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Abstract

:

The object of this paper was the application of machine learning to a clinical dataset that was anonymized using the Mondrian algorithm. (1) Background: The preservation of patient privacy is a necessity rising from the increasing digitization of health data; however, the effect of data anonymization on the performance of machine learning models remains to be explored. (2) Methods: The original EHR derived dataset was subjected to anonymization by applying the Mondrian algorithm for various k values and quasi identifier (QI) set attributes. The logistic regression, decision trees, k-nearest neighbors, Gaussian naive Bayes and support vector machine models were applied to the different dataset versions. (3) Results: The classifiers demonstrated different degrees of resilience to the anonymization, with the decision tree and the KNN models showing remarkably stable performance, as opposed to the Gaussian naïve Bayes model. The choice of the QI set attributes and the generalized information loss value played a more important role than the size of the QI set or the k value. (4) Conclusions: Data anonymization can reduce the performance of certain machine learning models, although the appropriate selection of classifier and parameter values can mitigate this effect.
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1. Introduction


The digitization of healthcare workflows and the increased usage of electronic health records has led to a dramatic increase in electronically available clinical data in terms of volume, complexity, diversity and timeliness. Clinical data carry information about real patients and hold the promise of supporting a wide range of unprecedented opportunities and use cases, such as clinical decision support, health insurance, disease surveillance, population health management, adverse event monitoring, and treatment optimization. Therefore, clinical data are suitable to be reused in machine learning applications, despite the fact that they can be characterized by noise, errors, incompleteness and high dimensionality [1].



Even though the digitization of clinical data in the healthcare sector carries many benefits, it also raises challenges such as the preservation of patient privacy. Health data by default are sensitive, and concerns over the compromise of sensitive information, security and privacy are increasing year by year. Security attacks can happen in the data-gathering phase, the network phase, as well as the storage phase [2]. Health Information custodians (HICs) have faced increasing privacy breaches of different types due to either the negligence of administrative staff or the employment of weak de-identification methods [3]. It has been shown that the number of health service providers reporting cases of data privacy breaches is increasing every year. In the years 2016–2017, approximately 90 percent of healthcare providers were faced with data breaches, while a successful breach was estimated to cost around USD 3.7 million to clean up [4,5,6]. Furthermore, it has been shown that seemingly anonymous, de-identified data that is publicly available can be combined and linked to certain individuals or groups through other identifying attributes [7].



Data security controls the access to medical data throughout the data lifecycle, protecting it from any unauthorized third-party access, and is ensured through technologies such as authentication, encryption, data masking and access control. Data privacy, on the other hand, is concerned with the protection of an individual’s healthcare information from unauthorized access. Data privacy regulates data access based on privacy policies and laws and is ensured through methods such as de-identification and anonymization [1,8]. The most prominent data privacy model is k-anonymity [9].



Machine learning is a category of algorithmic methods enabling machines to solve problems without specific computer programming and can be distinguished by supervised, unsupervised and reinforcement methods in terms of their learning approach [8,10]. Despite the fact that the implementation of machine learning tools for health care data faces many challenges, the use of AI in health care is surrounded with excitement, with numerous platforms integrating clinical machine learning tools having been developed [11]. Machine learning models have been utilized in several health informatics fields, such as medical imaging, medical informatics and public health [12]. For example, deep learning models have been used to predict mortality, early readmission, long length of stay, as well as future diseases, from EHRs [13,14]. In addition, machine learning algorithms such as logistic regression, support vector machines, Gaussian naive Bayes, K-nearest neighbors and deep multilayer neural networks have been employed to predict the probability of early patient readmission from processed hospital information system (HIS) data [14].



The topic of privacy-aware machine learning, which lies at the intersection between machine learning and privacy preservation, has begun to be explored in the last few years with the advent of data privacy laws [15]. Examples of relevant research are the investigation of the impact of data anonymization on the performance of machine learning algorithms using the gradient boosting, random forest, logistic regression and linear SVC algorithms [16]. The use of interactive machine learning has also been proposed, eliciting human preferences for preserving some attribute values over others for anonymization [17]. The topic of differential privacy has been investigated by comparing two differential privacy algorithms and evaluating the results by applying three machine learning algorithms to anonymized and raw data [18]. In addition, privacy-preserving protocols for three classifiers have been proposed [19]. The effect of anonymization algorithms on the performance of machine learning classifiers has been explored in several studies [20,21,22]. A novel anonymization algorithm, information-based anonymization for classification given k (IACk) based on normalized mutual information was introduced in [20], the effect of which on the performance of machine learning models was tested using decision trees, naïve Bayes, logistic regression and SVM. Another anonymization algorithm (non-homogeneous generalization with sensitive value distribution, NSVDist), based on an information loss metric was introduced in [21]. The authors compared NSVDist with the Mondrian [23], privacy-aware information sharing (PAIS) [24] and sequential anonymization (SeqA) [25], and evaluated their effect on the performance of the naïve Bayes, SVM, W-J48 and W-JRip classifiers. A comparison of the anonymization algorithms Mondrian, optimal lattice anonymization (OLA) [26], top-down greedy anonymization (TDG) [27] and the k-nearest neighbor clustering-based anonymization method [28], regarding their impact on the performance of the k-NN, SVM, XGBoost and random forest classifiers, was made in [22]. Since the purpose of some of these studies has been the introduction of novel anonymization methods (IACk [21], NSVDist [22]), it can be noted that the effect of anonymization methods on machine learning performance has become an important consideration for their evaluation and validation.



The object of this paper was the application of machine learning algorithms to a clinical dataset that had been subjected to anonymization using the Mondrian algorithm with various parameter values. The concept of this paper and the dataset used originated in the MODELHealth project, the main object of which has been the development of a software platform for the harmonization and anonymization of electronic health record data, with the goal of utilizing them as input to machine learning models [29,30].




2. Materials and Methods


2.1. Data


The initial dataset was provided by a public Greek hospital, and contained demographic and hospitalization information for 117,181 patients. The one-hot encoding corresponding to the attributes related to patient sex (SEX_F, SEX_M) and the care encounter outcome (OUTCOME_H, OUTCOME_N, OUTCOME_I, OUTCOME_D) was removed in order to facilitate the anonymization process. The attributes of the original dataset, the attributes after the one-hot decoding and their descriptions can be seen in Table 1.




2.2. Anonymization and Information Loss Estimation


2.2.1. K-Anonymity


K-anonymity is the primary anonymization method that has been proposed for the prevention of identity disclosure in data publishing, limiting the probability of linking an individual to their records to 1/k [9,31]. Of central importance to the k-anonymity concept is the quasi-identifier (QI) set, a set of seemingly innocuous dataset attributes whose linkage with external information can lead to the reidentification of individual records, as well as the equivalence class (EQ), a set of dataset records that are indistinguishable from each other with respect to the values of the QI set. A dataset satisfies the k-anonymity constraint if each record is identical to at least k − 1 records with respect to the QI set, which means that each equivalence class EQ consists of at least k records. K-anonymity can be enforced using suppression and generalization techniques. Suppression is achieved by replacing some of the original attribute values with a specific value indicating its non-disclosure. Generalization, or re-coding, is achieved by replacing the attribute values with less specific but consistent values.




2.2.2. L-Diversity, T-Closeness


Another concept related to data privacy is sensitive attributes, the attributes that patients are not willing to be associated with, such as diagnosis codes [9]. The privacy provided by K-anonymity could be considered insufficient in some cases since potentially it can allow the disclosure of sensitive attributes that lack diversity through the use of background knowledge. Nevertheless, k-anonymity is the primary algorithm proposed for anonymization and is used as a baseline process [31,32,33,34]. L-diversity and T-closeness are the most prevalent anonymization concepts that extend k-anonymity by considering sensitive attributes, the attributes that patients are not willing to be associated with. L-diversity focuses on the representation of sensitive attribute values in the anonymized dataset, requiring that each equivalence class have at least one value for each sensitive attribute [1,9,34]. T-closeness focuses on limiting the distance between the probability distribution of the sensitive attribute values in an anonymized group and that of sensitive attribute values in the entire dataset, requiring that the distance between the two distributions be no greater than a threshold t [9,33].




2.2.3. Mondrian Algorithm


The Mondrian is a greedy anonymization algorithm that implements k-anonymization through multidimensional generalization and is applicable to categorical as well as numeric data [23]. According to this method, a k-anonymization of a given dataset is achieved in two stages, the first one focusing on the recursive partitioning of the dataset in a number of multidimensional regions covering its domain space, a process similar to the KD-tree construction method. The second stage focuses on the mapping of generalized values to each dataset partition by applying re-coding functions using summary statistics from each region. The time complexity of the Mondrian algorithm is logarithmic, outperforming other optimal algorithms implementing k-anonymity, whose worst-case complexity is exponential [23].




2.2.4. Information Loss


Anonymization provides the benefit of data privacy, but at the same time negatively affects data utility by causing information loss. Three metrics that can be used for the estimation of information loss due to anonymization are generalized information loss, discernibility and average equivalence class size [35].



Generalized information loss represents the penalty induced from the generalization of a specific attribute by taking into account the fraction of the domain values that have been generalized. The generalized information loss for an anonymized table T* was calculated according to Equation (1), where T is the original table, i = 1, …, n corresponds to an attribute, j = 1, …, |T| corresponds to a table record, Ui, Li are the upper and lower values of each arithmetic attribute i, Uij, Lij are the upper and lower values of arithmetic attribute i for the equivalence class the record j belongs in, Ni is the number of different values for each categorical attribute i, and Nij is the number of different values for categorical attribute i in the equivalence class the record j belongs in [35,36,37].



The discernibility metric captures the indistinguishability of a table record compared to the rest by assigning a penalty to each record, equal to the size of the equivalence class it belongs in. The discernibility metric for an anonymized table T* was calculated according to Equation (2), where |EQ| is the number of records in the equivalence class EQ [23,35,38].



The average equivalence class size estimates how well the equivalence class formulation approaches the optimal case, in which every equivalence class contains k records. It is calculated according to Equation (3), where |T| is the number of table records, |EQs| is the total number of equivalence classes created in the anonymized table T*, and k is the minimum equivalence class size allowed [23,35].


  G I L  (  T *  )  =  1   | T |  n   ×   ∑   i = 1  n    ∑   j = 1    | T |     {         U  i j   −  L  i j      U i  −  L i    ,   i f   i   i s   a r i t h m e t i c          N  i j   − 1    N i  − 1   ,   i f   i   i s   c a t e g o r i c a l          



(1)






  D M  (  T *  )  =   ∑   ∀ E Q s . t .  |  E Q  |  ≥ k      |  E Q  |   2   



(2)






   C  A V G    (  T *  )  =    | T |     |  E Q s  |  k    



(3)







After one-hot decoding, the original dataset was subjected to anonymization by applying the Mondrian algorithm for various k values and quasi identifier (QI) set attributes. The algorithm choice is justified due to its performance as well as the fact that the dataset does not contain sensitive attributes (Table 1). The information loss that occurred due to the anonymization process was measured with generalized information loss (GIL), discernibility metric (DM) and average class size (CAVG) metrics for each parameter combination. The different dataset versions that were generated from the anonymization process, the corresponding anonymization parameter values and the obtained values of the information loss metrics can be seen in Table 2.





2.3. Machine Learning


Machine Learning methods have been utilized extensively in the clinical field for numerous tasks, such as the prediction of clinical outcomes, modeling disease risk, decision support systems and infection management, using a variety of data formats including electronic health records [30,39,40,41].



2.3.1. Logistic Regression


Logistic regression is a statistical method used to model the nonlinear relationship between a categorical dependent variable and the combined effects of the independent variables by applying a logistic function [42,43,44]. Logistic regression has been used widely in the clinical field as a predictive model [44,45], with several studies reporting that more recent artificial intelligence methods show no performance benefit over logistic regression for clinical predictions [45,46]. Logistic regression is known to perform well in large, low-dimensional datasets, and has reportedly been the most frequently used model design technique in clinical decision support systems [47,48,49].




2.3.2. Decision Trees


A decision tree is a supervised learning method that maps the input features related to an item to a predicted target value by modeling the input features of a given item, the feature values and the target classes as a flowchart-like tree structure. The classification of an input item is achieved by following a path along the decision tree from the root node to the leaves, where the tree nodes correspond to the feature names, the arcs correspond to the possible feature values, and the leaves are labeled with the different classes [42,50,51,52]. Common algorithms for decision trees are C4.5, C5.0, and Bayesian trees [53]. Decision trees are well suited for knowledge domains that can be defined by a relatively small set of rules [54].




2.3.3. K Nearest Neighbors


The k-nearest neighbors (KNN) method is a supervised learning algorithm that maps an input vector to a predicted target value by finding the set of K labeled vectors in the feature space that have the smallest distance from the unlabeled input vector. The classification of the input vector is then based on the predominance of a particular class in this neighborhood. The KNN algorithm performs better when the data form well defined clusters, since predictions are based on distances between data [50,52,54,55]. In this paper, the KNN model was applied for K = 5 nearest neighbors.




2.3.4. Support Vector Machines


The support vector machine (SVM) is a supervised learning model characterized by the formation of a set of hyperplanes that separate the input vectors into a number of classes. The hyperplanes can then be used to determine the most probable class for unknown input data. SVMs are known to perform well with high-dimensional data [56,57].




2.3.5. Gaussian Naive Bayes


The Gaussian naive Bayes method is a machine learning method that is based on Bayes’ theorem and assumes there is independence among the input features. Despite the fact that conditional independence is rarely true in real-world problems, the Gaussian naive Bayes classifier has been reported to demonstrate high performance [39,58,59].



In this paper, the methods of logistic regression, decision trees, k-nearest neighbors, Gaussian naive Bayes and support vector machines have been applied to the different dataset versions that resulted from the anonymization of the original EHR-derived dataset using 10-fold validation. The parameter values of the applied models are listed in Table A1.






3. Results


The results were evaluated using the area under the curve (AUC) and the Matthews correlation coefficient (MCC) metrics, both of which are used extensively in the fields of medical informatics and bioinformatics. The AUC is the area under the receiver operating characteristic (ROC) curve plotting the true positive rate against the false positive rate [60,61]. The Matthews correlation coefficient (MCC) is a statistical metric that produces a high score only if the prediction obtained good results in all of the four confusion matrix categories (true positives, false negatives, true negatives, and false positives), proportionally both to the size of positive elements and the size of negative elements in the dataset [62,63]. The results of the experiments are listed exhaustively in Table A2 and demonstrated in Figure 1 and Figure 2.



In Figure 1, the horizontal axis contains all of the qi, k value combinations, where qi is the ID of the quasi identifier set as presented in Table 2. In Figure 1a, the AUC and MCC scores for the test dataset are plotted against k for each of the qi values, while Figure 1b depicts AUC and MCC plotted against qi for each of the k values. The parameters qi = 0, k = 1 represent the case in which the machine learning models were applied to the non-anonymized dataset. It can be observed that most machine learning models had better AUC, MCC scores with the non-anonymized dataset, which means that the information loss occurring from the anonymization process in general reduced the predictive ability of the models. However, the five models were affected to various degrees, with Gaussian naive Bayes suffering the most prominent performance reduction, the decision tree and KNN classifiers showing the most stable performance across the different anonymization parameter values, and logistic regression presenting a performance improvement as a result of the anonymization process for qi = 3b, 4.



In Figure 2, the AUC score and the MCC score are plotted juxtaposed with the GIL value against the anonymization parameter values, separately for each tested model. Figure 2a depicts AUC, MCC and GIL plotted against k for each qi value separately, while Figure 2b depicts AUC, MCC and GIL plotted against qi for each k value. It can be observed that lower GIL values were associated with higher AUC, MCC values in the cases of the logistic regression and Gaussian naive Bayes models. On the other hand, the decision tree, the KNN and the SVM classifiers were less affected by the variation in the GIL values.



The demonstrated results indicate that for a specific qi value, the k value did not affect the performance of the tested machine learning models significantly. Contrarily, all five models demonstrated lower performance for qi = 3a, which corresponded to the QI attributes (AGE, SEX, OUTCOME). However, the performance of most models was noticeably better for qi = 2, 3b, 4, values, which corresponded to the QI attributes (AGE, SEX), (AGE, SEX, CURADM_DAYS) and (AGE, SEX, CURADM_DAYS, PREVADM_DAYS), respectively. This indicates that the OUTCOME input variable plays a more prominent role that the AGE, SEX, CURADM_DAYS and PREVADM_DAYS attributes regarding the prediction of readmission. It can also be deduced that the choice of the QI set attributes is more significant than the size of the QI set as well as the k value in terms of predictive power.



In order to quantify the relationship between the GIL metric and the performance metrics AUC, MCC, two linear regression models were built for each applied machine learning model and were trained on 70% of the data. The linear regression models plotted against the test data are depicted in Figure 3, and their equations are presented in Table A3.



The statistical significance of the presented results was evaluated by performing a series of statistical tests. The descriptive statistics of the AUC and MCC metrics of the experiments with different ML models are presented in Table 3 and Figure 4. Both parametric one-way ANOVA analysis (Welch test, [64]), as well as non-parametric (Kruskal–Wallis, [65]), dealing with the uncertain distribution normality of the results, showed statistically significant differences among the different algorithms (p < 0.001). Details of the analysis as well as pairwise comparisons are presented in Table A4, Table A5, Table A6, Table A7 and Table A8 of Appendix A.



As expected, there was a statistically significant negative correlation between the information loss (GIL), as impact of the anonymization process, and the model performance (GIL- Test MCC Pearson’s r = −0.182 [−0.020, −0.335 95%CI], p = 0.028). Figure 5 depicts the correlation scatterplot and the respective value densities.




4. Discussion


In this paper, we presented a series of experiments designed to explore the predictive potential of anonymized medical datasets subjected to various degrees of manipulation. The original dataset used consisted of 117,181 records derived from EHR data from a Greek hospital and nine attributes related to the patient and the hospitalization (Table 1). The data were collected in the context of the MODELHealth project, which focused on the development of a system for the extraction of electronic health record data from a hospital database, the transformation of the data through harmonization and anonymization, and their loading into a central database in order for them to be used as inputs to machine learning models [29,30].



The dataset was subjected to one-hot decoding and anonymization using the Mondrian algorithm. Five attributes of the dataset were used as candidates for anonymization, with four combinations of them being used to form the quasi identifier (QI) set. In addition, seven values in the interval 2–30 were used for the k anonymization parameter, which was the minimum number of records with the same values in the QI set (Table 2). The non-anonymized dataset as well as the 28 dataset versions resulting from the different anonymization parameter combinations were fed as input into five machine learning models, namely the decision tree, the logistic regression, the k-nearest neighbors, the support vector machine and the Gaussian naïve Bayes classifiers, the parameters of which have been presented in Table A1.



The main emerging finding is that the loss of predictive power (that is predicted class pattern consistency in a machine learning classification context) as a function of the information loss due to aggregation and suppression anonymization processes varies considerably, depending on the nature of the classification algorithm used. Indeed, in our experiments, there were classifiers that showed great resiliency even under significant information loss, and others that directly or indirectly were critically affected, with their accuracy metrics plunging towards non-significance (Figure 1 and Figure 2). More specifically, the decision tree and the k-nearest neighbors classifiers demonstrated noticeably stable performance regardless of the anonymization parameters, as opposed to the Gaussian naïve Bayes and the support vector machine classifiers. Remarkably, the logistic regression model demonstrated improved performance for various (qi, k) combinations of the anonymized dataset in comparison with the non-anonymized dataset, indicating that anonymization could have a similar effect with the regularization of machine learning models, although further experiments should be performed in order to reinforce that statement.



The experimental results showcased the choice of QI set attributes as well as the GIL value resulting from the anonymization process as the factors that seem to play a more significant role regarding the prediction results, rather than the size of the QI set or the k value. Indeed, the inclusion of the OUTCOME attribute, representing the hospitalization outcome, in the anonymized attribute set resulted in performance deterioration for all tested machine learning models. Contrarily, the rest of the attributes involved in the anonymization process, which were the patient’s age and sex, the number of days of the current admission, and the cumulative number of days of previous hospital admissions, did not have a similarly strong effect on the performance of the classifiers.



Our study reached conclusions similar to previously published work regarding the effect of anonymization on the performance of machine learning models. Indeed, the resilience of tree-based models to the information loss induced by anonymization has been mentioned in [22]. A difference in our approach compared to other published work was its stronger focus on various quasi identifier sets and their effect on the classification performance. It could be said that just as the selection of input features of a machine learning model plays an important role in its performance, the selection of the quasi identifier set can be a significant factor for the performance of machine learning on anonymized datasets. In addition, in the context of our experiments, the features used as input for the machine learning models were a superset of the quasi identifier set, an approach that differed from similar published work, where the whole set of input features was anonymized.



The presented study can be extended by the application of deep learning neural networks and experimentation with their architecture and hyperparameters in order to investigate their resilience to the anonymization process. In addition, the effects of different anonymization algorithms on the predictive ability of machine learning models can be explored.




5. Conclusions


The anonymization of clinical data can have a negative impact on the performance of some machine learning models. However, the selection of appropriate models and parameter values can compensate for this effect, providing the opportunity to benefit from the application of machine learning while protecting patient privacy.
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Table A1. The machine learning models and the corresponding parameter values applied in the context of this paper.






Table A1. The machine learning models and the corresponding parameter values applied in the context of this paper.





	Machine Learning Model
	Parameters





	Logistic Regression
	C = 1.0, class_weight = None, dual = False, fit_intercept = True, intercept_scaling = 1, l1_ratio = None,

max_iter = 100, multi_class = ‘auto’, n_jobs = None,

penalty = ‘l2′, random_state = None, solver = ‘liblinear’, tol = 0.0001, verbose = 0, warm_start = False



	Decision Tree Classifier
	ccp_alpha = 0.0, class_weight = None, criterion = ‘gini’,

max_depth = None, max_features = None, max_leaf_nodes = None, min_impurity_decrease = 0.0, min_impurity_split = None,

min_samples_leaf = 1, min_samples_split = 2,

min_weight_fraction_leaf = 0.0,

presort = ‘deprecated’, random_state = None, splitter = ‘best’



	KNeighborsClassifier
	algorithm = ‘auto’, leaf_size = 30, metric = ‘minkowski’, metric_params = None, n_jobs = None, n_neighbors = 5, p = 2, weights = ‘uniform’



	GaussianNB
	priors = None, var_smoothing = 1 × 10−9



	SVC
	C = 1.0, break_ties = False, cache_size = 200, class_weight = None, coef0 = 0.0, decision_function_shape = ‘ovr’, degree = 3, gamma = ‘auto’, kernel = ‘rbf’, max_iter = −1, probability = False, random_state = None, shrinking = True, tol = 0.001, verbose = False
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Table A2. The results of the application of five machine learning models to the dataset for various values of the parameters QI, k. The performance of the models was evaluated with the area under the curve (AUC) and Matthews correlation coefficient (MCC) metrics. The generalized information loss (GIL), discernibility metric (DM) and average class size (CAVG) captured the information loss occurring due to the anonymization process.






Table A2. The results of the application of five machine learning models to the dataset for various values of the parameters QI, k. The performance of the models was evaluated with the area under the curve (AUC) and Matthews correlation coefficient (MCC) metrics. The generalized information loss (GIL), discernibility metric (DM) and average class size (CAVG) captured the information loss occurring due to the anonymization process.





	
Classifier

	
QI

	
k

	
GIL

	
DM

	
CAVG

	
Train

AUC

	
Validation

AUC

	
Test

AUC

	
Test

MCC






	
Logistic

Regression

	
0

	
1

	
0

	
0

	
0

	
0.723

	
0.723

	
0.723

	
0.456




	
2

	
2

	
0.394

	
346,873,092

	
492.353

	
0.736

	
0.729

	
0.735

	
0.477




	
3

	
0.394

	
346,873,108

	
331.017

	
0.717

	
0.709

	
0.716

	
0.438




	
5

	
0.394

	
346,873,168

	
202.034

	
0.725

	
0.716

	
0.724

	
0.454




	
10

	
0.394

	
346,873,396

	
102.789

	
0.726

	
0.719

	
0.725

	
0.457




	
15

	
0.394

	
346,875,014

	
70.378

	
0.73

	
0.723

	
0.729

	
0.465




	
20

	
0.394

	
346,878,574

	
54.25

	
0.724

	
0.719

	
0.723

	
0.454




	
30

	
0.394

	
346,884,568

	
37.558

	
0.719

	
0.717

	
0.719

	
0.445




	
3a

	
2

	
0.352

	
254,366,790

	
209.25

	
0.685

	
0.661

	
0.682

	
0.365




	
3

	
0.352

	
254,366,928

	
144.133

	
0.701

	
0.685

	
0.7

	
0.401




	
5

	
0.352

	
254,367,482

	
91.547

	
0.692

	
0.674

	
0.69

	
0.38




	
10

	
0.353

	
254,371,334

	
50.509

	
0.689

	
0.668

	
0.687

	
0.374




	
15

	
0.353

	
254,378,570

	
36

	
0.679

	
0.649

	
0.676

	
0.352




	
20

	
0.354

	
254,353,268

	
28.721

	
0.69

	
0.672

	
0.688

	
0.377




	
30

	
0.355

	
254,372,510

	
20.134

	
0.686

	
0.667

	
0.684

	
0.369




	
3b

	
2

	
0.214

	
75,443,862

	
21.275

	
0.747

	
0.732

	
0.746

	
0.493




	
3

	
0.215

	
75,448,478

	
16.502

	
0.748

	
0.719

	
0.745

	
0.493




	
5

	
0.216

	
75,461,502

	
11,83

	
0.753

	
0.729

	
0.75

	
0.502




	
10

	
0.219

	
75,530,606

	
7.73

	
0.75

	
0.727

	
0.748

	
0.497




	
15

	
0.22

	
75,632,804

	
6.005

	
0.752

	
0.721

	
0.749

	
0.499




	
20

	
0.222

	
75,820,294

	
5.208

	
0.736

	
0.708

	
0.733

	
0.467




	
30

	
0.225

	
76,159,906

	
4.099

	
0.745

	
0.718

	
0.742

	
0.487




	
4

	
2

	
0.085

	
7,964,110

	
3.789

	
0.778

	
0.733

	
0.773

	
0.548




	
3

	
0.093

	
8,016,196

	
3.434

	
0.779

	
0.726

	
0.774

	
0.549




	
5

	
0.104

	
8,145,452

	
3.012

	
0.782

	
0.731

	
0.777

	
0.554




	
10

	
0.116

	
8,563,030

	
2.525

	
0.778

	
0.725

	
0.773

	
0.546




	
15

	
0.123

	
9,082,286

	
2.304

	
0.776

	
0.717

	
0.77

	
0.541




	
20

	
0.126

	
9,621,138

	
2.138

	
0.767

	
0.713

	
0.762

	
0.525




	
30

	
0.131

	
10,880,770

	
1.953

	
0.766

	
0.721

	
0.761

	
0.522




	
Decision Tree Classifier

	
0

	
1

	
0

	
0

	
0

	
0.959

	
0.658

	
0.929

	
0.861




	
2

	
2

	
0.394

	
346,873,092

	
492.353

	
0.941

	
0.67

	
0.914

	
0.83




	
3

	
0.394

	
346,873,108

	
331.017

	
0.934

	
0.655

	
0.906

	
0.814




	
5

	
0.394

	
346,873,168

	
202.034

	
0.938

	
0.657

	
0.91

	
0.821




	
10

	
0.394

	
346,873,396

	
102.789

	
0.936

	
0.663

	
0.908

	
0.818




	
15

	
0.394

	
346,875,014

	
70.378

	
0.94

	
0.657

	
0.911

	
0.824




	
20

	
0.394

	
346,878,574

	
54.25

	
0.941

	
0.669

	
0.914

	
0.83




	
30

	
0.394

	
346,884,568

	
37.558

	
0.94

	
0.66

	
0.912

	
0.825




	
3a

	
2

	
0.352

	
254,366,790

	
209.25

	
0.916

	
0.65

	
0.889

	
0.781




	
3

	
0.352

	
254,366,928

	
144.133

	
0.921

	
0.654

	
0.894

	
0.792




	
5

	
0.352

	
254,367,482

	
91.547

	
0.917

	
0.654

	
0.891

	
0.784




	
10

	
0.353

	
254,371,334

	
50509

	
0.918

	
0.649

	
0.892

	
0.785




	
15

	
0.353

	
254,378,570

	
36

	
0.91

	
0.636

	
0.882

	
0.766




	
20

	
0.354

	
254,353,268

	
28.721

	
0.911

	
0.64

	
0.884

	
0.774




	
30

	
0.355

	
254,372,510

	
20.134

	
0.92

	
0.657

	
0.894

	
0.791




	
3b

	
2

	
0.214

	
75,443,862

	
21.275

	
0.933

	
0.662

	
0.906

	
0.813




	
3

	
0.215

	
75,448,478

	
16.502

	
0.936

	
0.666

	
0.909

	
0.821




	
5

	
0.216

	
75,461,502

	
11.83

	
0.937

	
0.667

	
0.91

	
0.821




	
10

	
0.219

	
75,530,606

	
7.73

	
0.939

	
0.687

	
0.914

	
0.829




	
15

	
0.22

	
75,632,804

	
6.005

	
0.939

	
0.674

	
0.912

	
0.826




	
20

	
0.222

	
75,820,294

	
5.208

	
0.93

	
0.646

	
0.902

	
0.806




	
30

	
0.225

	
76,159,906

	
4.099

	
0.933

	
0.675

	
0.907

	
0.817




	
4

	
2

	
0.085

	
7,964,110

	
3.789

	
0.946

	
0.664

	
0.918

	
0.837




	
3

	
0.093

	
8,016,196

	
3.434

	
0.941

	
0.679

	
0.915

	
0.835




	
5

	
0.104

	
8,145,452

	
3.012

	
0.943

	
0.686

	
0.918

	
0.837




	
10

	
0.116

	
8,563,030

	
2.525

	
0.94

	
0.671

	
0.913

	
0.827




	
15

	
0.123

	
9,082,286

	
2.304

	
0.941

	
0.671

	
0.914

	
0.83




	
20

	
0.126

	
9,621,138

	
2.138

	
0.933

	
0.67

	
0.907

	
0.819




	
30

	
0.131

	
10,880,770

	
1.953

	
0.932

	
0.676

	
0.906

	
0.814




	
KNN

	
0

	
1

	
0

	
0

	
0

	
0.793

	
0.712

	
0.785

	
0.57




	
2

	
2

	
0.394

	
346,873,092

	
492.353

	
0.784

	
0.702

	
0.776

	
0.553




	
3

	
0.394

	
346,873,108

	
331.017

	
0.772

	
0.686

	
0.763

	
0.527




	
5

	
0.394

	
346,873,168

	
202.034

	
0.782

	
0.691

	
0.773

	
0.546




	
10

	
0.394

	
346,873,396

	
102.789

	
0.778

	
0.702

	
0.771

	
0.542




	
15

	
0.394

	
346,875,014

	
70.378

	
0.778

	
0.702

	
0.771

	
0.542




	
30

	
0.394

	
346,884,568

	
37.558

	
0.779

	
0.694

	
0.771

	
0.542




	
20

	
0.394

	
346,878,574

	
54.25

	
0.772

	
0.683

	
0.763

	
0.527




	
3a

	
2

	
0.352

	
254,366,790

	
209.25

	
0.764

	
0.671

	
0.755

	
0.51




	
3

	
0.352

	
254,366,928

	
144.133

	
0.775

	
0.691

	
0.767

	
0.534




	
5

	
0.352

	
254,367,482

	
91.547

	
0.763

	
0.673

	
0.754

	
0.508




	
10

	
0.353

	
254,371,334

	
50.509

	
0.764

	
0.671

	
0.755

	
0.51




	
15

	
0.353

	
254,378,570

	
36

	
0.758

	
0.664

	
0.749

	
0.497




	
20

	
0.354

	
254,353,268

	
28.721

	
0.756

	
0.661

	
0.746

	
0.493




	
30

	
0.355

	
254,372,510

	
20.134

	
0.761

	
0.668

	
0.752

	
0.505




	
3b

	
2

	
0.214

	
75,443,862

	
21.275

	
0.783

	
0.704

	
0.775

	
0.551




	
3

	
0.215

	
75,448,478

	
16.502

	
0.788

	
0.712

	
0.78

	
0.563




	
5

	
0.216

	
75,461,502

	
11.83

	
0.771

	
0.691

	
0.763

	
0.526




	
10

	
0.219

	
75,530,606

	
7.73

	
0.789

	
0.708

	
0.781

	
0.562




	
15

	
0.22

	
75,632,804

	
6.005

	
0.778

	
0.693

	
0.77

	
0.541




	
20

	
0.222

	
75,820,294

	
5.208

	
0.771

	
0.68

	
0.762

	
0.525




	
30

	
0.225

	
76,159,906

	
4.099

	
0.781

	
0.695

	
0.772

	
0.545




	
4

	
2

	
0.085

	
7,964,110

	
3.789

	
0.782

	
0.693

	
0.773

	
0.547




	
3

	
0.093

	
8,016,196

	
3.434

	
0.785

	
0.694

	
0.776

	
0.552




	
5

	
0.104

	
8,145,452

	
3.012

	
0.788

	
0.71

	
0.78

	
0.561




	
10

	
0.116

	
8,563,030

	
2.525

	
0.78

	
0.702

	
0.773

	
0.545




	
15

	
0.123

	
9,082,286

	
2.304

	
0.792

	
0.7

	
0.783

	
0.566




	
20

	
0.126

	
9,621,138

	
2.138

	
0.785

	
0.702

	
0.777

	
0.553




	
30

	
0.131

	
10,880,770

	
1.953

	
0.776

	
0.696

	
0.768

	
0.537




	
Gaussian NB

	
0

	
1

	
0

	
0

	
0

	
0.708

	
0.708

	
0.708

	
0.431




	
2

	
2

	
0.394

	
346,873,092

	
492.353

	
0.561

	
0.55

	
0.56

	
0.184




	
3

	
0.394

	
346,873,108

	
331.017

	
0.558

	
0.548

	
0.557

	
0.196




	
5

	
0.394

	
346,873,168

	
202.034

	
0.554

	
0.547

	
0.553

	
0.192




	
10

	
0.394

	
346,873,396

	
102.789

	
0.539

	
0.529

	
0.538

	
0.154




	
15

	
0.394

	
346,875,014

	
70.378

	
0.56

	
0.543

	
0.559

	
0.179




	
20

	
0.394

	
346,878,574

	
54.25

	
0.57

	
0.55

	
0.568

	
0.191




	
30

	
0.394

	
346,884,568

	
37.558

	
0.56

	
0.549

	
0.559

	
0.193




	
3a

	
2

	
0.352

	
254,366,790

	
209.25

	
0.559

	
0.548

	
0.558

	
0.212




	
3

	
0.352

	
254,366,928

	
144.133

	
0.554

	
0.543

	
0.553

	
0.192




	
5

	
0.352

	
254,367,482

	
91.547

	
0.563

	
0.551

	
0.561

	
0.209




	
10

	
0.353

	
254,371,334

	
50.509

	
0.554

	
0.538

	
0.553

	
0.182




	
15

	
0.353

	
254,378,570

	
36

	
0.563

	
0.549

	
0.561

	
0.209




	
20

	
0.354

	
254,353,268

	
28.721

	
0.561

	
0.551

	
0.56

	
0.205




	
30

	
0.355

	
254,372,510

	
20.134

	
0.553

	
0.539

	
0.551

	
0.186




	
3b

	
2

	
0.214

	
75,443,862

	
21.275

	
0.568

	
0.544

	
0.566

	
0.218




	
3

	
0.215

	
75,448,478

	
16.502

	
0.577

	
0.554

	
0.575

	
0.24




	
5

	
0.216

	
75,461,502

	
11.83

	
0.56

	
0.534

	
0.557

	
0.206




	
10

	
0.219

	
75,530,606

	
7.73

	
0.577

	
0.55

	
0.574

	
0.246




	
15

	
0.22

	
75,632,804

	
6.005

	
0.586

	
0.55

	
0.582

	
0.237




	
20

	
0.222

	
75,820,294

	
5.208

	
0.568

	
0.539

	
0.565

	
0.218




	
30

	
0.225

	
76,159,906

	
4.099

	
0.568

	
0.544

	
0.566

	
0.22




	
4

	
2

	
0.085

	
7,964,110

	
3.789

	
0.618

	
0.55

	
0.611

	
0.347




	
3

	
0.093

	
8,016,196

	
3.434

	
0.626

	
0.544

	
0.618

	
0.363




	
5

	
0.104

	
8,145,452

	
3.012

	
0.641

	
0.558

	
0.633

	
0.383




	
10

	
0.116

	
8,563,030

	
2.525

	
0.627

	
0.555

	
0.62

	
0.355




	
15

	
0.123

	
9,082,286

	
2.304

	
0.638

	
0.572

	
0.632

	
0.379




	
20

	
0.126

	
9,621,138

	
2.138

	
0.652

	
0.581

	
0.645

	
0.388




	
30

	
0.131

	
10,880,770

	
1.953

	
0.661

	
0.61

	
0.656

	
0.397




	
SVC

	
0

	
1

	
0

	
0

	
0

	
0.711

	
0.711

	
0.711

	
0.437




	
2

	
2

	
0.394

	
346,873,092

	
492.353

	
0.709

	
0.709

	
0.709

	
0.431




	
3

	
0.394

	
346,873,108

	
331.017

	
0.686

	
0.686

	
0.686

	
0.387




	
5

	
0.394

	
346,873,168

	
202.034

	
0.688

	
0.688

	
0.688

	
0.391




	
10

	
0.394

	
346,873,396

	
102.789

	
0.695

	
0.695

	
0.695

	
0.404




	
15

	
0.394

	
346,875,014

	
70.378

	
0.703

	
0.703

	
0.703

	
0.421




	
20

	
0.394

	
346,878,574

	
54.25

	
0.701

	
0.7

	
0.701

	
0.416




	
30

	
0.394

	
346,884,568

	
37.558

	
0.69

	
0.691

	
0.69

	
0.397




	
3a

	
2

	
0.352

	
254,366,790

	
209.25

	
0.571

	
0.571

	
0.571

	
0.221




	
3

	
0.352

	
254,366,928

	
144.133

	
0.584

	
0.57

	
0.583

	
0.222




	
5

	
0.352

	
254,367,482

	
91.547

	
0.588

	
0.578

	
0.587

	
0.22




	
10

	
0.353

	
254,371,334

	
50.509

	
0.583

	
0.581

	
0.583

	
0.217




	
15

	
0.353

	
254,378,570

	
36

	
0.568

	
0.567

	
0.568

	
0.21




	
20

	
0.354

	
254,353,268

	
28.721

	
0.593

	
0.59

	
0.592

	
0.213




	
30

	
0.355

	
254,372,510

	
20.134

	
0.579

	
0.578

	
0.579

	
0.176




	
3b

	
2

	
0.214

	
75,443,862

	
21.275

	
0.695

	
0.695

	
0.695

	
0.402




	
3

	
0.215

	
75,448,478

	
16.502

	
0.7

	
0.7

	
0.7

	
0.416




	
5

	
0.216

	
75,461,502

	
11.83

	
0.696

	
0.696

	
0.696

	
0.407




	
10

	
0.219

	
75,530,606

	
7.73

	
0.694

	
0.694

	
0.694

	
0.405




	
15

	
0.22

	
75,632,804

	
6.005

	
0.703

	
0.703

	
0.703

	
0.422




	
20

	
0.222

	
75,820,294

	
5.208

	
0.681

	
0.681

	
0.681

	
0.379




	
30

	
0.225

	
76,159,906

	
4.099

	
0.698

	
0.697

	
0.698

	
0.409




	
4

	
2

	
0.085

	
7,964,110

	
3.789

	
0.72

	
0.721

	
0.72

	
0.444




	
3

	
0.093

	
8,016,196

	
3.434

	
0.714

	
0.712

	
0.714

	
0.433




	
5

	
0.104

	
8,145,452

	
3.012

	
0.707

	
0.704

	
0.707

	
0.423




	
10

	
0.116

	
8,563,030

	
2.525

	
0.703

	
0.699

	
0.702

	
0.416




	
15

	
0.123

	
9,082,286

	
2.304

	
0.696

	
0.696

	
0.696

	
0.407




	
20

	
0.126

	
9,621,138

	
2.138

	
0.69

	
0.689

	
0.69

	
0.396




	
30

	
0.131

	
10,880,770

	
1.953

	
0.696

	
0.695

	
0.695

	
0.405
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Table A3. The parameters of the linear models fitted to model the relationship between AUC and GIL, as well as MCC and GIL, for each machine learning model used in the context of this paper.






Table A3. The parameters of the linear models fitted to model the relationship between AUC and GIL, as well as MCC and GIL, for each machine learning model used in the context of this paper.





	Machine Learning Model
	Linear Regression

AUC vs. GIL
	Linear Regression

MCC vs. GIL





	Logistic Regression
	yAUC = 0.77886 − 0.1914 × xGIL
	yMCC = 0.54762 − 0.3393 × xGIL



	Decision Tree Classifier
	yAUC = 0.9182 − 0.03648 × xGIL
	yMCC = 0.84385 − 0.1185 × xGIL



	KNeighborsClassifier
	yAUC = 0.78136 − 0.04867 × xGIL
	yMCC = 0.56195 − 0.0921 × xGIL



	GaussianNB
	yAUC = 0.659 − 0.2924 × xGIL
	yMCC = 0.41258 − 0.6357 × xGIL



	SVC
	yAUC = 0.72082 − 0.1865 × xGIL
	yMCC = 0.44355 − 0.26539528 × xGIL
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Table A4. The results of one-way ANOVA analysis (Welch’s test).






Table A4. The results of one-way ANOVA analysis (Welch’s test).












	
	f
	df1
	df2
	p





	Test MCC
	908
	4
	65.9
	<0.001



	Test AUC
	1163
	4
	65.6
	<0.001
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Table A5. The results of the Games–Howell post hoc test on test MCC.






Table A5. The results of the Games–Howell post hoc test on test MCC.





	

	

	
DecisionTreeClassifier

	
GaussianNB

	
KNN

	
LogisticRegression

	
SVC






	
Decision Tree classifier

	
Mean difference

	
-

	
0.563 ***

	
0.277 ***

	
0.3497 ***

	
0.452 ***




	
p-value

	
-

	
<0.001

	
<0.001

	
<0.001

	
<0.001




	
Gaussian NB

	
Mean difference

	

	
-

	
−0.285 ***

	
−0.2129 ***

	
−0.111 ***




	
p-value

	

	
-

	
<0.001

	
<0.001

	
<0.001




	
KNN

	
Mean difference

	

	

	
-

	
0.0723 ***

	
0.174 ***




	
p-value

	

	

	
-

	
<0.0001

	
<0.001




	
Logistic

Regression

	
Mean difference

	

	

	

	
-

	
0.102 ***




	
p-value

	

	

	

	
-

	
<0.001




	
SVC

	
Mean difference

	

	

	

	

	
-




	
p-value

	

	

	

	

	
-








Note. *** p < 0.001.
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Table A6. The results of the Games–Howell pos hoc test on train AUC.






Table A6. The results of the Games–Howell pos hoc test on train AUC.





	

	

	
DecisionTreeClassifier

	
GaussianNB

	
KNN

	
LogisticRegression

	
SVC






	
Decision Tree classifier

	
Mean difference

	
-

	
0.348 ***

	
0.156 ***

	
0.1995 ***

	
0.2629 ***




	
p-value

	
-

	
<0.001

	
<0.001

	
<0.001

	
<0.001




	
Gaussian NB

	
Mean difference

	

	
-

	
−0.191 ***

	
−0.1481 ***

	
−0.0848 ***




	
p-value

	

	
-

	
<0.001

	
<0.001

	
<0.001




	
KNN

	
Mean difference

	

	

	
-

	
0.0431 ***

	
0.1065 ***




	
p-value

	

	

	
-

	
<0.0001

	
<0.001




	
Logistic

Regression

	
Mean difference

	

	

	

	
-

	
0.0633 ***




	
p-value

	

	

	

	
-

	
<0.001




	
SVC

	
Mean difference

	

	

	

	

	
-




	
p-value

	

	

	

	

	
-








Note. *** p < 0.001.
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Table A7. The results of the Kruskal–Wallis test (non parametric one-way ANOVA).






Table A7. The results of the Kruskal–Wallis test (non parametric one-way ANOVA).











	
	x2
	df
	p





	Test MCC
	125
	4
	<0.001



	Test AUC
	128
	4
	<0.001
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Table A8. The results of the Dwass-Steel-Critchlow-Fligner pairwise comparisons for test MCC.






Table A8. The results of the Dwass-Steel-Critchlow-Fligner pairwise comparisons for test MCC.











	
	
	W
	p





	DecisionTreeClassifier
	GaussianNB
	−9.25
	<0.001



	DecisionTreeClassifier
	KNeighborsClassifier
	−9.33
	<0.001



	DecisionTreeClassifier
	LogisticRegression
	−9.25
	<0.001



	DecisionTreeClassifier
	SVC
	−9.25
	<0.001



	GaussianNB
	KNeighborsClassifier
	9.33
	<0.001



	GaussianNB
	LogisticRegression
	8.54
	<0.001



	GaussianNB
	SVC
	6.37
	<0.001



	KNeighborsClassifier
	LogisticRegression
	−6.80
	<0.001



	KNeighborsClassifier
	SVC
	−9.33
	<0.001



	LogisticRegression
	SVC
	−5.97
	<0.001
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Table A9. The results of the Dwass-Steel-Critchlow-Fligner pairwise comparisons for test AUC.






Table A9. The results of the Dwass-Steel-Critchlow-Fligner pairwise comparisons for test AUC.











	
	
	W
	p





	DecisionTreeClassifier
	GaussianNB
	−9.25
	<0.001



	DecisionTreeClassifier
	KNeighborsClassifier
	−9.33
	<0.001



	DecisionTreeClassifier
	LogisticRegression
	−9.25
	<0.001



	DecisionTreeClassifier
	SVC
	−9.25
	<0.001



	GaussianNB
	KNeighborsClassifier
	9.33
	<0.001



	GaussianNB
	LogisticRegression
	9.1
	<0.001



	GaussianNB
	SVC
	7.46
	<0.001



	KNeighborsClassifier
	LogisticRegression
	−6.88
	<0.001



	KNeighborsClassifier
	SVC
	−9.33
	<0.001



	LogisticRegression
	SVC
	−6.32
	<0.001
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Figure 1. The results of applying five machine learning models to the dataset for various anonymization parameter combinations (qi, k), where qi is the code of the quasi identifier set, and k is the minimum size of the equivalence class (Table 2). (a) The area under the curve (AUC) score results (first row) and the Matthews correlation coefficient (MCC) score results (second row) for the test set plotted against k for each qi value. (b) The AUC score results (first row) and the Matthews correlation coefficient (MCC) score results (second row) for the test set plotted against qi for each k value. 
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Figure 2. The prediction results of the tested machine learning models demonstrated with the AUC and MCC metrics, in juxtaposition with the GIL value. (a) The results of the logistic regression (LR), decision tree (DT), Gaussian naïve Bayes (GNB), k-nearest neighbors (KNN) and support vector machine (SVC) classifiers, plotted against k, for each qi value. (b) The results of the same models plotted against qi for each k value. 
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Figure 3. The linear regression model representing the relationship between the performance metrics area under curve (AUC), Matthews correlation coefficient (MCC) and the generalized information loss (GIL) metric for all tested machine learning models. (a) AUC as a function of GIL. (b) MCC as a function of GIL. 
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Figure 4. The AUC and MCC results of the five tested classifiers depicted through histograms (a,c) and violin plots (b,d). 
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Figure 5. The scatterplot depicting the correlation between GIL and MCC (bottom left) and the respective densities of the GIL (upper left) and MCC (bottom right) metric values. 
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Table 1. The attributes of the original dataset, the attributes after the one-hot decoding and their descriptions.
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Original Dataset Attributes

	
Attributes after One-Hot Decoding

	
Attribute Type

	
Values

	
Attribute Description






	
AGE

	
AGE

	
Numerical

	
0–114

	
Patient age




	
SEX_F

	
SEX

	
Categorical

	
[Female,

	
Patient sex




	
SEX_M

	
Male]




	
CURADM_DAYS

	
CURADM_DAYS

	
Numerical

	
1–307

	
Number of days during the current stay at the hospital




	
OUTCOME_H

	
OUTCOME

	
Categorical

	
[Healing,

	
Hospitalization (care encounter) outcome




	
OUTCOME_N

	
No change,




	
OUTCOME_I

	
Improvement,




	
OUTCOME_D

	
Deterioration]




	
CURRICU_FLAG

	
CURRICU_FLAG

	
Categorical

	
[0, 1]

	
The patient had to be transferred to ICU during the current hospitalization




	
PREVADM_NO

	
PREVADM_NO

	
Numerical

	
0–170

	
Number of previous admissions to the hospital




	
PREVADM_DAYS

	
PREVADM_DAYS

	
Numerical

	
0–627

	
Cumulative number of days of previous hospital admissions




	
PREVICU_DAYS

	
PREVICU_DAYS

	
Numerical

	
0–315

	
Cumulative days of ICU treatment during previous hospital admissions




	
READMISSION

_30_DAYS

	
READMISSION

_30_DAYS

	
Categorical

	
0–1

	
Readmission within 30 days or not
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Table 2. The different dataset versions that were generated from the anonymization process, the corresponding anonymization parameter values and the obtained values of the information loss metrics.
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	Dataset Version
	QI Set
	QI ID
	k
	GIL
	DM
	CAVG





	S0
	[]
	0
	1
	0
	0
	0



	S2.1
	[AGE, SEX]
	2
	2
	0.394
	346,873,092
	492.353



	S1.2
	[AGE, SEX]
	2
	3
	0.394
	346,873,108
	331.017



	S2.3
	[AGE, SEX]
	2
	5
	0.394
	346,873,168
	202.034



	S2.4
	[AGE, SEX]
	2
	10
	0.394
	346,873,396
	102.789



	S2.5
	[AGE, SEX]
	2
	15
	0.394
	346,875,014
	70.378



	S2.6
	[AGE, SEX]
	2
	20
	0.394
	346,878,574
	54.25



	S2.7
	[AGE, SEX]
	2
	30
	0.394
	346,884,568
	37.558



	S3a.1
	[AGE, SEX, OUTCOME]
	3a
	2
	0.352
	254,366,790
	209.25



	S3a.2
	[AGE, SEX, OUTCOME]
	3a
	3
	0.352
	254,366,928
	144.133



	S3a.3
	[AGE, SEX, OUTCOME]
	3a
	5
	0.352
	254,367,482
	91.547



	S3a.4
	[AGE, SEX, OUTCOME]
	3a
	10
	0.353
	254,371,334
	50.509



	S3a.5
	[AGE, SEX, OUTCOME]
	3a
	15
	0.353
	254,378,570
	36



	S3a.6
	[AGE, SEX, OUTCOME]
	3a
	20
	0.354
	254,353,268
	28.721



	S3a.7
	[AGE, SEX, OUTCOME]
	3a
	30
	0.355
	254,372,510
	20.134



	S3b.1
	[AGE, SEX, CURADM_DAYS]
	3b
	2
	0.214
	75,443,862
	21.275



	S3b.2
	[AGE, SEX, CURADM_DAYS]
	3b
	3
	0.215
	75,448,478
	16.502



	S3b.3
	[AGE, SEX, CURADM_DAYS]
	3b
	5
	0.216
	75,461,502
	11.83



	S3b.4
	[AGE, SEX, CURADM_DAYS]
	3b
	10
	0.219
	75,530,606
	7.73



	S3b.5
	[AGE, SEX, CURADM_DAYS]
	3b
	15
	0.219
	75,530,606
	7.73



	S3b.6
	[AGE, SEX, CURADM_DAYS]
	3b
	20
	0.222
	75,820,294
	5.208



	S3b.7
	[AGE, SEX, CURADM_DAYS]
	3b
	30
	0.225
	76,159,906
	4.099



	S4.1
	[AGE, SEX, CURADM_DAYS, PREVADM_DAYS]
	4
	2
	0.085
	7,964,110
	3.789



	S4.2
	[AGE, SEX, CURADM_DAYS, PREVADM_DAYS]
	4
	3
	0.093
	8,016,196
	3.434



	S4.3
	[AGE, SEX, CURADM_DAYS, PREVADM_DAYS]
	4
	5
	0.104
	8,145,452
	3.012



	S4.4
	[AGE, SEX, CURADM_DAYS, PREVADM_DAYS]
	4
	10
	0.116
	8,563,030
	2.525



	S4.5
	[AGE, SEX, CURADM_DAYS, PREVADM_DAYS]
	4
	15
	0.123
	9,082,286
	2.304



	S4.6
	[AGE, SEX, CURADM_DAYS, PREVADM_DAYS]
	4
	20
	0.126
	9,621,138
	2.138



	S4.7
	[AGE, SEX, CURADM_DAYS, PREVADM_DAYS]
	4
	30
	0.131
	10,880,770
	1.953
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Table 3. The mean, median, standard deviation (SD) and 95% confidence interval of the AUC and MCC metric test set results of the experiments with the five tested machine learning models.
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95% Confidence Interval

	

	




	

	
Classifier

	
Mean

	
Lower

	
Upper

	
Median

	
SD






	
AUC

	
DecisionTreeClassifier

	
0.906

	
0.902

	
0.910

	
0.909

	
0.0111




	
GaussianNB

	
0.583

	
0.568

	
0.597

	
0.565

	
0.0402




	
KNeighborsClassifier

	
0.768

	
0.765

	
0.772

	
0.771

	
0.0103




	
LogisticRegression

	
0.731

	
0.720

	
0.742

	
0.733

	
0.0311




	
SVC

	
0.670

	
0.651

	
0.689

	
0.695

	
0.0524




	
MCC

	
DecisionTreeClassifier

	
0.815

	
0.807

	
0.823

	
0.821

	
0.0217




	
GaussianNB

	
0.252

	
0.222

	
0.283

	
0.212

	
0.0838




	
KNeighborsClassifier

	
0.537

	
0.530

	
0.545

	
0.542

	
0.0208




	
LogisticRegression

	
0.465

	
0.443

	
0.488

	
0.467

	
0.0620




	
SVC

	
0.363

	
0.331

	
0.395

	
0.405

	
0.0886
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