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Abstract: Smart factories and big data are important factors in the Fourth Industrial Revolution. Smart
factories aim for automation and integration; however, the most important part is the application
of data. Despite extensive research on the maintenance and quality management of big data-based
production equipment, industrial data gathered for analysis contain more normal data than abnormal
data. In addition, a significant amount of energy is expended in the data pre-processing process to
analyze the acquired data. Therefore, to maintain production equipment and quality management,
data classification technology that allows easy data analysis by classifying abnormal data into normal
data is required. In this paper, we propose an abnormal data classification architecture for cycle
data sets gathered from production facilities through SSA-CAE along with data storage methods for
each product unit. SSA-CAE is a hybrid technique that combines singular spectrum analysis (SSA)
techniques that are effective in reducing noise in time series data with convolutional auto encoder
(CAE) that have performed well in time series.

Keywords: smart factory; singular spectrum analysis; deep learning; abnormal data classification;
semi-supervised learning

1. Introduction

Since the 4th Industrial Revolution, the smartization of the manufacturing indus-
try using information and knowledge has been rapidly growing. Computer numerical
control (CNC) [1], machining center tool (MCT), and injection molding machines are typ-
ical production equipment applied to smart factories. Various sensors are installed and
operated in the factory for detecting defects and maintaining the production facility. It
is possible to build a monitoring system using data gathered from sensors. Sensors are
used for predictive preservation of production machines, optimization of manufacturing
processes, and real-time abnormality detection using applying data analysis [2], machine
learning [3–6] and deep learning [7–9] technology. According to these changes, various
research studies have been conducted in academia based on sensor data. Data collected
from the sensor data [10–14] are stacked up as big data and stored in a data center at the
manufacturing site or in a cloud environment. Owing to the rapidly growing computing
power the analyze of big data has recently been in the spotlight.

However, there is a fatal problem with sensor data gathered from manufacturing
facilities. The state of big data from most of the manufacturing facilities is more imbalanced
than that of normal data. Furthermore, it is not easy to gather abnormal data unless the
equipment intentionally fails because the tools are replaced periodically based on the
experience of expert workers.

To solve the class imbalance of data, research studies have been conducted to detect
outliers in data by learning only normal data. However, previous studies have focused on
the correlation between the time of occurrence of the abnormality in all data, and the reasons

Appl. Sci. 2022, 12, 5864. https://doi.org/10.3390/app12125864 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12125864
https://doi.org/10.3390/app12125864
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8350-7661
https://orcid.org/0000-0003-2473-6621
https://orcid.org/0000-0002-4061-9532
https://doi.org/10.3390/app12125864
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12125864?type=check_update&version=1


Appl. Sci. 2022, 12, 5864 2 of 19

of the abnormality. To detect abnormalities in CNC machines, the most representative
machine tools in the manufacturing industry, have various data such as physical properties
information of raw materials, vibration of motors, and discharge of lubricants. These data
are applied as elements of abnormal detection [15,16]. Owing to the nature of the time series,
data is continuously gathered and stored by time. Most big data processed for analysis after
storage, consumes considerable time and effort to pre-process time series data. Therefore,
the detection of abnormalities in the product unit takes precedence before focusing data
on abnormalities and factors that affect their occurrence. In this study, class imbalance
was resolved and approached as a computing architecture for data storage methods and
data classification. This study focused on product-level collection and analysis, data-
oriented collection, and analysis. In addition, we aim to detect the problem state, which is
abnormality, during processing of each single product, not to classification the reason of
processing problem state.

The data used in this study utilizes sensor data collected by CNC. Many studies
have been conducted on abnormality detection for CNC predictive preservation [17,18].
However, related studies have only performed abnormality detection for the entire collected
data. To apply it to the real field, product-oriented data storage and abnormality detection
are required rather than, the entire data. The contributions of the study are as follows:
A new architecture using the SSA [19] technique and the unsupervised deep learning
model [20] is proposed. It also increases the usability of big data collected from smart
factories through new proposals on how to store data.

The validity of the storage and analysis methods of CNC data is verified through experi-
ments. It also applies and compares various proposed techniques to improve class imbalance
and demonstrates the performance of the proposed classification model. In addition, an
experiment was conducted to confirm the effectiveness of the proposed architecture to deter-
mine whether the architecture could record valid performance when applied in practice. The
experiment was conducted based on sensor data collected at the real site and utilized vibra-
tion data from the CNC machine. After the experiment, the characteristics of the proposed
architecture and considering it, areas that are good to be applied.

Our contributions through this paper are as follows.

• For the smartization of small and medium-sized manufacturing industries that are do
not have the latest facilities, we propose an architecture for data collection methods
and classification.

• A deep learning classification technique based on the SSA technique is proposed.
• Through the proposed classification technique, “product with data” can be achieved

within a smart factory.

“Product with data” refers to a group of data generated in product units, not data
collected for one day or data for each process unit. The composition of this paper is as
follows. First, Section 2 describes previous studies. Recent research trends and previous
related studies are presented along with abnormal detection studies using CNC data,
problems of class imbalance data, and previous studies to solve them. Section 3 introduces
the configuration of the data classification architecture to be proposed in this paper. Along
with the overall structure, the expected effects of the detailed components of each structure
are introduced in detail. Section 4 presents the results of the applicability and experiments
on the propositions to be proven in this study. Finally, Section 5 summarizes the contents
of the thesis, introduces future research, and concludes the thesis.

2. Related Work
2.1. Smart Factory and Big Data

Automation production facilities associated with smart factories contain numerous
sensors, and diverse data are collected through programmable logic controller (PLC).
Some data are used for data analysis, however, there are also highly volatile data such as
information displayed on indicators installed in production facilities. When the torque
overload caused by over-insertion of the machine instrument exceeds the threshold, you
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will be notified, and the machine view of the defect assessment and load cell installed on
the conveyor will also operate offline. Various values can be generated by accumulating
processing analysis in real time only with data that is instantly discarded. If a typical big
data analysis is the process of finding meaningful things by applying various algorithms
to vast amounts of data accumulated over a long period of time is a common big data
analysis [21], smart factory data processing focuses on notifying production sites of more
real-time analysis [22]. Analog data such as temperature, humidity, concentration, pressure,
and weight are directly or indirectly related to product quality maintenance and can reduce
costs through mutual correlation analysis. Machine facilities can be predicted and preserved
through analysis techniques such as machine learning and AI algorithms, which provide
important data for maintenance cost and energy saving, using data such as facility load
patterns and vibration frequencies of existing sensors. For this data analysis, it is necessary
to focus on the quality of the collected data. It is not a big data analysis method that
accumulates and analyzes data, but a data state generated when collecting data in real time.
Only then can the value of data used in smart factories be increase.

2.2. CNC Machine

CNC machines are widely used in manufacturing facilities to manufacture products
according to the desired shape and conditions by entering predefined commands [23].
The operating principle of CNC begins with direct coding through a CNC machine or PC
with a CNC programming application. The program or order transmitted and executed to
the CNC machine performs the process according to the program and the desired form.
Depending on the process, various methods are used, and the types of data collected are
different. The collected data is representative of vibration, temperature, speed, power,
current, and noise. Various research studies have been conducted to detect abnormalities
in the mechanical system of CNC machines. According to previous studies, vibration,
power, and noise data are typical data used to prove the cause of failure of CNC machines.
A previous researches using motor vibration data of production facilities proposed a
technique to solve the imbalance from collected data and detect outliers based on the
encoder-decoder-encoder generator based on the generative adversarial network (GAN)
model [18].

Figure 1 is an actual picture of the CNC machine at the field site where actual data
were collected. Two-way processing is performed on this machine. The way of machining
that roughly processes the surface is rough machining and fine machining to match the
calculated dimensions.In this study, vibration data generated during process are used as a
bundle of all machining.

Figure 1. On-site inspection of the CNC Machine.
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2.3. Edge Intelligence

Edge Intelligence (EI) is a concept that defines the communication, computing, and
storage capabilities of a specific infrastructure closest to the local unit user of a distributed
network. Previous studies introduced the word “Edge Intelligence” [24]. “Edge” is an
actual location representation in which data is generated and processed. In other words,
the edge is the location of the control and computing devices. According to a recent
study, devices equipped with small computers are changing to internet of things (IoT) and
industrial internet of things (IIoT). These devices work with the addition of AI functions.
Edge Intelligence performs edge computing in the analysis performed on AI and ML
models. The intelligent edge generally breaks the existing client-server model, and the
server has the ability to process, analyze, and protect data [25]. Edge Intelligence has
three main entities: connection, computing, and control [26]. This Edge Intelligence
allows manufacturing systems to refine and classify data to the cloud without additional
connections. In addition, Edge Intelligence Devices (EID) interconnect a range of workers,
managers, smart facilities, robots, and sensors, and enables extensive connections such as
smart factories. Hyper-connected Edge Intelligence systems can collect, manage, analyze,
and store large amounts of data through distributed computing. This local computing
unit can be combined with a cloud system to improve or replace computing performance.
Edge computing is mainly performed by a data collector in a production facility or by an
edge server (or IIoT gateway). This feature applies to specific business services that require
control of the insights calculated by these local units and may extend to the cloud.

2.4. Singular Spectrum Analysis

SSA is a time series analysis and prediction technique. Based on Karhunen-Loeve
transformation theory, this technique combines classical time series analysis, multivariate
statistics, multivariate geometry, dynamic systems, and signal processing elements. SSA
aims to decompose the original series into a slow-changing trend, component decomposi-
tion such as vibration components, and the sum of a few interpretable components such as
noise. This is based on the singular value decomposition (SVD) of a specific matrix config-
ured on the time series [27–29]. Components with vibration are first extracted, and then
meaningful components are selected for reconstruction. In summary, the algorithm consists
of embedding, single value decomposition, grouping, and reconstruction.The process of
SSA, the data is rearranged by decomposing the input data into principal components (PCs)
and grouping PCs. This process briefly shown in Figure 2.

Figure 2. Basic Architecture Singular Spectrum Analysis.

2.4.1. Embedding

The first step of SSA is to map time series data F to a multidimensional delay
vector [28,30]. The integer value L is set to the window length, which is 2 ≤ L ≤ N

2 . When
i = 0, · · · , N − L, the window length is obtained by the sub-series { fi, fi+1, · · · , fi+L−1}.
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This window moves along the time series, forming a column vector Xi for each sub-column.
Xi is defined as follows.

X0 = ( f0, f1, f2, · · · , fL−1)
T

X1 = ( f1, f2, f3, · · · , fL)
T

X2 = ( f2, f3, f4, · · · , fL)
T

X3 = ( f3, f4, f5, · · · , fL)
T

...

XN−L = ( fN−L, fN−L+1, fN−L+2, · · · , fN−1)
T

(1)

For Equation (1), the vector of each row forms an L-trajectory matrix, a time series of
Xi. The matrix formed is as follows. This matrix is called the Hankel matrix.

X =


f0 f1 f2 f3 · · · fN−L
f1 f2 f3 f4 · · · fN−L+1
f2 f3 f4 f5 · · · fN−L+2
...

...
...

...
. . .

...
fL−1 fN fL+1 fL+2 · · · fN−1

 (2)

K = N − L + 1 represents the number of columns of the trajectory matrix, the column of X
is called the L-lagged vector, and the row is called the K-lagged vector.

2.4.2. Decomposition

The second step in SSA is decomposition. The Trajectory matrix is decomposed using
SVD. It is classified into three categories that constitute X. U is the unit matrix of L× L
containing the left-specific vector orthogonal set of X as a column. Σ is an L×K rectangular
diagonal matrix containing an X value of L, and is aligned with the largest and smallest
values. Finally, V in Equation (3) is a K × K unit matrix including an orthogonal set of
right-specific vectors of X. The equation for X is as follows:

X = UΣVT (3)

Using a SVD equation for the Trajectory matrix is expressed as follows:

X =
d−1

∑
i=0

σiUiViT

≡
d−1

∑
i=0

Xi

(4)

Here, σi represents to the i-th singular value, and Ui and Vi are vectors representing
the i-th column of U and V, respectively. d ≤ L is the rank of the trajectory matrix. It is the
i-th elementary matrix. Ui, σi and Vi denotes the i-th eigentriple of the SVD.

2.4.3. Grouping and Reconstruction

Because the time series is uniquely determined in the Hankel matrix, the equation
below defines time series F as the sum of the components F̃i. After grouping these compo-
nents and classifying them into trends, periodicity, or noise. The equation for grouping is
as follows:

X =
d−1

∑
i=0

X̃i (5)
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2.5. Autoencoder

An autoencoder [31] is a neural network that compares input and output as shown
in Figure 3. It makes it a difficult neural network by limiting the network in many ways.
For example, the number of neurons in the hidden layer is smaller than that of the input
layer, thereby compressing (reducing) data. There are various types of autoencoders, and
there is also a model that learns a network to restore the original input after adding noise
to the input data. Because the under complete autoencoder cannot copy the input into the
output as it is by a low-dimensional hidden layer, the output must learn to include some
details from the input. Through this learning, the under complete autoencoder allows to
learn the most important characteristics from input data. These constraints prevent the
autoencoder from simply copying the input directly into the output and allow it to learn
how to efficiently regenerate data.

The encoder, also referred to as a cognitive network, converts an input into an internal
expression. The decoder, also referred to as a generative network, converts an internal
expression into an output. The encoding operation maps the input data xi to and the decoding
operation reconstructs the input at the latent layer z. It may appear impractical to simply
reconstruct input data, however, practical useful characteristics can be obtained by applying
some restrictions to autoencoders to obtain x′i so that input data can only be approximate.

In the encoding step, a hidden layer representation of the mapping qθ(x) for a given
input data set x can be obtained, and the details are as follows.

z = qθ(x) = S(Wx + b) (6)

In the decoding step, the output data x′i can be reconstructed using the gθ(z) function
for the hidden layer, and the specific expression is as follows:

x′ = gθ(z) = S(W ′z + b′) (7)

Here, S is the activation function, θ = W, b is the parameter set of the encoder, and
θ′ = W ′, b′ is the parameter set of the decoder. In addition, autoencoder completes learning
by minimizing the reconstruction error L(z, gθ(x)) between xi and x′i .

Figure 3. Basic Architecture Autoencoder.

2.6. Long Short-Term Memory

Long short-term memory (LSTM) is a special type of RNN and can perform learning
that must have a long dependence period. This model was introduced by Hochreiter
and Schmidhuber (1997). All RNNs have the same form as chains that repeat the natural
network module. The loop uses the same network repeatedly but allows information to be
transferred to different stages. RNN is useful for delivering previous information to the
current node, however, one disadvantage is that learning is not smooth when using old
historical information. In a basic RNN, this repeated module has a very simple structure.
For example, one layer of tanh layer is mentioned. LSTM has the same chain-like structure,
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but each repeating module has a different structure. Rather than a simple natural network
layer, four layers are designed to exchange information with each other in a special way.

The inability to reflect past events in the network was a major drawback of the existing
neural network. LSTM that improves these shortcomings. LSTM may effectively model
time series data [32,33]. Although it is impossible for existing RNNs to learn from the
distant past, LSTM can learn from past events and process both high-frequency and low-
frequency signals. The advantage of LSTM is that it shows excellent performance in time
series data processing. In addition, the information transfer of the previous cell, which is
one in the RNN, is added to the output, enabling short-term and long-term memory. This
efficient process briefly shown in Figure 4.

Figure 4. Basic Architecture Long Short-Term Memory.

W denotes a weight for connecting the input to the LSTM cell, and xt denotes a vector
input for the current time point t. U represents a weight connecting the previous memory
cell state with the LSTM cell, P represents a diagonal weight matrix, T represents tanh
non-linearity, and b represents a deflection value. The relevant expressions and main
architectures are shown below.

it = σ(W
iX′t

+ U
iht−1 + PiCt−1 + b)

ft = σ(W
f X′t

+ U
f ht−1 + Pf Ct−1 + b f )

ot = σ(W
oX′t

+ Uoht−1 + PoCt + bo)

ct = ft ⊗ ct−1 + it ⊗ T(WcXt + Ucht−1+bc)

ht = ot ⊗ T(ct)

(8)

3. SSA-CAE Based Abnormal Data Classification Techniques in Edge Intelligence Device
3.1. Architecture of SSA-CAE Based Abnormal Data Classification Techniques in Edge Intelligence Device

In this paper, we propose a data classification method using the SSA technique and
a deep learning technique that is an effective data storage method for data analysis. The
structure of the proposed architecture is divided into two spaces in computing space and,
with a total of three spaces.

The structure of the entire architecture can be observed in Figure 5. The space where
CNC machine and EID are installed is defined as edge computing space, and cloud server
is defined as cloud computing space. Data is collected from the PLC or through sensors
directly connected to the Edge Intelligence Device. When collecting data, Edge Intelligence
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Device receives the CNC machine’s work end point from the PLC and obtains calculates a
difference between the previous end point and the most recent end point. Time series data
collected by each sensor is sliced into product units by matching the start and end time of
the collected time series data. This sliced data is divided into raw data and data processed
with the singular spectrum algorithm and stored in the cloud. To create a classification
model only with normal data, information on the normal section suitable for the judgment
of field expert worker deliver to the modeler.

Figure 5. Architecture of SSA-CAE based Abnormal Data Classification Techniques in Edge Intelli-
gence Device.

The judgment of field experts is based on the know-how on the number of processing
of CNC machines. In this paper, data based on the judgment of field experts are defined as
reliable normal data because one worker is not placed in one machine in the field and the
criteria for determining the normal state are different for each worker.

The modeling operator performs deep learning modeling based on processing data
stored in the cloud. The created model is stored in the form of an API in the EID in the
cloud, and the stored classification model distinguishes the normal state and abnormal
state of data for each product unit. The normal data classification process and the modeling
process required for modeling are briefly shown in Figure 6.

Figure 6. Normal data gathering method and Make model method.
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3.2. Data Reconstruction Using Singular Spectrum Analysis

As discussed in previous studies, SSA can be reclassified and reconstructed by de-
composing the characteristics of data. It is impossible to apply all types of data generated
within the smart factory. Processing data using vision sensors is not suitable for utilization
purposes. In addition, if multivariate data are processed at the same time, this analysis
technique will be inapplicable.

Therefore, this paper focuses on data of one type of data collected in units of products.
In Section 4, the experiment was conducted using vibration data. The role of SSA in
the proposed architecture is to reduce noise in data collected in the field and to improve
modeling performance through periodic component extraction and reconstruction.

Owing to the different characteristics of analog data such as vibration data and voice
data, data experts for each data type should analyze the SVD status and input reconstruction
information for key components based on the data processed by EID. In general, it is
decomposed into trends, predicted values, and noise values of data through the main
components generated in the embedding stage of the Singular Spectrum. The rest of
the trends and predictions except for noise values are reclassified and reconstructed into
noise-reduced data to help the deep learning model analyze actual abnormal values.

3.3. Data Classification Method through Deep Learning Model

A convolutional autoencoder (CAE) is a variation of the convolutional neural network
used as a tool for unsupervised learning of convolutional filters. In general, it is applied to
image reconstruction tasks to minimize reconstruction errors by learning optimal filters. It
can be applied to all inputs to extract functions that have completed learning about this
task. The convolutional autoencoder is a general-purpose function extractor different from
a general autoencoder that does not consider a 2D image structure.

In an autoencoder, an image must be rolled into a single vector and a network must be
built according to the constraints on the number of inputs. Therefore, the number of data
sets used in this experiment averaged 160, which is about 2 min and 40 s of data. To match
the number of inputs, the 36 most preceding arrays of 160 were expanded at the end of the
array and applied in two dimensions.

The vibration signal, which served as an input value, is a one-dimensional signal of
1× 196, the size of the input data was set to 14× 14. The feature map was identified through
the convolution kernel and maxpooling is used for down sampling. The sigmoid function
was used as an activation function, and Adam was used as an optimization function. The
detailed architecture of CAE can be found in Table 1.

Table 1. Architecture of Convolutional Autoencoder.

Layer Output Size Parameter

Conv2D 14, 14, 128 1280
MaxPooling2D 7, 7, 128 0

Conv2D 7, 7, 128 147,584
UpSampling2D 14, 14, 128 0

Conv2D 14, 14, 128 147,584
Conv2D 14, 14, 1 1153

4. Experiment and Results
4.1. Data and Experiment Environment

In this experiment, data from CNC Machine, a production facility of Synswin Co., Ltd.,
located in Changwon, Korea, were used. The data used in the experiment is vibration data.
The vibration data was collected from the MSENS-AC sensor via RS485 communication,
and the data was collected by the IIoT installed in the field. The sampling rate of the
applied sensor was 100 Hz and supported a 115,200 baudrate. Three-axis data was collected
according to the characteristics of the gyro sensor. The data used in the double experiment
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was X-axis data. Data was collected on a 1000 ms basis, and examples of used data shown
in Figure 7.

Figure 7. Example of Vibration data.

The data was collected during three days, from 5 October to 7 October 2021. The data
matched to the manufactured product consists of an average of 552 data sets per day, with
a total of 1700 data sets, and has 160 data per set. Therefore, experiment was conducted
with 272,000 data. The data were all collected through sensors on the same CNC.

The computer used in this experiment included Intel Corei7-8700k, 3.7 Ghz, six-
core twelve threads, 16 GB of CPU, and a GPU of Geforce RTX2080Ti. A Jetson nano
from Nvidia was used as the EID used as a data collection, data reproduction, and as a
classifier. Tensorflow 2.0 version and Python 3.7 were used in the software environment.
The hardware and software specifications used for the experiments are listed in Table 2.

Table 2. Hardware and software experimental environment setting.

Hardware Environment Software Environment

PC EID PC EID
CPU : Intel Core i7-8700K

3.7 Ghz
six-core twelve threads

16 GB

CPU : 4 core ARM A57
1.43 GHz

Windows
Tensorflow 2.0

Linux
Tensorflow 2.0

GPU : Geforce RTX 2080Ti GPU : 128 Core Maxwell
482 GFLOPs(FP16) Python 3.7 Python 3.6

4.2. Evaluation Indicators and Experimental Methods

There are various evaluation scales in the data classification problem. In addition,
various methods of performance evaluation according to the learning method have also
been proposed. Circuit performance evaluation indicators were used according to the
characteristics of the model used in this study. The mean absolute error (MAE) is a value
averaged by converting the difference between the actual value and the predicted value
into an absolute value, from which information on the loss of the model can be known.
Root mean square error (RMSE) is the same as mean square error except for the root, but the
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root was used because it has a characteristic that is larger than the actual error mean when
obtaining the square of the error. The formula used as an evaluation index is as follows.

RMSE =

√√√√ 1
N

i=1

∑
N
(yi − ŷi)2 (9)

MAE =
1
N

i=1

∑
N
|(yi − ŷi)| (10)

This paper is largely divided into two parts. First, data regeneration was tested
using Fourier transform and wavelet transform to evaluate the performance of SSA, which
introduces data regeneration techniques. The following regenerated data was applied to
unsupervised learning models such as autoencoder, autoencoder LSTM, and Convolutional
Autoencoder to compare the performance of the model. Finally, the threshold value was
obtained through the loss distribution chart for the best-performing model to prove the
possibility of abnormality detection in the dataset.

4.3. Results
4.3.1. Data Regeneration Performance Comparison

Two methods were selected to verify the performance of the SSA technique used for
data conversion. Short-time fourier transform (STFT) and wavelet transform. In STFT,
a long signal that changes over time is divided into short time units and then Fourier
transform is applied.

The Wavelet Transform increases time-time resolution and lowers frequency resolution
for signals with high frequency components. For signals with low frequency components,
frequency resolution is increased, and time resolution is decreased. Unlike Fourier trans-
forms, which use sinusoidal curves with infinite time axes as fundamental functions,
wavelet transforms use time-limited wavelet functions as fundamental functions.

Therefore, the experiment was conducted by applying STFT and wavelet transform to
the same data set for data conversion and regeneration of the Singular Spectrum Analysis
technique used in the proposed data classification. The experimental results are as follows.

Similarity was demonstrated in the order of reconstruction data, wavelet transform,
Fourier transform and through the SSA technique as a result of reconstruction the value of
the input data as illustrated in Figure 8a. As a result of visually examining the elementary
matrix in Figure 9, it can be observed that the diagonal structure of the trajectory matrix is
lacking. Without examining vectors related to the elementary matrix or reconstructing the
time series of each component, the i-th elementary matrix figure implies the properties of
each component, such as trend, periodicity, or noise. From the beginning, it can be observed
that the L and K lagged vectors show relatively slow changes throughout the matrix,
indicating a trend of data, and showing a distinct check pattern, indicating periodicity.
Because the subsequent matrix becomes blurred again, the subsequent matrix is highly
related to the noise of the time series.

According to the relative contribution graph in Figure 10a, the contribution changes at
the time point when i = 1. In addition, in Figure 10b, the first ten component values based
on the point contributed 98% to the expansion of the basic matrix. Figure 10 is the result of
accumulating Xi components according to the contribution graph. The example output
data by combining the X components can be seen in Figure 11.
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(a) (b)

(c) (d)

Figure 8. Results of the data conversion (a) gathered original data, (b) data extracted through Fourier
transform, (c) data re-generated using the SSA technique, and (d) data extracted through wavelet
transformed data.

Figure 9. First 15 elementary matrix graphs out of 332 properties.
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Figure 10. (a) Relative contribution graph and (b) Cumulative contribution of Xi to trajectory matrix.

Figure 11. Reconstructed data through Singular Spectrum Analysis.

4.3.2. Learning Results by Deep Learning Model

The following results were obtained according to the techniques introduced through
previous studies and the order of experiments. Loss values and validation loss values were
presented on the graph according to the performance index. First, the existing data were
used and applied to each model.

The results of the experiment with the original data, demonstrated a stable loss
reduction of less than 10 epochs, as shown in Figure 12. For each deep learning model, the
final loss values were 0.095, 0.092, and 0.03 with the autoencoder, autoencoder short and
long-term memory, and convolutional autoencoder.

The experiment conducted with the Fourier transformed data demonstrated as stable
loss reduction at less than 10 epochs, as shown in Figure 13. For each deep learning model,
the final loss values were 0.1155, 0.0661, and 0.0048 with the autoencoder, autoencoder
LSTM, and CAE. It was observed that the autoencoder learning effect of the Fourier
transformed data was not higher than that of the original data.
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(a)

(b) (c)

Figure 12. Loss graphs of results of using the original data, (a) result of using the convolutional
auto-encoder, (b) result of using the auto-encoder LSTM, and (c) result of using the auto-encoder.

(a)

(b) (c)

Figure 13. Loss graphs of results of using the Fourier transformed data, (a) result of using the
convolutional auto-encoder, (b) result of using the auto-encoder LSTM, and (c) result of using the
auto-encoder.

The experimental results with the wavelet data demonstrated a stable loss reduction
at less than 10 epochs for each deep learning model in Figure 14, the final loss values
were 0.0843, 0.0844, and 0.0347 for the autoencoder, autoencoder short and long-term
memory, and convolutional autoencoder, respectively. It showed better performance
than the original data and Fourier transformed data. As in Figure 15, the experimental
results for the data regenerated with SSA demonstrated a stable loss reduction at less
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than 10 epochs. For each deep learning model, the final loss value was 0.0823, 0.0817, and
0.0178 with the autoencoder, autoencoder short and long-term memory, and convolutional
autoencoder, respectively. Table 3 lists the model performances organized according to
each data transform.

(a)

(b) (c)

Figure 14. The results of using the Wavelet transformed data., the loss graph (a) result of using the
convolutional auto-encoder, (b) result of using the auto-encoder LSTM, and (c) result of using the
auto-encoder.

(a)

(b) (c)

Figure 15. The results of using the reconstrued data by SSA, the loss graph (a) result of using the
convolutional auto-encoder, (b) result of using the auto-encoder LSTM, and (c) result of using the
auto-encoder.
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Table 3. The results of deep learning model learning according to each reconstruction data.

Original FFT Transform Wavelet Transform Singular Spectrum Analysis

AE AELSTM CAE AE AELSTM CAE AE AELSTM CAE AE AELSTM CAE

RMSE 0.303 0.294 0.17 0.35 0.23 0.07 0.291 0.290 0.173 0.283 0.27 0.122
MAE 0.095 0.092 0.03 0.116 0.066 0.0048 0.084 0.084 0.034 0.082 0.081 0.017

4.3.3. Data Classification

According to the results of the previous experiment, the performance of the SSA
technique was evaluated by comparing it with other models, and the learning rate of the
Convolutional Auto-encoder was high. Therefore, a distribution graph for the loss rate was
drawn to use the SSA-CAE-based model in this proposed architecture. As confirmed in
Figure 7, there is a time of 20 s at the start and end of machining. We conducted model
learning in a cloud environment and imported the learned model into the EID, and the
classification time was measured to be less than 15 s on average.

As shown in Figure 16, the loss distribution graph has normally distributed around a
fifth of 0.1, and the output value is obtained according to the number of decimal places to
obtain the threshold.

Figure 16. Distribution of loss values by applying the CAE model to SSA data.

Abnormal detection was possible based on the threshold value of 0.02391 in Table 4.
By inputting the model generated in the edge device, the classification of normal data on
the test data of 6 November 2021 was achieved 100%, and the classification of abnormal
data was achieved 99% in Figure 17.

Table 4. Result of selecting threshold value according to loss value.

Loss_mae Threshold

0.021355 0.02391
0.018467 0.02391
0.017650 0.02391

0.0198808 0.02391
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Figure 17. Confusion matrix for test data.

5. Conclusions

Data pre-processing is a very important task in data analysis. In particular, in machine
learning and deep learning, pre-processing of data is a very common and important
problem that must be addressed. To this end, techniques and libraries for automatic pre-
processing have been studied and developed. The contribution of this paper is that, first, it
proposes a big data storage method that can be used for smart factories. By systematizing
data separation, “Product with Data” can be configured through product-level storage
rather than previous storage methods. In addition, in the analysis, it is the basis for
detailed research on data divided by units without pre-processing. Second, in previous
studies, a labeling architecture for class imbalance occurring in the manufacturing industry
was proposed by combining the data regeneration model and the deep learning model.
This study puts a structural distinction between the edge and cloud in a way focused on
computing rather than a model-oriented learning method, allowing model learning to be
learned in the cloud and model performance to be performed in edge. In order to confirm
whether these contributions have practical utility value, this study experimented with noise
reduction and abnormal data set classification of data using data collected in the actual
field, and verified the effect by proposing an effective classification architecture.

We demonstrated the excellence of the SSA technique for regenerative performance by
using other transformation techniques, such as Fourier transform and wavelet transform
techniques, as a control group to verify the performance of data collected at industrial
sites. LSTM, a short- and long-term memory technique, was added, to the two controls,
the autoencoder based convolutional autoencoder, and an unsupervised learning model.
According to the experimental results, the experimental results applying CAE showed a
difference more than 0.2 RMSE value compared to other results. In addition, MAE showed
a difference almost 0.08. Therefore SSA-CAE showed a further improved modeling, and
99% of classification was confirmed. It represents one error out of a total of 100 products.

Further research in the future may consider to apply according to the type of data
collected in the field. To this end, the change and demonstration of the Edge Intelligence
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Device used in the experiment confirm the its applicability to other types of data. Further
studies can also be conducted to determine whether 100% classification rate results can
be expected using additional studies on unsupervised learning other than the proposed
SSA-CAE.
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