
Citation: Montes Rivera, M.;

Escalante-Garcia, N.; Dena-Aguilar,

J.A.; Olvera-Gonzalez, E.;

Vacas-Jacques, P. Feature Selection to

Predict LED Light Energy

Consumption with Specific Light

Recipes in Closed Plant Production

Systems. Appl. Sci. 2022, 12, 5901.

https://doi.org/10.3390/

app12125901

Academic Editors: Luis

Hernández-Callejo, Sergio

Nesmachnow and Sara Gallardo

Saavedra

Received: 3 May 2022

Accepted: 26 May 2022

Published: 9 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Feature Selection to Predict LED Light Energy Consumption
with Specific Light Recipes in Closed Plant Production Systems
Martín Montes Rivera 1,* , Nivia Escalante-Garcia 2,*, José Alonso Dena-Aguilar 3, Ernesto Olvera-Gonzalez 2

and Paulino Vacas-Jacques 3

1 Dirección de Posgrados e Investigación, Universidad Politécnica de Aguascalientes,
Calle Paseo San Gerardo #201, Fracc. San Gerardo, Aguascalientes 20342, Mexico

2 Laboratorio de Iluminación Artificial, Tecnológico Nacional de México/IT de Pabellón de Arteaga,
Carretera a la Estación de Rincón Km. 1, Aguascalientes 20670, Mexico; jose.og@pabellon.tecnm.mx

3 Departamento de Ingenierías, Tecnológico Nacional de México/IT de Pabellón de Arteaga,
Carretera a la Estación de Rincón Km. 1, Aguascalientes 20670, Mexico;
jose.da@pabellon.tecnm.mx (J.A.D.-A.); paulino.vj@pabellon.tecnm.mx (P.V.-J.)

* Correspondence: martin.montes@upa.edu.mx (M.M.R.); nivia.eg@pabellon.tecnm.mx (N.E.-G.)

Abstract: The use of closed growth environments, such as greenhouses, plant factories, and vertical
farms, represents a sustainable alternative for fresh food production. Closed plant production systems
(CPPSs) allow growing of any plant variety, no matter the year’s season. Artificial lighting plays an
essential role in CPPSs as it promotes growth by providing optimal conditions for plant development.
Nevertheless, it is a model with a high demand for electricity, which is required for artificial radiation
systems to enhance the developing plants. A high percentage (40% to 50%) of the costs in CPPSs point
to artificial lighting systems. Due to this, lighting strategies are essential to improve sustainability and
profitability in closed plant production systems. However, no tools have been applied in the literature
to contribute to energy savings in LED-type artificial radiation systems through the configuration
of light recipes (wavelengths combination. For CPPS to be cost-effective and sustainable, a pre-
evaluation of energy consumption for plant cultivation must consider. Artificial intelligence (AI)
methods integrated into the prediction crucial variables such as each input-variable light color or
specific wavelengths like red, green, blue, and white along with light intensity (quantity), frequency
(pulsed light), and duty cycle. This paper focuses on the feature-selection stage, in which a regression
model is trained to predict energy consumption in LED lights with specific light recipes in CPPSs.
This stage is critical because it identifies the most representative features for training the model, and
the other stages depend on it. These tools can enable further in-depth analysis of the energy savings
that can be obtained with light recipes and pulsed and continuous operation light modes in artificial
LED lighting systems.

Keywords: light wavelength; energy efficiency; features selection; machine learning

1. Introduction
1.1. LED Lights in Closed Plant Production Systems

Agriculture in 2050 will have to produce almost 50% more output to meet the de-
mand for food supplies, presenting it with a crucial challenge in meeting the increase in
demand [1]. Technological development and innovation can offer alternatives to ensure
food security sustainably. The use of closed growth environments, such as greenhouses,
plant factories, and vertical farms [2–6], represents a sustainable alternative for fresh food
production. In closed plant production systems (CPPSs), several variables can be controlled
and optimized, such as water, fertilizers, CO2 injection, and temperature, as well as the
quantity and quality of light thus ensuring minimum greenhouse gas emissions [3]. CPPSs
allow growing of any plant variety, no matter the season of the year. Artificial lighting
plays an essential role in CPPSs, as it promotes growth by providing optimal conditions for

Appl. Sci. 2022, 12, 5901. https://doi.org/10.3390/app12125901 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12125901
https://doi.org/10.3390/app12125901
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3897-6212
https://doi.org/10.3390/app12125901
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12125901?type=check_update&version=1


Appl. Sci. 2022, 12, 5901 2 of 25

plant development. LEDs are energy-efficient replacements that contribute to plant growth
in agriculture. An outstanding advantage of LED lamps is their ability to operate with
specific wavelengths (λ) that considerably reduce energy consumption. LEDs regularly
generate continuous light. Likewise, they can radiate pulsed light (on/off in microseconds
(µs)) with high power and low energy consumption at a specific frequency and duty cy-
cle without upsetting the vegetative development of plants [4,7,8]. LED technology can
produce different colors of light—that is, different qualities—called light recipes (different
wavelength combinations). The wavelength combinations (red, blue, green, ultraviolet,
and infrared) and the photosynthetic photon flux density (PPFD, given in µmol m−2 s−1)
are the components that constitute the light recipes. Light recipes impact crop growth
from branching to flowering; optimize the biomass; and increase the antioxidant capacity
levels of calcium, potassium, magnesium, chlorophyll, iron, vitamins A, B, and E, and other
substances [7–9]. Crop quality and productivity rely upon the time and the light quantity
supplied to the plants.

CPPSs can offer several advantages (improved management control of all variables
involved—temperature, CO2, radiation—and increased productivity, growth, and yield)
and generate an impact on humanity. Nevertheless, it is a model with a high demand
for electricity for the artificial radiation systems needed to enhance the developing plants.
Environmental control (refrigeration), the air required to remove the heat produced, and
artificial lighting account for approximately 32%, 11%, and 57% of the total energy demand,
respectively [10]. Furthermore, according to Avgoustaki and Xydis [11], the artificial
lighting system accounts for 80% of the electrical demand, since the overall operability of
the CPPS accounts for 40% of the total energy consumption.

Innovative approaches, such as fluid dynamics, evolutionary algorithms [12,13], the
derivative integral model, and derivative model [14–16], control the resources in CPPSs.
Artificial neural networks predict weather conditions and energy consumption [13–15,17].
Other techniques predict energy consumption performance for plant production [18,19].
Finally, other techniques focus on in the optimization of resources and reducing energy
demand in CPPSs [20,21].

1.2. Machine-Learning Modeling

Physical modeling approaches are the most common approaches for predicting sys-
tem behaviors, but they rely on descriptions of physics concepts. Thus, they tend to be
complex, as the detail of the model increased. Therefore, as the principle of Occam’s razor
states, physical modeling must balance complexity with assumptions in order to produce
simplified and representative models [22,23].

On the other hand, artificial intelligence (AI) researchers have proposed several tech-
niques that allow automatic generation of the models and equations based on measure-
ments arranged in datasets. Furthermore, machine learning (ML), a field of AI, applies
deterministic and heuristic methods to produce models with less complexity established in
the raw measurements [22].

During the last two decades, ML models have exhibited high effectivity, accuracy, and
performance in several fields, including energy applications. Furthermore, ML results for
modeling have motivated researchers to apply its models to accurately predict the behavior
of physical phenomena [22–30].

The ML modeling process can involve several stages, depending on its application,
but a general description would include collecting data, preprocessing data, building a
model, training, and testing. Furthermore, all the stages must be continually tuned to
improve the results; i.e., the stages can repeatedly change across the entire process if the
model requires efficiency improvements, as represented in Figure 1 [22].
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Figure 1. Modeling process with ML.

1.2.1. Collecting Data

ML modeling uses algorithms, statistics, and measurements structured in a dataset
to identify the process behaviors and mimic them in a model [31]. The data generation
stage depends on the processes contained in the chosen model. They may include electrical,
mechanical, optical, thermal, psychic, or chemical variables [22,24,25,32,33]; derive from
statistical analysis [26,27]; or be constructed with text, multimedia, or even real-time
reports [32–35]. Nevertheless, the datasets can be associated with a specific time and/or
frequency domain [36,37].

1.2.2. Preprocessing Data

After collecting and structuring the dataset, its variables need to be cleaned, processed,
and filtered for the ML model. The processing stage includes several techniques, which
can be human- or AI-designed, and they depend on the nature of the training data. For
example, in natural language processing with text, preprocessing removes capitals [38]; in
signal processing, wavelet transforms separate signals into their main components [39]; in
image processing, convolution with the image filters extracts features [40]; in big data and
data mining, dimensionality reduction is achieved [41].

The preprocessing data stages include normalization based on algorithms, such as
MIN-MAX normalization, decimal scaling, and Z-scores; filtering redundant and inconsis-
tent data; transformations such as linear, quadratic, polynomial, and histogram transfor-
mations; removing noisy data with techniques such as ensemble filtering, cross-validated
filtering, and interactive partitioning; feature selection with exhaustive, heuristic, filter, and
wrapper methods; and discretization to change from analog systems to digital ones [42].

Input features in ML modeling are representative when their information affects the
output of the modeled system. Additionally, removing characteristics that are irrelevant
or have low correlations from the results produces search spaces with lower complex-
ity, boosting the capabilities of the training algorithm and improving the final model’s
efficiency [43,44].

One of the most used commonly techniques for removing redundant and inconsistent
data in the second stage is feature Selection (FS). FS also makes it possible to reduce size,
increase the efficiency and accuracy of predictive learning, and reduce the complexity of
the final model [42]. The different FS approaches reported in the literature are constituted
theoretically and apply methods such as filtering, wrapping, and embedding through
techniques involving search algorithms, statistical criteria, and information, distance, de-
pendency, and consistency measures [42].

1.2.3. Building Model

ML includes several models for predicting behavior that are supported by statistics
and artificial intelligence. Different proposals have obtained different results depending
on the ML model’s application. The most common models are artificial neural networks,
evolutionary algorithms, swarm intelligence algorithms, decision trees, naive Bayesian
algorithms, logistic regression, fuzzy systems, gradient boosting machines, support vector
machines, support vector regression, random forest algorithms, AdaBoost, simulated
annealing, and hybrids of these models [22,24,26–28,31,34,44].
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1.2.4. Training Model

Each ML model tunes its internal parameters with a training algorithm designed
for the learning type. The most common learning types are supervised, unsupervised,
reinforced, semi-supervised, transductive, self-trained, ensemble learning, boosting, and
generative [31].

1.2.5. Testing Model

The metrics used to evaluate quality in the process of ML modeling depend on the
nature of the model, which may be for classification or regression. In regression models,
the metrics quantify the reliability of the model and the error between the model output
and the real-world system. The most common regression metrics are the root mean square
error (RMSE), mean error (ME), mean absolute error (MAE), mean average percentage
error (MAPE), and the Nash coefficients E and R2 [22,44].

1.3. Feature Selection

As mentioned in Section 1.2.2, feature selection is one of the most critical stages of ML
modeling since it makes it possible to identify the best relation to the required complexity
of the model and its quality at the preprocessing stage. In addition, feature selection makes
it possible to find the more representative inputs in the real-world system and to eliminate
no representative inputs or those that are redundant. ML models and training algorithms
that consider only representative features improve their efficiency and reduce the time
required for training [26,27,38,45]. A feature is an observable property in a system. Feature
selection aims to select a specific subset of features that maximize the performance of the
ML model.

The feature selection (FS) used here applied one of the most common techniques for
removing irrelevant data, reducing dimensionality, increasing predictive accuracy and
learning efficiency, and reducing the complexity of the final model [42]. Although there
are different approaches for FS, all have theoretical support in their use of different meth-
ods, such as filtering, wrapping, and embedding, and involve techniques that use search
algorithms, statistical criteria, and information, distance, dependence, and consistency
measures [42]. The aim was to use linear and nonlinear methods to implement FS with a
dataset acquired from an illumination radiation system.

This paper focuses on the feature selection stage in order to train a regression model to
predict energy consumption in LED lights with specific light recipes in CPPSs. This stage is
critical because it identifies the most representative features for training the model, and the
other stages depend on it. These tools can enable further in-depth analysis of the energy
savings that can be obtained with light recipes and pulsed and continuous light operation
modes in artificial LED lighting systems.

2. Materials and Methods
2.1. Lighting System Features

The Artificial Lighting Laboratory (LIA) at Instituto Tecnológico de Pabellón de
Arteaga in Aguascalientes, Mexico, developed the lighting system. An array of eight
lamps formed the artificial lighting system. The wattage of each lamp was 25 watts.
The ultra-bright LEDs emitted continuous and pulsed irradiation with different qualities
(red, blue, green, and white). A programmed controller (a field-programmable gate array
(FPGA)) allowed us to configure functions such as pulse frequency, duty cycle, intensity,
wavelength, and on–off time.

2.2. Construction of Experiment

This study evaluated 10 light recipes from the literature, as can be seen in Figure 2.
After that, the LED artificial radiation system was configured for continuous and pulsed
emission to generate the first dataset (see table at the top of figure) to be analyzed. The
intensities parameters were 50, 65, 80, 95, 110, 125, 140, 155, 170, and 185 µmol m−2 s−1, as
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determined by a quantum sensor, and the frequency was set to 100, 500, and 1000 Hz with
40%, 50%, 60%, 70%, 80%, and 90% duty cycles for different treatments.
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Figure 2. Flow diagram for collection of CPPS measurements for the dataset.

In the generation of the second dataset, four different light recipes were set at intensi-
ties of 60, 70, 85, 90, 90, 100, 120, 130, 150, 160, and 180 µmol m−2 s−1, the frequency was
set at 100, 500, and 1000 Hz, and duty cycles were randomly selected at 60%, 70%, and 80%,
depending on the treatment (see table at the bottom of Figure 2).

The artificial illumination system included 14 light recipes (see tables in Figure 2) with all
combinations of parameters. After 60 min of radiation, we registered the measurements for the
energy demand with a hook-on AC ammeter (Peak Teach, Salerno, Italy) in watts × hours (Wh).
Then, the artificial radiation system was turned off for 15 min to cool down.

2.3. Min-Max Normalization

Normalization linearly transforms variables within specific ranges based on the mini-
mum and maximum median absolute deviations of the variable values, avoiding changes
to priorities in the variables because of the scale. Equation (1) represents the standard
deviation required in the transformation as Xstd, and Equation (2) indicates the variable
scaling [46,47].

Xstd =
x− Xmin

Xmax − Xmin
(1)

Xscaled = Xstd × (Xmax − Xmin) + Xmin (2)

where Xscaled is the new value transformed from the original value x ∈ X and Xmax and
Xmin are the maximum and minimum values, respectively.
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2.4. Pearson Correlation

This association method’s primary goal is to identify two or more correlated vari-
ables [45].

The Pearson correlation coefficient measures the degree of correlation between two
variables in a linear approach. Let X and Y be those variables, with measurements given by
{x1, x2, x3, ..., xn} and {y1, y2, y3, ..., yn} and means x and y. Then, the Pearson coefficient is
given by Equation (3) [42].

ρ(X, Y) =

n
∑

i=1
( xi − x ) ( yi − y )[

n
∑

i=1
(xi − x) 2

n
∑

i=1
( yi − y )2

] 1
2

(3)

A Pearson coefficient with the range ρ = [−1, 1] represents the level of correlation
when ρ is positive and correlation is direct, and the negative is the inverse [42].

When two variables are highly correlated, one can be redundant. The Pearson corre-
lation works only for linear relations and results in incorrectly measured correlations for
nonlinear systems. When classifying with binary outputs, it is possible to identify using
Pearson coefficients how an attribute correlates with the target class [42].

Additionally, one can perform a correlation statistical significance test using the pvalue
coefficient, such as a test of the probability that the correlation coefficient ρ is a wrong
hypothesis; for example, as a convention from the literature, if pvalue > 0.05, it is unreliable.
The alternatives for such a determination include statistical tests, such as the tvalue, variance
analysis (ANOVA), and 1tailed or 2tailed tests [48].

2.5. Variance Threshold

This method is used to identify features with variance. The features eliminated based on
variance are those with zero value, near to zero value, or below a specific threshold [49–51].

The variability in a group given with {x1, x2, x3, ..., xn} is the standard error; in other
words, it is the difference between the samples and the average value of the group x, as in
Equation (4) [52].

σ2 =

n
∑

i=1
(xi − x)2

n− 1
(4)

2.6. Mutual Information Gain

Feature selection with mutual information gain enables the discrimination of features
based on their interaction measurement, both for linear and nonlinear models [53]. Mutual
information measures the uncertainty based on the entropy H of one variable while observ-
ing the other one. Let X be a random variable with values {x1, x2, x3, ..., xn}; its entropy is
given by Equation (5) [54].

H(X) = −
n

∑
i=1

P(xi)log2[P(xi)] (5)

Let Y be an output variable with values {y1, y2, y3, ..., yn} and let X be a features array
with values {x1, x2, x3, ..., xn}; H(X|Y) is then given by Equation (6) [54].

H(X | Y) = −
n

∑
j=1

[P(xi)]
n

∑
i=1

P
(
xi | yj

)
log2

[
P
(
xi | yj

)]
(6)

The mutual information in Equation (7) measures the reduction in the uncertainty of
X given Y [54,55].

MI(X|Y) = H(X)− H(X|Y) (7)
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2.7. Univariate Linear F-Regression Selection

This method uses a linear model to measure the degree of linear dependence between
two random variables; in other words, it measures the significance of a feature in a linear
model [56].

The F-regression equations use the null hypothesis H0, indicating that the data only
intercept the model, and the alternative hypothesis H1, indicating the compatibility of
the data with the model. The selection of the true hypothesis relies on the Fscore given in
Equation (8), the explained variance from Equation (9), and the unexplained variance from
Equation (10) [56].

F =
explained variance

unexplained variance
(8)

explained variance =
K

∑
i=1

ni

(
Yi· −Y

)2

(K− 1)
(9)

unexplained variance =
K

∑
i=1

ni

∑
j=1

(
Yij −Yi·

)2

(N − K)
(10)

where Yij is the j th observation in the i out group in K, which is the number of out groups.
N is the overall sample size and ni is the number of observations.

Additionally, following Section 2.4, one can determine a pvalue for the hypothesis
conclusion, and, like with the Pearson correlation, if pvalue > 0.05, the conclusion is
unreliable [56].

2.8. Sequential Feature Selection

Sequential feature selection algorithms are a subset of wrapper algorithms that use
greedy search algorithms. They evaluate a solution with certain features in a specific
model and decide which feature to remove based on its quality. This technique can use a
feedforward or backward approach; i.e., adding or removing features in the model. Figure 3
displays the searching schema for feedforward and backward sequential selection with
three features [57,58].
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For this study, backward sequential feature selection served to remove the worst
variables in the energy consumption dataset for the LED lamps of a CPPS.
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2.8.1. Linear Regression Model

The linear model structure includes Y ∈ R n×1, where Y = (y1, y2, y3, ..., yn)
T is the

response variable; X ∈ R n×p, where X = (x1, x2, x3, ..., xn) represents the design matrix;
and xi =

(
xi,1, xi,2, xi,3, ..., xi,p

)
and β ∈ R p×1, where n is the number of observations

and p is similar to the number of features. Then, the linear regression model is given by
Equation (11) [59].

Y = µ + ε (11)

where µ = β× X and ε is the regression error.
Then, with a given predictor Y and the design matrix X, Equation (12) solves the

β model parameters that reduce ε [59].

β =
(

XTX
)−1

XTY (12)

2.8.2. Decision Tree Regression Model

Decision trees are hierarchical structures with nodes representing tests of the data with
specific attributes and branches representing the test results. Decision tree models include
IDS, C4.5, CART, and regression models. For example, the regression decision trees predict
continuous random variables by finding the attributes that reduce the mean square error
(MSE), obtained with Equation (13) [60].

MSE =
1
n

n

∑
i=1

(yi − yi)
2 (13)

where Y = (y1, y2, y3, ..., yn) is the raw data output variable and Y = (y1, y2, y3, ..., yn)
represents the decision tree model output [60].

For this application, the regression variable used a decision tree with the energy
consumption and the node attributes as the features for the energy consumption dataset.

3. Results
3.1. Energy Consumption Dataset

We registered the power consumption emitted by the artificial lighting system as a
function of the light recipe, including parameters such as intensity; R, G, B, and W quality;
frequency; and duty cycle. Table 1 represents the first dataset obtained through the process
described in Section 2 (Figure 2). The evaluated energy consumption contained different
ranges depending on the directly configured parameters. However, applying specific value
ranges to the inputs affects the priority assigned to each one.

Endeavoring not to affect the input priorities, a new scaled dataset with min-max
normalization was generated according to the equations defined in Section 2.3. Table 2
shows the data obtained after applying the equations corresponding to each input and
output variable. The data represent the ranges from 0 to 1 after normalization. A value of 0
corresponds to the minimum value identified for that variable, while 1 is the maximum.
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Table 1. First 15 measurements of the dataset generated.

Intensity (A)
(µmol m−2 s−1)

Light Color Percentage (%) Frequency
(Hz)

Duty Cycle
(%)

Energy
Consumption (Wh)R G B W

50 45 0 5 0 0 0 23.5
50 41.5 0 8.5 0 0 0 23.4
50 30 0 20 0 0 0 23.9
50 0 0 21.5 28.5 0 0 25.1
50 33.5 11 5.5 0 0 0 24.4
50 33.5 16.5 0 0 0 0 23.4
50 0 0 0 50 0 0 24.5
50 25 0 25 0 0 0 23.9
50 35 0 15 0 0 0 33.5
50 15 0 35 0 0 0 24.1
50 45 0 5 0 100 40 20.7
50 41.5 0 8.5 0 100 40 20.6
50 30 0 20 0 100 40 20.9
50 0 0 21.5 28.5 100 40 22.2
50 33.5 11 5.5 0 100 40 21.1

Table 2. First 15 scaled dataset measurements.

Intensity (A)
(µmol m−2 s−1) R G B W Frequency

(Hz) Duty (%) Energy
Consumption (Wh)

0.000 0.256 0.000 0.039 0.000 0.000 0.000 0.085
0.000 0.236 0.000 0.066 0.000 0.000 0.000 0.082
0.000 0.171 0.000 0.154 0.000 0.000 0.000 0.097
0.000 0.000 0.000 0.166 0.154 0.000 0.000 0.132
0.000 0.191 0.180 0.042 0.000 0.000 0.000 0.111
0.000 0.191 0.270 0.000 0.000 0.000 0.000 0.082
0.000 0.000 0.000 0.000 0.270 0.000 0.000 0.114
0.000 0.142 0.000 0.193 0.000 0.000 0.000 0.097
0.000 0.199 0.000 0.116 0.000 0.000 0.000 0.378
0.000 0.085 0.000 0.270 0.000 0.000 0.000 0.103
0.000 0.256 0.000 0.039 0.000 0.100 0.444 0.003
0.000 0.236 0.000 0.066 0.000 0.100 0.444 0.000
0.000 0.171 0.000 0.154 0.000 0.100 0.444 0.009
0.000 0.000 0.000 0.166 0.154 0.100 0.444 0.047
0.000 0.191 0.180 0.042 0.000 0.100 0.444 0.015

3.2. Person Correlation Results

The next step was determining the Pearson correlation level with the coefficient ρ
supported by the statistic test pvalue using the equations in Section 2.4. The evidence for
Pearson correlation with intensity, R, G, B, W, and frequency was sufficient as pvalue ≤ 0.05,
but the duty correlation was unreliable because pvalue > 0.05. Thus, duty cycle was the first
variable eliminated (Table 3).

Table 3. ρ and pvalue correlation with energy consumption per input variable.

Elimination Order Input ρ pvalue

7th Intensity 0.865312 0
3rd R 0.091069 5.64 × 10−12

2nd G 0.043198 0.001106
5th B 0.372963 1.3 × 10−187

6th W 0.522086 0
4th Frequency 0.110005 8.18 × 10−17

1st Duty cycle 0.014195 0.283926
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Figure 4 shows a correlation heat map of the input variables and the energy consump-
tion output to identify the strongest correlations graphically. There is a lower correlation
where the graph color is darker.
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3.3. Variance Threshold Results

The dataset energy consumption variables were dismissed against the variance thresh-
old value as it gradually increased. The method for eliminating the variables with lower
variance was described in Section 2.5. Figure 5 indicates the color associated with each
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Table 4 displays the feature variance, the threshold value, and a bar plot showing the
eliminated variable. Each threshold value was increased by 0.01 steps until a feature was
eliminated from the energy consumption dataset.
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Table 4. Elimination order for features using variance threshold selection.

Elimination Order Variable Variance Threshold Image

1st W 0.05079 0.051
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Table 4. Cont.

Elimination Order Variable Variance Threshold Image
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Table 5. Mutual information gain values for the energy consumption dataset.

Elimination Order Input MI(X|Y)

5th Intensity 0.987600
7th R 1.107432
3rd G 0.318185
6th B 1.027326
4th W 0.514607
1st Frequency 0.092839
2nd Duty 0.131858

3.5. Univariate Linear F-Regression Results

Once again, feature selection by F-regression in the generated dataset employed the
energy consumption, such as the outcome variable in the features array (Section 2.7).
Figure 7 displays the Fscore value for hypothesis H0 for each variable in the features array,
and Table 6 shows the Fscore and pvalue calculated by H0 for all input parameters.
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Table 6. Fscore and pvalue feature selection with F-regression.

Elimination Order Input Fscore pvalue

7th Intensity 16,981.875086 0
3rd R 47.651943 5.643556 × 10−12

2nd G 10.652646 1.105620 × 10−3

5th B 920.664903 1.349950 × 10−187

6th W 2135.097576 0
4th Frequency 69.796609 8.176545 × 10−17

1st Duty cycle 1.148417 2.839262 × 10−1

The calculated pvalue is indicated in Table 6. The Pearson correlations for intensity,
R, G, B, W, and frequency showed reliable results since pvalue ≤ 0.05, but the duty cycle
correlation was unreliable because pvalue > 0.05; that is, the duty cycle was the first
eliminated.

3.6. Sequential Feature Selection Results

We used backward sequential feature selection under a linear model and a decision tree
regression (no linear model). However, implementation of the sequential feature selection
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through the decision tree may have generated overfitting; thus, a 10-fold cross-validation
allowed the recognition of the accepted characteristics by modifying the tree depth from 2
to 5.

3.6.1. Sequential Feature Selection with Linear Regression Model

Table 7 presents the results obtained for the linear regression model (Section 2.8.1)
determining the feature elimination sequence, which used as attributes the admitted range
from 1 to 6. The table follows the logic of Figure 5, showing each color in the elimination
ranking with the variance threshold.

Table 7. Sequential feature deletion from the linear regression.

Elimination Order Variable Image
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Table 7. Cont.

Elimination Order Variable Image
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3.6.2. Sequential Feature Selection with Decision Tree Regression Model 
The feature recognition through the decision tree regression model used the variance 
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input variable (Tables 8–11) to be obtained from the tree depth configuration. A color im-
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3.6.2. Sequential Feature Selection with Decision Tree Regression Model

The feature recognition through the decision tree regression model used the variance
in a specific feature, which ranged from 1 to 6, allowing the elimination order for each input
variable (Tables 8–11) to be obtained from the tree depth configuration. A color image of
each feature, following the structure for variance threshold selection, is shown in Figure 5.
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Table 8. Sequential feature selection by decision tree for depth = 2.

Elimination Order Variable Image
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Table 9. Sequential feature selection by decision tree for depth = 3.
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Table 10. Sequential feature selection by decision tree for depth = 4.
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Table 11. Sequential feature selection by decision tree for depth = 5.
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4. Discussion

The results obtained require division into linear and nonlinear model selection al-
gorithms. The division generated makes it possible to analyze the results according to
the model type and to identify the sequence of each feature. Tables 12 and 13 show the
algorithms by group, the feature selection order, and the mean.

Table 12. Elimination order for the linear model group.

Feature Pearson
Correlation

Variance
Threshold

Univariate Linear
F-Regression

Sequential
Backward Linear Mean

Intensity 7 6 7 7 6.8
R 3 5 3 6 4
G 2 2 2 3 2.2
B 5 3 5 4 4.4
W 6 1 6 2 4.2

Frequency 4 7 4 5 4.8
Duty
cycle 1 4 1 1 1.6

Table 13. Elimination order for the nonlinear model group.

Feature Variance
Threshold

Mutual
Information Gain

Sequential Backward Deep Tree Values
Mean

2 3 4 5
Intensity 6 5 7 7 7 7 6.5

R 5 7 1 6 6 6 5.17
G 2 3 5 3 4 2 3.17
B 3 6 2 2 2 4 3.17
W 1 4 6 1 1 1 2.33

Frequency 7 1 4 5 3 5 4.17
Duty cycle 4 2 3 4 5 3 3.5

The averages calculated and reported in Tables 12 and 13 indicate two different
behaviors depending on the model performance (linear or nonlinear). Figure 8 shows an
alternative way to visualize the performance between linear and nonlinear models.
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After dividing the models into linear and nonlinear groups, we validated the ordinal
elimination variables on a scale from 1 to 7 and tested the distributions with the Kruskal–
Wallis test (Table 14) [61]. The sequence elimination distribution for the proposed models is
shown in Figures 9 and 10 (linear and nonlinear models, respectively).

Table 14. Values obtained with the Kruskal–Wallis test.

Group Fscore pvalue

Linear 16.27232 0.012364
Nonlinear 17.65278 0.007161
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Nonlinear 17.65278 0.007161 

Figure 9. Order of elimination for features in linear models.

The linear model indicated that the essential characteristic was intensity, while the
least significant was the duty cycle (Figure 9 and Table 14). If the appropriate sequence
for any variable is required, the mean value can be found in Table 12. This means that the
elimination order for the linear models was duty cycle, G, R, W, B, frequency, and intensity.

The nonlinear model found that the most crucial characteristic was intensity, while
the least important was W (white color), with sufficient significance p < 0.05. If the correct
sequence of the other variables is required, we can rely on the mean values for the feature
distribution (Table 13). Overall, the elimination sequence was W, G, B, duty cycle, frequency,
R, and intensity.

The elimination order for the duty cycle and R in the linear and nonlinear models
suggests that they are nonlinear features, mainly because several linear algorithms selected
them as the first variables to eliminate but nonlinear algorithms selected them as the most
important ones.
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5. Conclusions

In this study, we performed feature selection in order to prioritize inputs in the predi-
cation of energy consumption in an artificial illumination system for a CPPS using linear
and nonlinear regression models. A dataset was generated with electrical measurements
for proprieties such as intensity, light wavelength (RGB and W), frequency, and duty cycle.

The algorithms used for the linear models to identify the elimination order of the
features included the variance threshold, Pearson correlation, univariate liner F-regression,
and sequential backward feature selection with linear regression.

On the other hand, for nonlinear models, the algorithms used were the variance
threshold, mutual information gain, and sequential backward feature selection with tree
decision regression, using a tree depth from 2–5. The Kruskal–Wallis test served to validate
the elimination order distributions.

The best order for eliminating features with the linear model was duty cycle, light
color, frequency, and intensity, with pvalue = 0.012364. The best order with nonlinear
models was white, green, blue, duty cycle, frequency, red, and intensity, with significance
at pvalue = 0.007161. The elimination order for the duty cycle and R in the linear and
nonlinear models differed enormously because the linear algorithms considered them the
most suitable elimination features, while nonlinear algorithms marked them as essential
features. This discrepancy was because the duty cycle and R were nonlinear features. Thus,
only nonlinear models could map them correctly. Moreover, this supports the hypothesis
that the energy consumption in LED lamps for CPPSs has nonlinear behavior and that
nonlinear models should be used to predict it.

This technique allows various deductions to be drawn from the analysis of the data
obtained, including the estimation of the average energy consumption and its comparison
with the quality of the crop, as well as the determination of the circumstances under which
energy use is efficient. The selection of characteristics can be used as a reference for the
agro-industrial community.
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