

ẋ2 = x3 + f2(x) + xe1

ẋe1 = h1(t)

(11)
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To estimate the angular velocity x2 of the actuator and lumped disturbance d1(t),
the ESMO is constructed as

˙̂x1 = x̂2 + `1sign(x1 − x̂1)

˙̂x2 = x3 + f2(x̂) + x̂e1 + 2ω1`1sign(x1 − x̂1)

˙̂xe1 = ω2
1`1sign(x1 − x̂1)

(12)

where `1 is a positive constant and ω1 is the observer bandwidth determined later.
Let x̃i = xi − x̂i being the estimation error with i = 1, 2, e1. From (11) and (12), error

dynamics of the observer are determined by

˙̃x1 = x̃2 − `1sign(x̃1)

˙̃x2 = f̃2 + x̃e1 − 2ω1`1sign(x̃1)

˙̃xe1 = h1(t)−ω2
1`1sign(x̃1)

(13)

Theorem 1. By employing the ESMO (12), the angular velocity of the HRA and lumped mis-
matched disturbance estimation errors, i.e., x̃2 and x̃e1, approach to arbitrarily small bounded regions
whose boundaries depend on the selection of observer bandwidth ω1.

Proof of Theorem 1. Consider a Lyapunov function as

Vx1 =
1
2

x̃2
1 (14)

Taking time derivative of it and combining with (13) yields

V̇x1 = x̃1 ˙̃x1

= x̃1(x̃2 − `1sign(x̃1))

≤ −(`1 − |x̃2|)|x̃1|
(15)

Obviously, in the region |x̃2| ≤ `1 − `0 with `0 > 0, the following inequality holds

V̇x1 ≤ −`0|x̃1| (16)

When sliding mode occurs, the reduced-order system dynamics are equivalent to
x̃2 = k1sign(x̃1), hence, (13) becomes

˙̃x2 = f̃2 + x̃e1 − 2ω1 x̃2

˙̃xe1 = h1(t)−ω2
1 x̃2

(17)

Define the scale estimation error vector as ε = [ε1, ε2]
T = [x̃2, x̃e1/ω1]

T , (17) is rewrit-
ten as

ε̇ = ω1 A1ε + B1 f̃2 + C1
h1(t)
ω1

(18)

where

A1 =

[
−2 1
−1 0

]
; B1 =

[
1
0

]
; C1 =

[
0
1

]
Because the matrix A1 is Hurwitz, there exists a symmetric positive definite matrix P1

that satisfies the following Lyapunov equation

AT
1 P1 + P1 A1 = −2I2 (19)

where I2 is the identity matrix of size 2.
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Consider the following Lyapunov function

Vε =
1
2

εT P1ε (20)

Taking time derivative of (20), one obtains

V̇ε = −ω1εTε + εT P1B1 f̃2 + εT P1C1
h1(t)
ω1

(21)

Applying Young’s inequalities, we have

V̇ε ≤ −(ω1 −
1
2

λmax(X1)k2
f2
− 1)εTε +

1
2ω2

1
λmax(Y1)δ

2
1

≤ −a1Vε + b1

(22)

where X1 = BT
1 PT

1 P1B1, Y1 = CT
1 PT

1 P1C1; λmax(X1), and λmax(Y1) are the maximum eigen-
values of the matrices X1 and Y1, respectively.

a1 =
1

λmax(P1)
(ω1 −

1
2

λmax(X1)k2
f2
− 1)

b1 =
1

2ω2
1

λmax(Y1)δ
2
1

(23)

where λmax(P1) is the maximal eigenvalue of the matrix P1.
Theorem 1 is completely proven.

Remark 1. To eliminate the chattering in the estimated values of the mismatched disturbance
and angular velocity, the “sign” function in (12) is replaced by the hyperbolic tangent function,
i.e., “tanh” function.

3.1.2. Matched Disturbance Observer Design

Since the load pressure PL can be directly calculated through measured pressures P1
and P2 in the forward chamber and reverse chamber of the HRA, respectively, the LESO is
constructed to estimate the lumped disturbance in the hydraulic system as

˙̂x3 = f3(x̂) + g3(x̂, u)u + x̂e2 + 2ω2(x3 − x̂3)

˙̂xe2 = ω2
2(x3 − x̂3)

(24)

where xe2 = d2(t) and ẋe2 = h2(t) with h2(t) is the first-order derivative of d2(t).
Set x̃3 = x3 − x̂3 and x̃e2 = xe2 − x̂e2 as the estimation errors, the estimator error

dynamics of the LESO are given by

˙̃x3 = f̃3 + x̃e2 − 2ω2 x̃3

˙̃xe2 = h2(t)−ω2
2 x̃3

(25)

where f̃3 = f3(x)− f3(x̂), and ω2 is the bandwidth of the constructed LESO.
Defining η = [η1, η2]

T = [x̃3, x̃e2/ω2]
T as scaled estimation error vector, the error

dynamics (25) can be transformed into

η̇ = ω2 A2η + B2 f̃3 + C2
h2(t)
ω2

(26)

where

A2 =

[
−2 1
−1 0

]
; B2 =

[
1
0

]
; C2 =

[
0
1

]
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Since the matrix A2 is strictly negative definite, there exists a symmetric positive
definite P2 that satisfies the following Lyapunov equality

AT
2 P2 + P2 A2 = −2I2 (27)

where I2 is the identity matrix of size 2.

Theorem 2. The established LESO guarantees that the estimation error of the lumped matched
disturbance d2(t) converge to an arbitrarily small bounded region whose boundary depends on the
selection of the observer gain ω2 and the estimation accuracy of x2 of the above ESMO.

Proof of Theorem 2. Consider the following candidate Lyapunov function

Vη =
1
2

ηT P2η (28)

Differentiating (28) with respect to time yields

V̇η = −ω2ηTη + ηT P2B2 f̃3 + ηT P2C2
h2(t)
ω2

(29)

Applying Young’s inequality, we have

V̇η ≤ −ω2ηTη +
1
2

ηTη +
1
2

BT
2 PT

2 P2B2 f̃ 2
3 +

1
2

ηTη +
1
2

CT
2 PT

2 P2C2
h2

2(t)
ω2

2

≤ −(ω2 − 1)ηTη +
1
2

λmax(X2)k f3 x̃2
2 +

1
2

λmax(Y2)
δ2

2
ω2

2

(30)

As stated in Theorem 1, it can be observed that x̃2 converges to the arbitrarily small
region, hence, a globally ultimately bounded stability of the LESO is ensured. The bound
of this region is specified by the designed observer bandwidths ω1 and ω2.

This completes the proof of Theorem 2.

Remark 2. By appropriately choosing the switching gain `1 and the bandwidth ω1 of the ESMO,
the estimation errors of immeasurable velocity and lumped mismatched uncertainty reach arbitrarily
small bounded regions. The estimation accuracy of the generalized matched disturbance in hydraulic
dynamics depends on not only the bandwidth of the LESO, i.e., ω2 but also the estimation accuracy
of the angular velocity.

3.2. Trajectory Planner Design

It is worth noting that for the conventional backstepping, the desired reference trajec-
tory should be carefully designed to be sufficiently smooth and bounded, and its derivatives
are also continuous and bounded. Therefore, it is extremely challenging to maintain a
high-accuracy tracking performance of the closed-loop system in the case of step reference
trajectories. Inherited from [19], a modified nonlinear filter-based trajectory planner for
online trajectory planning is utilized to transform the original trajectory into an appropriate
one by considering the system constraints, whose structure is depicted in Figure 3.

Therefore, the trajectory planner guarantees its output, i.e., newly reference trajectory,
is smooth, tracks the original reference trajectory in minimum time without overshoot,
and satisfies the prescribed kinematic constraints, i.e., lower bound and upper bound
of velocity and acceleration, depending on the system specifications. The mathematical
representation of this planner is as follows:
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Figure 3. The structure of the nonlinear filter-based trajectory planner.

The integrator chains are mathematically represented as[
x1d(k + 1)
ẋ1d(k + 1)

]
=

[
1 T
0 1

][
x1d(k)
ẋ1d(k)

]
+

[
T2/2

T

]
u(k) (31)

where the pair (x1d(k), ẋ1d(k)) represents the state vector, T is the system sampling time,
u(k) = ẍ1d(k) is the control action of the integrator chain, and k denotes the sample number,
i.e., t(k) = kT.

Compared to [19], the control law u(k) is redesigned as

u(k) =

{
ẍ−1dtanh(Ctpσ(k)), if σ(k) ≥ 0

−ẍ+1dtanh(Ctpσ(k)), otherwise
(32)

where Ctp is a positive constant, σ(k) = ż(k)− ˙̃z(k) with ż(k) and ˙̃z(k) are determined via
following equations

ż+ = −
ẋ+1d − ẋr(k)

Tẍ−1d
; z+ =

⌈
ż+
⌉[

ż+ − dż
+e − 1

2

]
ż− = −

ẋ−1d − ẋr(k)
Tẍ+1d

; z+ =
⌈
−ż−

⌉[
−ż− − d−ż−e − 1

2

]

[α, β] =


[
ẍ+1d, ẍ−1d

]
, if

y(k)
T

+
ẏ(k)

2
> 0[

ẍ−1d, ẍ+1d
]
, otherwise

z(k) =
1

Tα

∣∣∣∣y(k)T
+

ẏ(k)
2

∣∣∣∣
γ(k) =


z+, if z(k) < z+

z(k), if z+ ≤ z(k) ≤ z−

z−, if z(k) > z−

m(k) =

⌊
1 +

√
1 + 8|γ(k)|

2

⌋
˙̃z(k) = − γ(k)

m(k)
− m(k)− 1

2
sign(γ(k))

ż(k) =


ẏ(k)
T|α| , if

[(
z(k) ≥ 0&

ẏ(k)
T|α| ≤

˙̃z(k)
)

or
(

zk < 0&
ẏ(k)
T|α|

)]
ẏ(k)
T|β| +

(
m(k)− 1

2
+
|γ(k)|
m(k)

)
α + β

|β| , otherwise

(33)

where ẍ−1d, ẋ−1d; ẍ+1d, and ẋ+1d are the lower bounds and upper bounds of the acceleration
and velocity so-called kinematic constraints of the system, i.e., ẋ−1d ≤ ẋ1d ≤ ẋ+1d and ẍ−1d ≤
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ẍ1d ≤ ẍ+1d, respectively; ẋr and ẋr denote the original desired velocity and acceleration,
respectively; y(k) = x1d(k)− xr(k) represents the filter tracking error, and ẏ(k) = ẋ1d(k)−
ẋr(k) reflexes the filter velocity error; b•c and d•e correspond to the floor and ceil functions
of their arguments.

For the sake of conciseness, the theoretical proof of the trajectory planner is omitted in
this paper. Refer to [19] for details.

Remark 3. The primary purpose of construction of the trajectory planner is to relax the restriction
on the requirement of sufficient smooth reference trajectories of the conventional backstepping
framework. In addition, by considering the kinematic constraints of the EHS, the stress on the actual
control input is significantly mitigated. Besides, since the filtered trajectory always commences from
zero, the initial matching condition is satisfied to avoid the saturation of the control input effectively
as a result.

3.3. Controller Design with Prescribed Tracking Performance

The primary control objective is to design a control law that ensures the output
tracking error, i.e., ε1 = x1 − x1d, satisfies the prescribed tracking performances including
convergence rate, overshoot, and steady-state error under both smooth and abruptly
changing reference trajectories.

The desired performance function is defined by

ρ(t) = (ρ0 − ρ∞)e−φt + ρ∞ (34)

where φ > 0 signifies the convergence rate, ρ0 > 0 and ρ∞ > 0 are determined as

lim
t→0

ρ(t) = ρ0; lim
t→∞

ρ(t) = ρ∞; and ρ0 > ρ∞ (35)

Remark 4. The function (34) is strictly positive monotonically decreasing and bounded. This
function converges to a small value defined by ρ∞ which can be regarded to be the steady-state error,
whereas ρ0 can be thought as the initial error and φ designates the convergence rate of the error.

The design control algorithm must guarantee that the output tracking error e1 satisfies
the inequality, i.e., prescribed tracking performance, presented as follows:

− υρ(t) < e1 < υρ(t), ∀t ≥ 0 (36)

where υ and υ are the positive constants selected by designers. To do so, the initial tracking
error must satisfy e1(0) > −υρ(0) and e1(0) < υρ(0). The figurative illustration of the
prescribed tracking performance control is depicted in Figure 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

1

Figure 4. An example of the prescribed time-varying tracking performance with ρ0 = 1, ρ∞ = 0.03,
υ = 1, υ = 1, and φ = 10.
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The above condition can be transformed into

ε1 = ρ(t)S(z1) (37)

where S(z1) is a smooth and monotonically increasing function that is mathematically
represented as

S(z1) =
υez1 − υe−z1

ez1 + e−z1
(38)

From the definition of the function S(z1), some interesting features of it can be listed
as follows:

(1) −υ < S(z1) < υ
(2) lim

z1→+∞
S(z1) = υ and lim

z1→−∞
S(z1) = υ

From (37) and (38), the conversion error z1 of the actual tracking error e1 can be
expressed by

z1 =
1
2

log
λ + υ

υ− λ
(39)

where λ = ε1/ρ(t) and log(•) is the natural logarithm operator of •.

Remark 5. The prescribed tracking performance (36) is equivalent to the bounded tracking of
the conversion error z1. It means that when z1 is bounded, the prescribed performance (36) is
always satisfied.

Taking time derivative of (39) yields

ż1 =
1
2

(
1

λ + υ
+

1
υ− λ

)(
ė1

ρ
− e1ρ̇

ρ2

)
(40)

Considering the system dynamics (4), one obtains

ż1 = ζ

(
x2 − ẋ1d −

e1ρ̇

ρ

)
(41)

where ζ = 1
2ρ

(
1

υ−λ + 1
λ+υ

)
.

To applying CF approach, the tracking error and compensated tracking error signal
for the first step are designed as

e1 = z1

v1 = e1 − ξ1
(42)

where the dynamic of ξ1 is given by

ξ̇1 = −k1ξ1 + ζ(x2c − α1) + ζξ2 (43)

with ξ1(0) = 0 and x2c is the filtered signal of α1 determined by

Tf ẋ2c + x2c = α1

where the filter initial conditions are x2c(0) = α1(0) and ẋ2c(0) = 0, and Tf is time constant
designed later.

A Lyapunov function is chosen as V1 = 1/2v2
1, taking time derivative of it then

combining with (42) and, (43) we have

V̇1 = v1v̇1

= ζz1

(
ζx2 − ζ ẋ1d − ζ

ε1ρ̇

ρ
+ k1ξ1 − ζx2c + ζα1 − ζξ2

) (44)
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Define e2 = x2 − x2c and v2 = e2 − ξ2 as an auxiliary tracking error and compensated
tracking error for the second step, respectively. The virtual control law α1 is chosen as

α1 = ẋ1d +
ε1ρ̇

ρ
− 1

ζ
k1e1 (45)

Substituting (45) into (44) leads to

V̇1 = −k1v2
1 + ζv1v2 (46)

The dynamic of ξ2 is designed as

ξ̇2 = −k2ξ2 + (x3c − α2) + ξ3 (47)

with ξ2(0) = 0 and x3c is the filtered signal of α2 determined by

Tf ẋ3c + x3c = α2

where the filter initial conditions are x3c(0) = α2(0) and ẋ3c(0) = 0.
A candidate Lyapunov function is chosen as

V2 = V1 +
1
2

v2
2 (48)

Taking derivative of V2 then combining with (4), (46) and (47), one obtains

V̇2 = V̇1 + v2v̇2

= −k1v2
1 + ζv1v2 + v2( f2 + (x3 − x3c − ξ3) + d1 − ẋ2c + k2ξ2 + α2)

(49)

Hence, the virtual control α2 is designed as follows:

α2 = − f2 − d1 + ẋ2c − ζv1 − k2e2 (50)

Since the terms x2 and d1 are immeasurable, their estimated value will be used,
the virtual control α2 is reconstructed as

α2 = − f̂2 − x̂e1 + ẋ2c − ζv1 − k2(x̂2 − x2c) (51)

The derivative of V2 is rewritten as

V̇2 = −k1v2
1 + ζv1v2 + v2( f2 + v3 + d1 − ẋ2c + k2ξ2 + α2)

= −k1v2
1 − k2v2

2 + v2v3 + v2 f̃2 + v2 x̃e1 + k2v2 x̃2
(52)

The tracking error of x3 is given by

e3 = x3 − x3c (53)

The compensated tracking error is determined as

v3 = e3 − ξ3 (54)

where the dynamic of ξ3 is determined as

ξ̇3 = −k3ξ3 (55)

Define the Lyapunov function as

V3 = V2 +
1
2

v2
3 (56)
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Taking derivative of V3, we have

V̇3 = V̇2 + v3v̇3

= −k1v2
1 − k2v2

2 + v2v3 + v3
(

f3 + g3u + d2 − ẋ3c − ξ̇3
) (57)

The actual control voltage applied to the system is designed as

u =
1
g3

(
− f̂3 − d̂2 + ẋ3c − (x̂2 − x2c − ξ2)− k3e3

)
(58)

Substituting (58) and (55) into (57) yields

V̇3 = −k1v2
1 − k2v2

2 − k3v2
3 + v2 f̃2 + v2 x̃e1 + k2v2 x̃2 + v3 f̃3 + v3 x̃e2 − v3 x̃2 (59)

Theorem 3. By employing control laws (45), (51), and (58) with regard to the CF approach with
error compensation mechanisms (43), (47), (55), and ESMO (12), ESO (24), the closed-loop system
output tracking capability satisfies the prescribed tracking performance defined in (36).

Proof of Theorem 3. See Appendix A.

4. Numerical Simulation and Discussion
4.1. Simulation Setup

The nominal system parameters of the studied EHS provided in Table 1 are used to
design the main control strategy and observers.

Table 1. Nominal system parameters of the studied EHS.

Parameter Unit Value Parameter Unit Value

J kg ·m2 0.2 Ct m3 · s−1 · Pa−1 1× 10−12

B N ·m · s · rad−1 90 Ps Pa 1× 107

Dm m3 · rad−1 5.8× 10−5 A f N ·m 10
βe Pa or N ·m−2 7× 108 Vt m3 1.16× 10−4

kt m3 · s−1 ·V−1 · Pa−1/2 1.1969× 10−8

To demonstrate the effectiveness of the proposed control strategy, the following con-
trollers are employed for comparison as:

(1) Proposed control strategy with controller gains as k1 = 350, k2 = 250, k3 = 150.
The bandwidths of the designed ESMO and ESO are chosen as ω1 = 450 and
ω2 = 450, respectively. The time constant of filters is Tf = 0.001. For the trajectory
planner, its parameters are selected based on the system specifications as ẍ+1d = 40,
ẍ−1d = −40, ẋ+1d = 30, ẋ−1d = −30, Ctp = 105, and T = 0.001.

(2) DESO-BC (Dual Extended State Observer-based Command Filtered Backstepping
Controller): Without the integration of PPC, the control structure and controller
parameters are chosen as same as the proposed controller. The two ESOs [52] are
designed to simultaneously estimate the angular velocity and both lumped mis-
matched and matched uncertainties, and their bandwidths are picked as ω1 = 450
and ω2 = 450.

(3) SESO-BC (Single Extended State Observer-based Command Filtered Backstepping
Controller): The output feedback controller is constructed based on command filtered
backstepping control (CF-BSC) framework , whose control architecture and controller
gains are designed equivalent to the DESO-BC controller. In this control scheme,
an ESO [44] is established to estimate immeasurable angular velocity, load pressure,
and lumped matched uncertainty with the bandwidth of the ESO is ω = 450.
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To examine the robustness of the three control approaches, the time-varying lumped
mismatched and matched disturbances d1(t) and d2(t) are purposely inserted into the
control system as

d1(t) = 500sin(πt/2) (rad/s2)

d2(t) = 5× 105sin(πt/2) (rad/s3)
(60)

Performance indexes in the steady-state regime including the maximum, average,
and standard deviation of the tracking errors [44] are used to measure the tracking qualifi-
cations of the above controllers. These terms are given by:

(1) Maximal absolute tracking error

Me = max
i=1,...,N

{|ε1(i)|} (61)

where ε1 is the output tracking error and N denotes the number of samples.
(2) Average tracking error

µe =
1
N

N

∑
i=1
|ε1(i)| (62)

(3) Standard deviation of the tracking errors

σe =

√√√√ 1
N

N

∑
i=1

(|ε1(i)| − µe)
2 (63)

4.2. Case Study 1: Non-Smooth Reference Trajectory

Firstly, the three controllers are tested with the reference trajectory (in radian unit)
which has the following form

x1d(t) =
{

0, if t < 5 s
π/8, if t ≥ 5 s

(64)

The tracking performances of all controllers are illustrated in Figure 5. To clearly
demonstrate the tracking capabilities of all controllers in the steady-state regime, two zoom-
in figures in the top-left region (from the 1st second to 3rd second) and bottom-left region
(from the 7th second to 9th second) of Figure 5 are given. As shown, the proposed control
strategy possesses the smallest tracking error during these periods. Meanwhile, due to
the lack of the mismatched disturbance compensation mechanism, the SESO-BC controller
performs the worst with the largest tracking error. In addition, regarding the transient
performances of all controllers, it can be seen from the sub-figure (from the 4.8th second
to the 5.5th second) in the bottom right corner of this figure that although the proposed
control method exhibits the longest transient time compared to the DESO-BC and SESO-BC
controllers, the smallest overshoot is achieved by the recommended controller.

Moreover, the original reference trajectory is smoothened by the designed nonlinear
filter-based trajectory planner (32) and (33), hence, the recommended approach guarantees
the prescribed tracking performance as depicted in Figure 6 even when the desired trajec-
tory changes abruptly and under the influences of the lumped mismatched and matched
disturbances on the mechanical part and hydraulic dynamic. The predefined time-varying
tracking performance is given by ρ(t) = (π/4− 0.002)e−10t + 0.002, υ = 1, and υ = 1.
It should be emphasized that only the tracking-error curve of the proposed controller
produced by the deviations between the system output and customized reference trajectory
is given for fair comparison since the remaining controllers completely cannot fulfill the
prescribed performance in the case of step desired trajectory.
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Figure 5. Tracking performances of all controllers in case of step reference trajectory.
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Figure 6. Tracking performance of the suggested controller in case of step reference trajectory.

The performance indexes of all controllers in the steady-state are given in Table 2.
It should be noted that the recommended control approach outperforms the remaining
controllers in terms of all performance indexes. Specifically, the DESO-BC and SESO-BC
controllers violate the output tracking error constraint with the maximal absolute tracking
errors being 23.0193× 10−4 (rad) and 57.6372× 10−4 (rad), respectively. Meanwhile, this
index attained by the suggested controller is only 7.5795× 10−4 (rad). The better results
are obtained by the suggested controller in terms of the remainder indexes. It indicates the
effectiveness of the recommended control framework in the disturbance attenuation ability
and tracking capability.

Table 2. Performance indexes of all controllers in the case of step reference trajectory in the steady-
state regime.

Controller Me (rad) µe (rad) σe (rad)

Proposed 7.5795× 10−4 4.7642× 10−4 2.0903× 10−4

DESO-BC 23.0193× 10−4 15.3353× 10−4 7.0569× 10−4

SESO-BC 57.6372× 10−4 38.8567× 10−4 17.4823× 10−4

The control actions generated by all controllers are demonstrated in Figure 7. It can be
seen from this figure that due to the influences of disturbances on system dynamics, the non-
zero control actions are always generated to compensate for their effects to maintain the
HRA at the desired position. Furthermore, it should be mentioned that when the reference
trajectory suddenly varies at the 5th second, because of the lack of the trajectory planner,
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the SESO-BC controller and DESO-BC controller must produce much higher control efforts
to track the step reference trajectory. On the contrary, since the filtered reference trajectory
is smooth, a remarkably less control endeavor is required to ensure the predefined tracking
performance. The results indicate that the trajectory planner plays an important role
in reducing the tracking overshoot and the control effort and achieving the prescribed
tracking qualification. Additionally, adopting a trajectory planner can be considered as
an effective way to avoid the critical input saturation problem which naturally exists in
real applications.

0 1 2 3 4 5 6 7 8 9 10

-10

-5

0

5

10

Figure 7. Control actions of all control approaches in case of step reference trajectory.

The estimation performances of angular velocity and both lumped unmatched and
matched disturbances are presented in Figure 8, Figure 9 and Figure 10, respectively. As
shown in Figures 8 and 9, with a similar bandwidth, the constructed ESMO can estimate
the velocity and lumped mismatched uncertainties more accurately compared to the well-
known ESO, hence, better disturbance rejection capability is attained by the proposed control
approach. Although the SESO-BC possesses the cost-effectiveness by employing position
sensor only, due to the nonexistence of mismatched disturbance estimation and compensation
mechanism, the SESO-BC control approach exhibits the worst estimation performances of
immeasurable angular velocity and lumped matched disturbance. Therefore, the overall
tracking ability of SESO-BC controller is considerably deteriorated compared to the remaining
control approaches.
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Figure 8. Angular velocity estimation performances of all control approaches in case of step refer-
ence trajectory.
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Figure 9. Lumped mismatched uncertainty estimation performances of all control approaches in case
of step reference trajectory.
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Figure 10. Lumped matched uncertainty estimation performances of all control approaches in case of
step reference trajectory.

4.3. Case Study 2: Smooth Reference Trajectory

To further examine the effectiveness of the proposed control method, a sinusoidal
reference trajectory is employed as x1d(t) = π

4 sin(πt/2) (rad). The time-varying prescribed
performance function is kept as same as in the above case study. As shown in Figure 11,
by virtue of disturbance compensations, all control approaches can track the reference
trajectory consistently in spite of the effects of disturbances on the system dynamics.
Nonetheless, the DESO-BC and SESO-BC controllers violate the predefined output tracking
error constraints as illustrated in Figure 12. Meanwhile, the proposed controller with
the PPC mechanism is still able to guarantee the smallest tracking error and satisfy these
constraints. It is worth noting that the mismatched and matched disturbances on the control
system are estimated more exactly by the combination of the ESMO and ESO and then
effectively suppressed by the proposed method, consequently.
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Figure 11. Tracking performances of all controllers in case of sinusoidal reference trajectory.

The tracking performance indexes of all controllers are provided in Table 3. Similar
to the step reference trajectory case study, the suggested control strategy performs better
in terms of all performance indexes with smaller values of the maximal absolute tracking
error, average tracking error, and standard deviation compared to the remainder control
approaches. The results indicate tracking ability and robustness of the proposed method in
the presence of disturbances and the nonexistence of velocity measurement mechanism.
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Figure 12. Tracking errors of all controllers in case of sinusoidal reference trajectory.

Table 3. Performance indexes of all controllers in the case of the smooth reference trajectory.

Controller Me (rad) µe (rad) σe (rad)

Proposed 7.7322× 10−4 5.0029× 10−4 2.2030× 10−4

DESO-BC 27.1048× 10−4 16.4598× 10−4 7.7958× 10−4

SESO-BC 67.3774× 10−4 39.7416× 10−4 18.6279× 10−4

Through the two case studies, it can be observed that the proposed control method
can be considered as a valuable solution to achieve the predefined performance for tracking
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control of the EHSs subject to parameter deviations, modeling errors, and unknown exter-
nal disturbances. In this control scheme, the trajectory planner can be separately designed
to ensure that the filtered trajectory is feasible since it takes the kinematic constraints into ac-
count. Based on that the input saturation problem is actively avoided and the high-accuracy
tracking performance can be achieved. In terms of estimation qualification, compared to
the well-known ESO design which is widely adopted in the literature, the ESMO exhibits a
higher estimation accuracy. Besides, the PPC is skillfully integrated into the CF-BSC control
framework to guarantee that the system output is able to track the desired trajectory with
the prescribed convergence rate, overshoot, and steady-state error. However, the prede-
fined performance should be carefully selected to avoid the singularity problem which may
cause unexpected issues and should be sufficiently considered in real applications.

5. Conclusions

In this paper, a novel active disturbance rejection control framework was proposed
to achieve a high-accuracy prescribed tracking performance for EHSs without velocity
measurement mechanism in the presence of both lumped mismatched and matched dis-
turbances caused by parameter deviations, modeling errors, and unknown external loads.
To precisely approximate the angular velocity and these disturbances, dual observers,
i.e., an ESMO and an ESO, were established. In addition, a trajectory planner considering
the kinematics constraints of the EHSs inherited from [19] with minor alterations was
constructed to customize the original step reference trajectory, which ensures that the modi-
fied reference trajectory always commences at the origin, tracks the original in finite-time,
and is sufficiently smooth. Moreover, the integration of the PPC into the CF-BSC based
on the designed dual observers and trajectory planner guaranteed that the “explosion of
complexity” of the traditional backstepping was effectively avoided and the predefined
tracking performances were attained. The stability of the observers and closed-loop control
system was rigorously proven by Lyapunov theory. The numerical simulation results
showed that the recommended control framework ensures the smallest tracking errors in
comparison with other CF-BSC approaches based on well-known ESO design in both cases
of the smooth and non-smooth reference trajectories. Parametric uncertainties and time-
varying constraints on kinematics and dynamics of the EHS will be deliberately considered
in future works.
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Appendix A

Consider the following Lyapunov function

V =
1
2

z2
1 +

1
2

z2
2 +

1
2

z2
3 +

1
2

εT P1ε +
1
2

ηT P2η (A1)

From (22), (30), and (59), the derivative of V is determined by

V̇ ≤− k1v2
1 − k2v2

2 − k3v2
3 + v2 f̃2 + v2 x̃e1 + k2v2 x̃2 + v3 f̃3 + v3 x̃e2 − v3 x̃2

−
(

ω1 −
1
2

λmax(X1)k2
f2
− 1
)

εTε +
1

2ω2
1

λmax(Y1)δ
2
1

− (ω2 − 1)ηTη +
1
2

λmax(X2)k2
f3

x̃2
2 +

1
2

λmax(Y2)
δ2

2
ω2

2

(A2)

Applying Young’s inequality to (A2), we have

V̇ ≤− k1v2
1 −

(
k2

2
− 1
)

v2
2 −

(
k3 −

3
2

)
v2

3 +
1
2

(
k2

f2
+ k2 + k2

f3
+ λmax(X2)k2

f3
+ 1
)

εTε

−
(

ω1 −
1
2

λmax(X1)k2
f2
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(A3)

Equation (A3) can be rewritten as

V̇ ≤ −k1v2
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where

Γ = min


2k1; k2 − 2; 2k3 − 3;

2
λmax(P1)

(
ω1 −

1
2
(λmax(X1) + 1)k2

f2
− 1

2
(λmax(X2) + 1)k2

f3
− 1

2
k2 −

3
2

)
;

2
λmax(P2)

(
ω2 −

3
2

)


Φ =
1

2ω2
1

λmax(Y1)δ
2
1 +

1
2

λmax(Y2)
δ2

2
ω2

2

It can be seen that V reaches a arbitrarily small region whose bound is specified by the
controller gains k1, k2, and k3 and the observer bandwidths ω1 and ω2.

Hence, Theorem 3 is completely proven.
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