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Abstract: The present work aims at cost-effective approaches for biodiesel conversion from niger
seed (NS) oil by employing the transesterification process, Box–Behnken design (BBD), and artificial
intelligence (AI) tools. The performances of biodiesel yield are reliant on transesterification variables
(methanol-to-oil molar ratio M:O, reaction time Rt, catalyst concentration CC, and reaction tempera-
ture RT). BBD matrices representing the transesterification parameters were utilized for experiment
reductions, analyzing factor (individual and interaction) effects, deriving empirical equations, and
evaluating prediction accuracy. M:O showed a dominant effect, followed by CC, Rt, and RT, respec-
tively. All two-factor interaction effects are significant, excluding the two interactions (Rt with RT
and M:O with RT). The model showed a good correlation or regression coefficient with a value equal
to 0.9869. Furthermore, the model produced the best fit, corresponding to the experimental and
predicted yield of biodiesel. Three AI algorithms were applied (the big-bang big-crunch algorithm
(BB-BC), firefly algorithm (FA), and grey wolf optimization (GWO)) to search for the best transes-
terification conditions that could maximize biodiesel yield. GWO and FA produced better fitness
(biodiesel yield) values compared to BB-BC. GWO and FA experimental conditions resulted in a
maximum biodiesel yield equal to 95.3 ± 0.5%. The computation time incurred in optimizing the
biodiesel yield was found to be equal to 0.8 s for BB-BC, 1.66 s for GWO, and 15.06 s for FA. GWO
determined that the optimized condition is recommended for better solution accuracy with a slight
compromise in computation time. The physicochemical properties of the biodiesel yield were tested
according to ASTM D6751-15C; the results are in good agreement and the biodiesel yield would be
appropriate to use in diesel engines.
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1. Introduction

Energy is the dominant sector that stimulates the economy (in terms of growth, pro-
gressive development, societal status, and national security) of all countries [1,2]. Energy
fulfills the basic need (food, light), necessary health care systems (vaccines, intensive care,
and controlled temperature-monitoring medical equipment), educational aids (computer,
television, Internet-based information transfer such as email, world-wide-web, virtual
meetings, and so on), and serves as fuel for productive activities in industry, transport,
agriculture, manufacturing, mining, and so on [3–5], to meet the rapid growth in popula-
tion. Corresponding British Petroleum statistics on the world’s energy supplies (BP2020)
indicate that fossil fuels (raw oil, coal, and natural gas ~33.1%, 27%, and 24.2%) showed
maximum contributions, followed by nuclear, hydro, and other renewable sources by 4.3%,
6.4%, and 5%, respectively [6]. High consumption of fossil fuels to meet strict energy
demand has led to climate change that could result in global warming [7,8]. To meet energy
demand and meet stricter pollution standards, researchers around the world have been
drawn to identify alternate sources of sustainable and environmentally friendly fuels, such
as biodiesel, ethanol, and butanol [9,10]. Biodiesel and ethyl alcohol are produced using
raw materials that are generally considered renewable, mainly from plant and animal
feedstocks [11]. The performance of biodiesel and ethyl alcohol in internal combustion
engines has led to better engine performance and better emission characteristics [12,13];
therefore, efficient methods for the production of biodiesel from various resources or raw
materials are of practical or relevant relevance.

The production of biodiesel can be achieved via pyrolysis, dilution, microemul-
sion, and transesterification (alkali-catalyzed, supercritical, chemistry, lipase, etc.) pro-
cesses [14–18]. Transesterification is the most dominant method of biodiesel production,
in which it undergoes a reaction (using the catalytic hardening reaction and yield, while a
non-catalytic reaction ensures a lower yield with potential high temperature and pressure
requirement) of fatty acid or oil with alcohol esters and glycerol as a result [18]. Biodiesel
production is performed by the transesterification of triglycerides (containing ~10% of the
incorporated oxygen fraction) that allows for the efficient combustion of fuel [19]. Many
investigations have been conducted for biodiesel production utilizing various feedstocks
such as Palm [20], Mahua-sunflower [21], rapeseed [22], moringa oleifera [23], Karanja [24],
Garcinia Gummi-Gutta [25], waste fish oil, bitter almond oil, and waste cooking oil [13].
The biodiesel conversion of plant oils (Moringa oleifera and palm oils) and animal fats in
the presence of homogeneous or heterogeneous catalysts (calcium hydroxide, NaOH, KOH)
are performed with the assistance of the transesterification process [15,20,23]. The following
observations are made from the analysis of the literature review that: (a) transesterification
has proven to be an efficient technique for the synthesis of biodiesel using various raw
materials; (b) raw materials are region-specific, which prevents demand from meeting
global requirements for biodiesel production; (c) transesterification parameters need to be
optimized that influence the yield of biodiesel from raw materials. Attempts are needed to
select locally available and economical raw materials and to optimize transesterification
parameters that could result in low-cost biodiesel.

NS oil has proven to be a potential raw material for biodiesel synthesis due to its better
fuel properties [26]. NS can be cultivated in abundance in hilly, non-arable, marginal areas
of India and thus treated as a viable alternative to fossil fuel [27]. Thereby, NS is available
at a low cost and is used as a potential raw material for biodiesel production, in which
NS-based biodiesel has been used as a potential replacement fuel for compression ignition
engines [26,28]. NS is a non-edible oil seed (constituting ~37–50% oil content) grown
largely in Ethiopia and India, and on a low scale in different regions in Asia, America,
and Africa [29,30]. Unless the seeds are plucked from plants, they are currently used for
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bird feeding in many countries [31]. The plants are grown in a low acidic, wide range
of less fertile (waste area) soil conditions, roadsides, coastal areas, and so on [32]. NS oil
possesses medicinal value, which acts as a partial replacement for olive and sesame seed
oil utilized in pharmaceutical industries [33]. Furthermore, the byproducts are used as
personal care products (soaps, perfume, etc.). NS contains higher oil content that could
offer better protein and nutrition [32]. Niger plants offer flowers in July and collectible
seeds in August. Niger seeds yield ~200–300 kg/hectare from plants. Niger seed contains
higher fatty acids, possessing 75–80% linoleic acid and 7–8% stearic and palmitic acids [34].
Indian varieties had 25% oleic acid and 55% linoleic acid. The niger-seed-based feedstock
contains free fatty acid (FFA), whose composition and acid value are estimated before
applying the transesterification process. For biodiesel production, the acid or alkali catalyst
transesterification process is often advantageous, wherein an oil containing triglycerides
reacts faster with alcohol at a low cost without a high amount of heat requirement [35].
Higher values of free fatty acids and acids result in saponification, which deactivates the
catalyst, leading to soap formation and thereby reducing the biodiesel yield [36]; therefore,
the determination of free fatty acid and an acid value of oil is indeed essential before the
initiation of the transesterification process. It was observed from the above literature review
that not much research effort is being made to maximize the biodiesel yield from niger seed
oil via the transesterification process.

The attempt to optimize the biodiesel yield for various raw materials processed
through the transesterification process is presented in Table 1. Response surface methodol-
ogy (RSM) based on central composite design and BBD were applied to maximize biodiesel
yield after determining the optimal set of transesterification variables. It should be noted
that the use of used cooking oil reduces the process costs by 60–70% [37]. The authors [37,38]
applied the central composite rotatable design (CCRD) for experimentation and analysis
unless practical constraints dictate that the rotatable design should not be used for experi-
mentation and analysis [39]. Catalyst concentration was determined to be the dominant
factor in the transesterification process towards conversion to biodiesel yield [40–42]. The
reaction temperature showed a significant impact on biodiesel production [35,43,44]. The
methanol ratio was identified as an important factor contributing to the conversion of
biodiesel yield [45,46]. It has been observed that the KOH catalyst has led to a higher con-
version of biodiesel than that obtained for the CaO catalyst [47,48]. Note that the catalyst
concentration is the most important contributing factor for the KOH catalyst, whereas
the most important contributing factor was reaction time for the CaO catalyst during the
conversion of waste cotton-seed cooking oil to biodiesel [47]. From the analysis of the
above literature, it was observed that, although many experiments and optimization of
transesterification parameters were performed, the optimal conditions and influence of
the parameters on biodiesel yield are different from each other. This is due to the existing
collective differences in the raw material and their properties. Furthermore, CCD and
BBD based on RSM is an effective statistical technique for enhancing the transesterification
technique that could maximize biodiesel conversion [49]. Furthermore, CCD requires more
experimental trials and more computation effort, time, and cost than BBD [35,42,48,50].

Table 1. Biodiesel production via transesterification process utilizing various feedstocks.

Feedstock Catalyst Process Parameters Optimization Major Results Ref.

Castor oil KOH Rt: 30–150 min, CC: 0.5–2 wt.%,
RT: 50–70 ◦C, OMMR: 1:3–1:9 CCD and RSM 94.9% yield [51]

Musa acuminata
peduncle CRBP CC: 1.5–3.5 wt.%, OMMR: 6–14,

Rt: 40–120 min CCD and RSM 98.73% yield [41]

Waste cooking oil NaOH OMVR: 0.1–1, Rt: 10–60 s,
MP: 100–400 w CCRD and RSM 94.6% yield [37]

Rubber seed oil RSS Rt: 60–70 min, CC: 2.5–3.5 g,
OMMR: 0.2–0.3 CCD and RSM 80% yield [40]
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Table 1. Cont.

Feedstock Catalyst Process Parameters Optimization Major Results Ref.

Soybean oil NaOH Rt: 60–100 min, CC: 0.5–1.3 wt.%,
RT: 50–70 ◦C, MR: 6:1–12:1 CCRD and RSM NR [38]

Waste cooking oil Sulfated zirconia Rt: 30–120 min, CC: 2–4 wt.%,
RT: 90–150 ◦C, OMMR: 9:1–21:1 CCD and RSM 93.5% yield [43]

Flaxseed oil KOH Rt: 30–60 min, CC: 0.4–1 wt.%,
RT: 35–65 ◦C, MR: 4:1–6:1 CCD and RSM 98% yield [45]

Pithecellobium dulce
seed oil KOH Rt: 60–120 min, CC: 0.4–1.2 wt.%,

RT: 55–65 ◦C, MR: 1:3–1:9 BBD and RSM 93.24% yield [35]

Waste cooking
oil-Calophyllum
inophyllum oil

KOH Rt: 2–10 min, CC: 0.4–1 wt.%,
SS: 600–1000 rpm, OMMR: 9:1–21:1 BBD and RSM 98.3% yield [50]

Camelina oil KOH Rt: 5–8 min, CC: 0.5–1.5 wt.%, MRAO:
9:1–21:1 BBD and RSM 95.31% yield [42]

Waste cotton-seed
cooking oil

KOH M:O: 6–10, CC: 0.3–0.7 wt.%,
Rt: 6–12 min FFD and RSM

96.77% yield [47]

CaO M:O: 8–12, CC: 0.5–2 wt.%,
Rt: 6–12 min 90.5% yield

Waste cotton-seed
cooking oil KOH M:O: 4.5–7.5, CC: 0.3–0.7 wt.%,

RT: 40–60 ◦C BBD and RSM 97.76% yield
[48]

CaO M:O: 6–12, CC: 0.5–1.5 wt.%,
RT: 6–12 ◦C 96.16% yield

Kapok (Ceiba
pentandra) oil Immobilized lipase M:O: 4–20, WC: 2–22 vol.%,

RT: 30–40 ◦C CCD and RSM 96.4% yield [52]

Olive oil KOH M:O: 3–15, CC: 0.4–2 wt.%,
PL: 100–900 W, Rt: 3–15 min Try-error-method 93.5% yield [53]

Almonds of Syagrus
cearensis H2SO4 + KOH M:O: 6–60, CC: 1–5 wt.%,

Rt: 10–30 min FFD and RSM 99.99% yield [54]

Rubber seed oil H2SO4
AOMR: 6–15, CC: 0.5–10.5 wt.%,
Rt: 50–90 min, RT: 50–70 ◦C BBD and RSM 75.4% yield [55]

Acai seeds and
refined soybean oil Acai seed ash catalyst AOMR: 6–24, CC: 3–15 wt.%,

Rt: 60–300 min, RT: 60–120 ◦C CCD and RSM 98.5% yield [44]

Palm oil Zn-Ce/Al2O3
M:O: 12–24, CC: 5–10 wt.%,
RT: 58–72 ◦C CCD and RSM 87.4% yield [47]

Pig and neem seed CaO M:O: 12–24, CC: 2–4 g,
Rt: 50–70 min, RT: 50–60 ◦C CCD and RSM 98.05% yield [56]

AOMR: alcohol to methanol oil ratio, CL: catalyst loading, CCRD: central composite rotatable design, KOH:
potassium hydroxide catalyst, MP: microwave power, MR: molar ratio, MRAO: methanol ratio of alcohol to oil,
NaOH: sodium hydroxide, OMMR: oil-to-methanol molar ratio, OMVR: oil-to-methanol volume ratio, PDSO:
Pithecellobium dulce seed oil, RSM: response surface methodology, RSS: rubber seed shell, SS: stir speed.

Transesterification parameters (M:O, ripe plantain fruit peel catalyst, reaction tem-
perature, and time) that were optimized via an artificial neural network integrated with a
genetic algorithm (ANN-GA) technique resulted in a maximized yield of 99.2% [57]. GA
was applied to convert the microalgae oil to biodiesel yield (98.12%) subjected to optimiz-
ing the transesterification parameters (Rt, RT, and M:O) [58]. ANN models predicted the
thermal conductivity of Al2O3–Cu/EG and nano-antifreeze applications [59,60]. ANN
performed better than the RSM model in predicting the yield of soybean biodiesel [61],
palm kernel oil biodiesel [62], sesame oil biodiesel [63], and so on. The reason for better
performance by artificial intelligence tools than RSM is summarized as follows [64,65]:
(a) Experimental data specified as per the predefined design matrix by RSM result in poor
generalizability for unknown factors, and the model does not perform global optimization.
RSM does not have good generalizability for unknowns and the model cannot conduct
global optimization, as experimental data are defined according to the initial design matrix.
(b) AI tools predict unknown data from a known set of data due to better generalizability
with the essence of intelligence that establishes a system capable of responding identically
to those performed by human intelligence. (c) Traditional RSM uses a deterministic search
procedure with predefined rules, wherein deriving optimal solutions for multi-modal input
behavior may result in local solutions. The aforementioned reasons made artificial intelli-
gence tools outperform RSM-based optimization techniques in distinguished applications
of the squeeze casting process [64], turning process [66], abrasive water jet machining [67],
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wire electric discharge machining [68], CNC turning process [69], and drilling process [70];
therefore, AI tools can be used to optimize the process.

NS oil-based biodiesel poses better performance and emission characteristics in com-
pression ignition engines [27] using NS oil-based feedstock. The above literature portrays
some of the works on the optimization of production parameters using RSM that were
reported with their efficacy in the production of biodiesel yield. It was understood that
biodiesel yield is found to be different when a different contribution of transesterifica-
tion parameters was observed. Furthermore, the highest biodiesel conversion from the
feedstock is dependent truly on transesterification parameters. Niger seeds are grown in
non-arable soil with low fertility soil across hilly regions, which ensures low-cost feedstock
for biodiesel production. Not many research efforts have been made to use niger seeds as a
potential low-cost feedstock and optimize the transesterification parameters for conversion
to higher biodiesel yield. Furthermore, BBD limits more practical experiments that could
provide detailed insights into a process that was not applied for biodiesel conversion from
NS oil. In addition, no significant works have been reported regarding the use of artificial
intelligence tools in supporting the optimization of biodiesel yield using the BBD technique.

In the present work, we attempted to study, analyze, and optimize the transester-
ification parameters (KOH catalyst concentration, methanol-to-oil molar ratio, reaction
time, and temperature) for higher biodiesel yield from the niger-seed-based feedstock.
Experiments were conducted according to the set of matrices of Box–Behnken design.
Statistical analysis (main effect parameters, surface plots, regression equations, and model
adequacy) was performed using RSM to analyze the parameters corresponding to the
transesterification process. Optimizing transesterification parameters for higher biodiesel
yield are of industrial relevance that results in reduced cost and time incurred in the pro-
duction of biodiesel. Artificial intelligence tools (BB-BC, GWO, and FA) were applied to
determine the optimized condition based on the regression equations derived based on
experimental data collected using BBD and analyzed based on RSM. The performances
of the three algorithms were tested based on solution accuracy and computation time.
The physicochemical characteristics of biodiesel yield were studied as per ASTM D6751
standards to examine the performances of fuel properties suitable for diesel engines.

2. Materials and Methods
2.1. NS Origin and Features

For the present work, niger seeds are procured from a local Bangalore store. Oil
extraction was achieved via a mechanical expeller. To separate moisture from the extracted
oil, it was purified and later roasted at 110 ◦C. Sigma-Aldrich, India provided the chemical
reagents (methyl alcohol, potassium hydroxide, and sulfuric acid) required for the trans-
esterification process. Figure 1 explain the framework employed for biodiesel conversion
from NS oil.
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2.2. Biodiesel Production and Its Characterization
2.2.1. Free Fatty Acid and Acid Value of Niger Seed Oil

FFA and acid values corresponding to NS oil were found to be 7% and 14 mg KOH/g,
respectively. Acid-catalyzed esterification followed by a base-catalyzed transesterification
process was employed. At 50 ◦C, for two hours with steady stirring, the esterification
reacted with H2SO4 (3 v/v%) and 35 (v/v%) methanol. The obtained product, after the
1-step transesterification process, was tested for acid value and was found to equal 1.5 mg
KOH/g and was thus treated using the base-catalyzed transesterification process. The
acid-catalyzed parameters were fixed after conducting a few pilot experimental trials in a
research laboratory.

2.2.2. Design and Optimization of a Base-Catalyzed Transesterification Method

Figure 2 explains the framework of the proposed research work used for the conversion
of NS oil to high-yield biodiesel. RSM is a collection of statistical and mathematical
techniques that could determine the perspectives of the process (terms: linear, square, and
interaction variables) according to the CCD and BBD experimental matrices [71]. The points
(BBD focuses on middle-level experiments and CCD focuses on corner-level experiments)
considered in design space were often different for the two models (BBD and CCD) and
thus resulted in a difference in polynomials (e.g., coefficients, fits, and significance) [64,72].
BBD was employed in the present work for experimentation; an analysis of biodiesel yield
is presented in Table 2.
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Table 2. Transesterification parameters and operating levels.

Symbols Factors
Levels

Low Medium High

A Methanol-to-oil molar ratio 3 7.5 12
B Catalyst concentration (wt.%) 0.5 1.0 1.5
C Reaction temperature (◦C) 50 57.5 65
D Reaction time (min) 60 90 120

The experimental matrix corresponding to the Box–Behnken design (BBD) is defined
according to Equation (1).

No. of Experiments = 2 × No. of independent variables (No. of independent variables − 1) + Center points (1)

In the present work, four independent variables and five center point experiments
were considered in our experimentation. Table 3 displays the results of 29 experimental
trials. Each experiment was repeated thrice, and the average values corresponding to yield
were recorded. The Design-Expert software, version 11, was used to define the experimental
matrix and perform statistical analysis. After each experimental run, the biodiesel samples
were permitted to settle in a separate sieve for approximately twelve hours. Note that the
samples were separated, with methyl esters appearing on the apex and glycerol settling
at the bottom of the funnel. To eliminate the water content in the biodiesel, the resulting
methyl esters were water-washed and warmed to a high temperature. The steps involved
in converting NS oil-to-biodiesel yield using the transesterification process are explained in
Figure 1.

Table 3. BBD matrix-based experimental input–output data collection of the transesterification process.

Run
A:

Methanol-to-Oil
Molar Ratio

B: Catalyst
Concentration

(wt.%)

C: Reaction
Temperature (◦C)

D: Reaction
Time (min)

Experimental
Biodiesel
Yield (%)

Predicted
Biodiesel
Yield (%)

1 7.5 1.5 57.5 60 92.5 ± 0.4 91.3
2 12.0 1.0 57.5 60 89.0 ± 0.8 88.8
3 3.0 1.0 57.5 60 87.0 ± 0.6 86.9
4 7.5 0.5 57.5 60 87.0 ± 0.3 87.3
5 7.5 1.0 50.0 60 90.5 ± 0.4 90.4
6 7.5 1.0 65.0 60 91.7 ± 0.7 91.8
7 12 1.5 57.5 90 91.0 ± 0.5 90.9
8 7.5 1.0 57.5 90 92.0 ± 0.4 91.6
9 3.0 0.5 57.5 90 85.5 ± 0.2 85.7

10 7.5 0.5 65.0 90 89.1 ± 0.4 88.5
11 12 0.5 57.5 90 85.5 ± 0.3 85.4
12 7.5 1.5 65.0 90 92.5 ± 0.8 92.2
13 3.0 1.0 50.0 90 87.0 ± 0.5 86.6
14 7.5 1.0 57.5 90 91.7 ± 0.4 91.6
15 7.5 1.5 50.0 90 90.0 ± 0.3 90.3
16 7.5 1.0 57.5 90 92.0 ± 0.4 91.6
17 3.0 1.0 65.0 90 86.5 ± 0.7 86.6
18 7.5 0.5 50.0 90 89.0 ± 0.7 89.0
19 7.5 1.0 57.5 90 91.2 ± 0.6 91.6
20 12 1.0 50.0 90 88.5 ± 0.5 88.6
21 12 1.0 65.0 90 89.5 ± 0.5 90.1
22 3.0 1.5 57.5 90 85.0 ± 0.8 85.2
23 7.5 1.0 57.5 90 91.2 ± 0.4 91.6
24 12 1.0 57.5 120 88.5 ± 0.2 88.3
25 7.5 0.5 57.5 120 88.5 ± 0.3 88.7
26 7.5 1.0 65.0 120 89.5 ± 0.3 89.7
27 3.0 1.0 57.5 120 84.7 ± 0.5 84.7
28 7.5 1.5 57.5 120 88.5 ± 0.7 88.4
29 7.5 1.0 50.0 120 89.6 ± 0.8 89.7
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2.3. Artificial Intelligence Tools for Optimization

Statistical analysis was performed based on data collected according to the set of
experimental matrices based on BBD. The adequacy of the model tested for statistical
examination resulted in a better correlation coefficient with a value of 0.9899 (close to 1);
therefore, model-derived empirical relationships (including all terms: linear, quadratic,
and interaction) can be employed to locate the optimal transesterification parametric
conditions for maximizing the biodiesel yield. The present work attempted to optimize
the transesterification process using three heuristic search algorithms: BB-BC, FA, and
GWO. Note that the performance of the algorithm (solution accuracy and computation
time) varies depending on the domain of the problem [67–69]. The present work employed
three state-of-the-art algorithms (FA, GWO, and BB-BC), whose performances have recently
been examined with the aim of maximizing the yield.

2.3.1. Firefly Algorithm

In 2010, Yang proposed the FA (family of swarm intelligence), which mimics the
flashing patterns and behavior of fireflies [73]. FA was successfully applied to optimize var-
ious problems associated with distinguished applications (engineering, image processing,
physics, robotics, economics, and so on) [74]. The flashing behavior and bioluminescent
communication of fireflies use the following three rules and assumptions while determining
solutions to optimization problems such as [74–76]:

1. Fireflies are unisex; regardless of sex, the fireflies attract each other.
2. A brighter firefly attracts partners with less brightness (regardless of gender), which

ensures an efficient approach to determining the best partner. The attractiveness
toward the brightest (intensity of agent or insect) firefly ensures the best or optimal
solution, whereas attractiveness decreases when the distance between two fireflies
increases, according to Equation (2).

I ≺ 1
r2 (2)

3. Fireflies show random movement when the firefly brightness remains identical
or equal.

4. If the light is traveling through a material with light absorption coefficient γ, the light
intensity at r from the source may be given by Equation (3).

I = I0e−γr2
(3)

5. The brightest firefly will conduct a local search by randomly traveling about its
surroundings. As a result, if firefly j is brighter than firefly I, firefly I will travel
towards firefly j using the updating formula in Equation (4).

xi := xi + β0e−γr2
ij︸ ︷︷ ︸

=β

(
xj − xi

)
+ α(ε()− 0.5) (4)

where β0 is the attractiveness of xj at r = 0; I0 is light intensity at the source; γ defines the
extent to which the updating process is affected by the distance between the two fireflies,
α is an algorithm variable for the random movement step length, and ε() is a uniform
distribution random vector with values ranging from 0 to 1.

2.3.2. Big-Bang Big-Crunch Algorithm

BB-BC is a novel gradient-free optimization algorithm based on a theory that suggests
the universe possesses two phases—the big bang (BB) and the big crunch (BC)—proposed
by Erol and Eksin in 2006 [77,78]. The BB-BC algorithm outperforms the evolutionary
genetic algorithm; the algorithm converges to solutions at a higher speed and possesses a
low computation time [77,79]. The fundamental characteristics of the BB phase ensure the
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production of disorder and randomness by energy consumption; the particles that were
randomly distributed in the BB phase are replaced with ones featuring better characteristics
during the BC phase [80]. The steps involved in determining solutions to the optimization
problems for the BB-BC algorithms are discussed below [69,77,80]:

1. The initial set of candidate solutions is distributed randomly according to the search space.
2. The fitness function values corresponding to individual candidate solutions are deter-

mined.
3. The center of mass based on the convergence operator is estimated, which has many

inputs and generates a single output. The global fitness values are estimated according
to the center of mass.

4. As iteration proceeds, the computation of new or best candidate solutions (i.e., fitness
function values) is generated by the addition/subtraction of a random number around
the center of mass.

5. The termination criterion has been tested for the pre-set goal. If the termination
criterion has been met, the algorithm stops; otherwise, the above procedure will repeat.

2.3.3. Grey Wolf Optimization Algorithm

In 2014, S. Mirjalilli was credited for developing the GWO, which mimics the hunting
mechanism and social hierarchy (alpha (α) at the top, followed by beta (β), delta (δ), and
omega (ω)) of grey wolves [81]. Grey wolve are animals that prefer to live in packs or
groups (5–12 individuals); each pack or group is categorized into four levels, one with
respect to the other, in a social hierarchy [82]. Alpha wolves occupy the top position
(referred to as a leader, which may be either male or female), whose main function is to
make decisions for the pack regarding sleeping place, hunting, and wake-up time [83].
Note that α wolves are strongest in a pack when the decisions made must be obeyed by
the other individuals of the social hierarchy. Beta wolves help alpha wolves in making
decisions (based on the orders of the alpha and then providing feedback) and are treated
as potential candidates for substituting alpha wolves when they become old or die. Delta
wolves dominate the omega and follow the orders of alpha and beta. Delta wolves serve as
scouts (responsible for searching for boundaries and alerting the pack when they encounter
dangerous situations), sentinels (ensuring security), elders (potential candidates for the
next generation of alpha and beta), hunters (responsible for preparing food for the pack),
and caretakers (caring for wolves in the pack that are sick, injured, or weak).

In GWO, grey wolves hunt for prey with the help of a pack (predefined number
of grey wolves) in a multi-dimensional space at many spatial locations [84]. The fitness
function values during optimization are computed based on the different positions of grey
wolves and the distance of prey. As iteration progresses, the individual grey wolf adjusts its
position towards a better position, and the best solutions are recorded during the course of
action. Note that GWO mainly attempts to determine the shortest possible path that allows
the grey wolves to reach their prey. The steps involved in locating the optimal solutions are
performed by the following four steps [81,85]:

1. Exploration: each member switches positions with the others in order to follow, chase,
and approach the victim or prey.

2. Encircling: grey wolf positions are updated based on the three best wolves (alpha,
beta, and delta) in the search space around the prey.

3. Hunting: grey wolves possess greater ability and knowledge and determine the prey’s
location or position and encircle them. Alpha wolves lead the hunt, whereas delta
and beta wolves join later. The positions of omega wolves are adjusted with reference
to the top three fittest individuals of a population (α, β, and δ).

4. Attacking the prey: grey wolves terminate the hunting process only after ensuring the
prey stops moving.
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3. Results and Discussion

The results of the experimental input–output data, contributions of individual and
interaction variables, curvature effect analysis, regression equations, and model statistical
adequacies are discussed. The optimized set of transesterification conditions that maximize
the biodiesel yield was determined and compared to the efficiency of three artificial intelli-
gence tools (BB-BC, GWO, and FA). The physicochemical properties of NS-based biofuels
are discussed.

3.1. Experimental Input–Output Data Collection and Analysis

BBD-based experimental matrices are designed for four input variables (M:O, CC,
Rt, and RT) and measure the output—biodiesel yield (see Table 3). Each experiment was
repeated thrice, and average values corresponding to yield were recorded. It was observed
from the total 29 transesterification experimental sets that the maximum and minimum
deviation from the average biodiesel yield was found to be ± 0.8 and ± 0.2, respectively
(see Table 3).

3.2. Main Effect Parameter Analysis

To identify the contributions of specific factors and perform statistical analysis, the
Design-Expert software (version 11) was used. The effect of individual factors on the
performance of biodiesel yield is explained below.

3.2.1. Effect of Methanol-to-Oil Molar Ratio

Experiments were performed after varying the M:O ratio in ranges of 3:1 to 12:1; their
impact on biodiesel yield is analyzed, as shown in Figure 3. An increase in the concentration
of the M:O ratio tends to increase the biodiesel yield up to the mid-values and thereafter
decreases. The desired maximum biodiesel yield was attained approximately nearer to
the mid-values of the M:O ratio (see Figure 3). As the M:O ratio increases in the reaction
process, biodiesel yield tends to increase up to the mid-values of their respective levels. At
lower values of the M:O ratio, the time required to complete the transesterification reaction
(KOH reacts with methanol to yield methoxide, which is treated as an actual reactant in the
transesterification process, and water, which causes partial hydrolysis of acylglycerides
or the methyl ester formed) will be very high with less usage of methanol. After crossing
the mid-values of the M:O ratio, the excess quantity of methanol results in a decrease in
biodiesel yield. This occurs due to the interference of excess methanol with alkyl ester and
glycerol separation by increasing glycerol solubility. This results in the dilution of a portion
of the glycerol remaining in the alkyl ester phase, which causes the loss of ester due to soap
formation. In addition, the presence of glycerol in the solution shifts the equilibrium back
to the left and results in a decreased biodiesel yield. A similar trend corresponding to the
effect of methanol-to-oil molar ratio on yield was reported with the transesterification of
Musa acuminata peduncle [41] and Pithecellobium dulce seed oil [35].

3.2.2. Effect of Catalyst Concentration

Figure 3 explains the effect of KOH catalyst concentration (varied between 0.5 to
1.5 wt.%) on the performance of biodiesel yield. Yield showed an increasing trend with the
increased concentration of KOH catalyst up to 1.1 to 1.2 wt.% and thereafter the trend de-
creased. Excess concentration of catalyst poses a difficulty in the separation of the aqueous
layer during water washing of methyl ester and dissolves the methyl ester formed in it.
This effect could be due to the increased saponification reaction resulting in the formation
of soap, thus reducing the biodiesel yield. The biodiesel obtained with an excessive amount
of catalyst is very viscous, unstable, and readily solidified and cannot be used as fuel in
CI engines. Moreover, an inadequate concentration of KOH in the reaction resulted in
decreased methyl ester conversion [38,51]. Figure 3 shows the impact of the methanol-to-oil
molar ratio, which showed a dominant effect over that of the catalyst concentration.
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3.2.3. Effect of Reaction Temperature

The effect of reaction temperature during the transesterification process varied be-
tween the range of 50 to 65 ◦C. During transesterification at low reaction temperatures, the
saponification reaction rate is higher and decreases with an increase in temperature. Higher
reaction temperature increases or speeds up the reaction rates (because reactant molecules
have higher energy, wherein reactions collide during transesterification), which favors the
methanol-to-oil molar ratio to push the reaction that favors biodiesel yield. This could
result in higher biodiesel yield when the reaction temperature is increased. It was observed
that variations in reaction temperature resulted in a flat surface, which has a negligible
effect on biodiesel yield. Similar observations are reported in the published literature [45].

3.2.4. Effect of Reaction Time

Figure 3 outlines the impact of reaction times ranging from 60 to 120 min on biodiesel
output. Initially, the reaction of biodiesel yield was very fast after 60 min of reaction
time, and therefore, the biodiesel yield increased. This occurs due to retention time for
the reaction occurring up to 80 min in duration and then remaining relatively constant
until 90 min; thereafter, the biodiesel yield started decreasing as the reaction time further
increased. This occurred as the reaction reached equilibrium, and hence a reverse reaction
started to occur. A longer reaction time decreases the biodiesel yield, which might be
due to the increased probability of biodiesel hydrolysis under alkaline conditions [86,87];
therefore, it is of great importance to immediately separate the produced biodiesel from the
reaction mixture once reaching the required reaction time. A higher reaction time decreases
the biodiesel yield, which has negative effects, such as increased energy consumption and
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reduced process efficiency [37]. Similar trends were observed with the transesterification
process carried out for biodiesel conversion [38].

3.3. Surface Plot Analysis

We performed a three-dimensional surface plot analysis to examine the interaction
factor (two factors varied simultaneously between their operating levels when the other
factors stayed at fixed middle levels) effects on the performance of biodiesel yield.

1. Figure 4a explains the interaction factor effects of M:O and CC, where a reaction time
of 90 min and a temperature of 57.5 ◦C were kept at fixed mid-values. A gradual
reduction in biodiesel yield was observed after the mid-point values of both M:O
and CC. The desired higher biodiesel yield was found to be nearer the mid-values of
M:O and CC. Excess quantity of M:O results in an increase in the glycerol solubility,
whereas a higher amount of CC results in higher viscosity, which then affects the
mixing ability and produces soap formation and emulsions, which ensures lower
biodiesel yield. Similar observations are reported for Pithecellobium dulce seed
oil [35] and flaxseed oil [45].

2. The impact of two variables (such as M:O and RT) varied between their respective
levels after the two parameters were held at respective mid-values (see Figure 4b).
A simultaneous increase in M:O and RT, wherein the rate of reaction increases such
that it pushes the reaction forward, could favor biodiesel yield. When compared
to M:O, the impact of reaction temperature was found to be negligibly small. A
similar effect was obtained corresponding to the transesterification of soyabean oil
with ethanol [38].

3. Figure 4c displays the interaction factor effects of M:O and Rt when two of the
parameters (i.e., reaction temperature of 57.5 ◦C and catalyst concentration of 7.5 wt.%)
are maintained constant. The biodiesel yield tends to increase with increased values
of M:O and tends to decrease with an increase in reaction time. Higher biodiesel
yield was obtained at a shortened duration corresponding to the middle level of the
reaction temperature and catalyst concentration.

4. The effect of CC and RT was analyzed after varying two factors simultaneously
between their operating levels (refer to Figure 4d). The biodiesel yield tends to
increase with increased values of catalyst concentration up to 1 wt.%, wherein the
reaction temperature was found to have negligible impact. It was also observed
that yield was found to decrease with high values of catalyst concentration and
reaction temperatures that favor the triglyceride saponification reaction. The results
are analogous to biodiesel yield production from jatropha seed oil [88].

5. The impact on biodiesel yield by varying two variables simultaneously, such as CC
and Rt (refer to Figure 4e). The combination of higher catalyst concentration and
mid-values of reaction time resulted in higher biodiesel yield. An increase in weight
percent of catalyst concentration ensures supplying more catalyst for the reacting
samples that could accelerate the biodiesel yield. It was also observed that there was
no significant improvement in the yield after ensuring a sufficient reaction time of
90 min.

6. The effect of reaction time and reaction temperature when variables simultaneously
varied between the operating levels were analyzed for the fixed values of CC of 1 wt.%
and M:O of 7.5 (see Figure 4f). The resultant surface plot is seen to appear almost flat,
which clearly indicates the biodiesel yield tends to have negligible influence on the
interaction effect of reaction temperature and time. With increased values of reaction
time, the biodiesel yield was found to have a negligible effect with an increasing
trend (required time to attain the equilibrium point of a reaction wherein reaction rate
increases), and beyond the limit, there might be a possibility to attain a reversible
reaction when the reaction rate increases with the increased temperature [89].
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3.4. Regression Model for Biodiesel Yield

The BBD model was used that could correlate independent variables (M:O, CC, Rt,
and RT) and dependent variables (biodiesel yield) based on experiments performed. The
experimental input–output data that could fit models without any bias is presented in
Table 4.
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Table 4. Fitted models correspond to experimental input–output data.

Model Regression Equation Regression Coefficient

Linear Yield = 83.78 + 0.302 A + 2.483 B + 0.047 C − 0.027 D R2 = 0.3141, and
Adj. R2 = 0.1998

Linear + Interaction
Yield = 89.297 − 1.304 A − 3.467 B − 0.067 C + 0.1264 D +
0.667 AB + 0.011 AC + 0.0033AD + 0.16 BC − 0.0917 BD
− 0.0014 CD

R2 = 0.4437, and
Adj. R2 = 0.1347

Linear + Interaction + Square

Yield = 54.44389 + 1.24074 A + 7.61333 B + 0.388222 C +
0.330889 D + 0.666667 AB + 0.011111 AC + 0.003333 AD +
0.16 BC − 0.0916670 BD − 0.001444 CD − 0.16963 A2 5.54
B2 − 0.003956 C2 − 0.001136 D2

R2 = 0.9869, and
Adj. R2 = 0.9737

The model’s statistical adequacy was evaluated based on regression coefficients. Note
that the model with full quadratic terms (linear + interaction + square) resulted in a better
regressor coefficient equal to 0.9869 (close to 1), which clearly indicates the best fit model.
The adjusted R2 (excluding insignificant terms: AC, CD, and C2 from the model) value
was found equal to 0.9737. The best fit quadratic model represents biodiesel yield as a
mathematical function of transesterification variables (M:O, CC, Rt, and RT).

Yield (%) = +54.44389 + 1.24074 A + 7.61333 B + 0.388222 C + 0.330889D
+0.666667AB + 0.011111AC + 0.003333AD + 0.16BC − 0.0916670BD
−0.001444CD − 0.16963A2 − 5.54B2 − 0.003956C2 − 0.001136D2

(5)

The experimental data were analyzed for the developed quadratic model that could
estimate linear, square, and interaction factor effects. All linear terms (M:O, CC, RT, and
Rt) were found to have significant contributions (as their p-values < 0.05). The effect of the
reaction temperature was found to be significant as their effect (measured with F-value)
was found to be comparatively lower than M:O, CC, and Rt. This can be clearly seen in
the main effect plot result shown in Figure 3. The square terms of M:O, CC, and Rt were
found to be significant as their p-values are <0.05, which clearly indicates their relationship
with biodiesel yield is non-linear. The squared term of reaction temperature was found
to be insignificant (p-value > 0.05), and hence the relationship with biodiesel yield was
found to be linear. The curvature effects are in good agreement with statistical p-values of
squared terms of transesterification variables (see Table 5). Although all individual terms
were found to be significant, the interaction terms (M:O and RT, and RT and Rt) were found
to be insignificant with negligible influence on biodiesel yield. Excluding insignificant
terms (M:O × RT, RT × Rt, and RT2) from the model-derived regression equation creates
imprecise input–output relationships and reduces the prediction accuracy; therefore, the
model was tested for prediction accuracy with experimental values with inclusion of all
terms in the equation resulted in the best fit data, close to the trend line (see Figure 5). The
better prediction ensures the regression equations derived for predicting the biodiesel yield
are accurate and can be used to perform optimization.

Table 5. Analysis of variance for biodiesel yield.

Source Sum of Squares DF Mean Square F-Value p-Value

Model 150.77 14 10.77 75.62 0.0001
M:O 22.14 1 22.14 155.47 0.0001
CC 18.50 1 18.50 129.91 0.0001
RT 1.47 1 1.47 10.32 0.0063
Rt 5.88 1 5.88 41.29 0.0001

M:O × CC 9.00 1 9.00 63.19 0.0001
M:O × RT 0.5625 1 0.5625 3.95 0.0668
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Table 5. Cont.

Source Sum of Squares DF Mean Square F-Value p-Value

M:O × Rt 0.8100 1 0.8100 5.69 0.0318
CC × RT 1.44 1 1.44 10.11 0.0067
CC × Rt 7.56 1 7.56 53.10 0.0001
RT × Rt 0.4225 1 0.4225 2.97 0.1070
M:O 2 76.54 1 76.54 537.41 0.0001
CC 2 12.44 1 12.44 87.37 0.0001
RT 2 0.3211 1 0.3211 2.25 0.1554
Rt 2 6.78 1 6.78 47.62 0.0001

Residual 1.99 14 0.1424
Lack of Fit 1.35 10 0.1346 0.8308 0.6322
Pure Error 0.6480 4 0.1620
Cor Total 152.77 28
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3.5. Summary Results of Optimization Algorithms

The set of optimal transesterification conditions that maximize the biodiesel yield
was predicted by applying three algorithms (BB-BC, GWO, and FA). Equation (5) serves
as an objective function to conduct optimization for maximum biodiesel yield. The algo-
rithm search with the upper and lower bounds of transesterification variables was used
for experimentation (see Table 2). The efficacy of all three algorithms was evaluated on
the basis of computation time and solution accuracy. Note that the common algorithm
parameters, such as population size and iterations to terminate the program, are kept fixed
to 100 and 1000, respectively. The results attained from each algorithm were tested 10 times,
and the best solution corresponds to the fitness value and computation time is recorded
(see Table 6). Tuning algorithm-specific parameters (GWO: convergence constant, FA:
randomness, absorption coefficient, randomness reduction; BB-BC: exploration factor) is of
the utmost importance, as it could determine the optimization efficiency [78,90,91]. Tuning
algorithm-specific parameters was carried out to maximize the fitness values (biodiesel
yield (%)) and the optimal parameters were selected after the algorithm ran for succes-
sive trials. The optimal transesterification conditions were thus determined after fixing
algorithm-specific parameters and common parameters (population size: 100 and iterations:
1000) that could result in maximum biodiesel yield. The fitness value (i.e., maximum yield)
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corresponding to all three algorithms (GWO, FA, and BB-BC) was found to be equal to
94.15%, 94.15%, and 93.07%, respectively. Note that GWO and FA resulted in identical opti-
mal conditions, as opposed to that obtained for BB-BC. GWO uses a constant convergence
parameter (wherein the search radius of grey wolves makes a better trade-off between
exploration and exploitation), which ensures better results. Confirmation experiments
were conducted corresponding to the optimal transesterification conditions (M:O: 9.32,
CC: 1.5 wt.%, RT: 65 ◦C, and Rt: 60 s), resulting in experimental values of biodiesel yield
equal to 95.3% ± 0.5%. Table 1 details the biodiesel yield conversion that corresponds
to various feedstocks [35,37,40,42,43,47,51,53,55], which is comparatively less than that
of NS-based biodiesel yield equal to 95.3% ± 0.5%; however, NS-based biodiesel yield
was comparatively less than other feedstocks [41,44,45,47,48,50,52,54,56]. The difference
in biodiesel yield for various feedstocks is dependent primarily on the FFA of the feed
stocks used, which in turn affects the cost [92]. The presence of higher FFA (>2%) in oil
resulted in decreased biodiesel yield and it varied with the type of feedstocks used for
biodiesel production [93,94]. The niger seed oil possesses 7% FFA, and hence acid-catalyzed
esterification was adopted before the actual transesterification process. Note that the in-
crease in the number of steps in producing biodiesel resulted in a decrease in biodiesel
yield. Similar outcomes have been reported by other researchers [95,96]. The MATLAB
software platform was used on a PC (RAM: 4 GB, Processor: Intel Core i3 @ 1.2 GHz CPU)
to perform a computation of biodiesel yield. The computation time corresponding to the
maximum fitness values were recorded and are found to be equal to 0.8 s for BB-BC, 15.06 s
for FA, and 1.66 s for GWO, respectively. BB-BC showed lesser computation time than
GWO and FA, which might be due to tuning only one algorithm-specific parameter and
better exploration capability and search mechanisms; however, GWO is recommended to
obtain the maximum biodiesel yield with a better convergence rate of 1.66 s.

Table 6. Optimization of transesterification parameters using three algorithms.

Algorithms Algorithm Specific
Parameters Fitness Value (Yield%) Computation Time

(seconds) Transesterification Condition

GWO Convergence constant = 0.5 94.15% 1.66 M:O = 9.32; CC = 1.5 wt.%;
RT = 65 ◦C; Rt = 60 s

FA
Randomness, α = 0.9;

Absorption coefficient, γ = 1;
Randomness reduction, β = 0.6

94.15% 15.06 M:O = 9.32; CC = 1.5 wt.%;
RT = 65 ◦C; Rt = 60 s

BB-BC Exploration factor = 14 93.07% 0.8 M:O = 9.02; CC = 1.47 wt.%;
RT = 63.8 ◦C; Rt = 86.1 s

3.6. Physicochemical Properties Evaluation of Biodiesel Yield and NS Oil

Evaluation of physicochemical properties is essential to examine the practicality of
fuels (niger seed oil, NS-oil-derived biodiesel yield) to use in diesel engines as per ASTM
D6751-15C. The average of three values corresponding to each property was recorded
to conduct the analysis [45]. Specific gravity is one of the paramount physicochemical
properties that could influence the fuel injection system of a combustion engine. The
specific gravity of NS oil is reduced from 0.93 to 0.88 (after biodiesel conversion viz.
transesterification process). Transesterification of biodiesel yield resulted in a specific
gravity within the acceptable ranges (0.87 to 0.89) as per biodiesel standard. Viscosity
corresponds to fuel samples (NS oil, NS-oil-derived biodiesel yield) that affect the diesel
engine fuel injection system. The higher viscosity of (7.4 mm2/s) NS oil could result in
incomplete combustion due to poor atomization and the deposit of carbon on the injector.
After transesterification of NS oil, the kinematic viscosity of biodiesel yield was found to
be reduced to 3.9 mm2/s (falling under the permissible standard limit: 1.9 to 6.0). The
calorific value is of paramount importance that defines the energy content in the samples.
The determined calorific values for NS oil and biodiesel yield were found to be equal to
38,560 kJ/kg and 40,400 kJ/kg, respectively. The 35,000 kJ/kg is the minimum standard
calorific value to be tested in a diesel engine. The acid value of NS oil reduces from
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14 mg KOH/g to 0.36 mg KOH/g. The acid value obtained for biodiesel yield resulted
in acceptable test limits for biodiesel equal to 0.5 mg KOH/g. The copper strip corrosion,
cloud point, pour point, flash point, iodine value, and cetane number are found to be equal
to 1, 14 ◦C, 9 ◦C, 0.01% w/w, and 65.50, respectively, and are within the permissible limit
corresponding to the biodiesel standard.

4. Conclusions

This work presents a cost-effective approach to biodiesel conversion using feed stock
selection, the transesterification process, experiments, process parameters, prediction, and
optimization. The following conclusions are drawn:

1. NS grown in hilly areas with less fertile soil, including the byproducts of seeds, has
potential medicinal value. Niger seeds possess higher oil content (37–50%) and are
therefore treated as cost-effective feedstock.

2. Transesterification parameters (M:O, Rt, CC, and RT) were studied experimentally at
reduced trials using BBD. The effect of all factors (linear + square + interaction) on the
performance of biodiesel yield was studied. Among linear terms: M:O was the most
contributing factor, followed by CC, Rt, and RT. The square terms of M:O, CC, and Rt
were found to be significant, and thus, the relationship with biodiesel yield was found
to be non-linear, whereas reaction temperature has a linear relationship with biodiesel
yield. Two interaction terms (M:O × RT, RT × Rt) were found to be insignificant for
biodiesel yield, whereas M:O with CC interaction term showed a dominant effect
followed by CC with Rt, CC with RT, M:O with Rt, M:O with RT, respectively.

3. The BBD-model-derived empirical equation predicted the biodiesel yield with the
best fit and showed a good regression coefficient for the full quadratic model (terms:
linear + square + interaction) found equal to 0.9869. The adjusted R2 (excluding in-
significant terms: M:O × RT, RT × Rt, and RT2 from the model) value was found to be
equal to 0.9737; therefore, model equations are statistically significant for conducting
predictions (without performing the actual experiments) and optimization.

4. Three artificial intelligence algorithms (BB-BC, GWO, FA) were applied to conduct
optimization that could maximize the biodiesel yield. Transesterification parameters
(M:O, Rt, CC, and RT) were optimized, and the resulting maximum fitness value
(biodiesel yield) was found to be equal to 94.15% for both BB-BC and GWO, respec-
tively, and 93.07% for FA. The confirmation experiments performed for optimized
transesterification conditions (M:O = 9.32; CC = 1.5 wt.%; RT = 65 ◦C; Rt = 60 s)
resulted in a biodiesel yield equal to 95.3 ± 0.5%.

5. All three algorithms were tested for computational efficiency, and the results showed
0.8 s for BB-BC, 1.66 s for GWO, and 15.06 s for FA. Although BB-BC is computa-
tionally competent, it needs to compromise for solution accuracy; therefore, GWO is
recommended to obtain a better solution accuracy and computation time.

6. The physicochemical properties of biodiesel fuel were tested according to the ASTM
standards; results were in good agreement (the kinematic viscosity, acid value, calorific
value, copper strip corrosion, cloud point, pour point, flash point, sulfur content, and
cetane number were found to be equal to 3.9 mm2/s, 0.36 mg KOH/g, 40,400 kJ/kg 1,
14 ◦C, 9 ◦C, 0.01% w/w, and 65.50) and were within the permissible limit correspond-
ing to the biodiesel standard to use in diesel engines.
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Nomenclature

A Methanol-to-oil molar ratio
ASTM American Society for Testing and Materials
B Catalyst concentration
BBD Box–Behnken design
BB-BC Big-Bang Big-Crunch Algorithm
C Reaction temperature
CC Catalyst concentration
CCD Central composite design
CCRD Central composite rotatable design
D Reaction time
FA Firefly algorithm
GWO Grey wolf optimization
MRAO Methanol ratio of alcohol to oil
NaOH Sodium hydroxide
NS Niger seed
OMMR Oil-to-methanol molar ratio
OMVR Oil-to-methanol volume ratio
M: O Methanol-to-oil molar ratio
NS Niger seed
Rt Reaction time
RT Reaction temperature
RSM Response surface methodology
α Randomness
γ Absorption coefficient
β Randomness reduction
R2 Regressor coefficient
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