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Abstract: Lung cancer is one of the deadliest diseases worldwide. Computed Tomography (CT)
images are a powerful tool for investigating the structure and texture of lung nodules. For a long
time, trained radiologists have performed the grading and staging of cancer severity by relying
on radiographic images. Recently, radiomics has been changing the traditional workflow for lung
cancer staging by providing the technical and methodological means to analytically quantify lesions
so that more accurate predictions could be performed while reducing the time required from each
specialist to perform such tasks. In this work, we implemented a pipeline for identifying a radiomic
signature composed of a reduced number of features to discriminate between adenocarcinomas
and other cancer types. In addition, we also investigated the reproducibility of this radiomic study
analysing the performances of the classification models on external validation data. In detail, we
first considered two publicly available datasets, namely D1 and D2, composed of n = 262 and n = 89
samples, respectively. Ten significant features, according to univariate AUC evaluated on D1, were
retained. Mann–Whitney U tests recognised three of these features to have a statistically different
distribution, with a p-value < 0.05. Then, we collected n = 51 CT images from patients with lung
nodules at the Azienda Ospedaliero—Universitaria “Policlinico Riuniti” in Foggia. Resident radiologists
manually annotated the lung lesions in images to allow the subsequent analysis of the malignancy
regions. We designed a pipeline for feature extraction from the Volumes of Interest in order to
generate a third dataset, i.e., D3. Several experiments have been performed showing that the selected
radiomic signature not only allowed the discrimination of lung adenocarcinoma from other cancer
types independently from the input dataset used for training the models, but also allowed reaching
good classification performances also on external validation data; in fact, the radiomic signature
computed on D1 and evaluated on the local cohort allowed reaching an AUC of 0.70 (p < 0.001) for
the task of predicting the histological subtype.

Keywords: radiomics; lung carcinoma; histological subtype; machine learning

1. Introduction

The Global Cancer Observatory estimated that lung cancer was the leading cause of
cancer death in the world’s population [1]. Phenotyping lung cancer, or cancer in general,
has been demonstrated to be crucial for clinical practice and medical research; in fact, in
recent years, a profound effort in designing and employing computational solutions for
phenotyping pathologies has been made [2–4].

Nowadays, such characterisation of pathologies is necessary to move toward the
so-called Precision Medicine. It is a modern paradigm for diagnosing or treating cancers, or
diseases in general, based on the identification and characterisation of pathology-specific
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characteristics, taking into account the individual variability, i.e., the genetic factors of each
subject, their lifestyle and living environment. Made possible also by technical advances
in computational sciences, Precision Medicine is definitely revolutionising the healthcare
domain. This approach to cancer handling, in fact, aims to precisely target diseases,
including lung carcinoma, with a per-subject approach [5].

Medical imaging methodologies, including Computed Tomography (CT), Positron
Emission Tomography (PET), or Magnetic Resonance (MR), are crucial for performing
clinical tasks related to cancer diagnosis, treatment, or follow up [6–8]. Medical imaging
has already been demonstrated to be essential in the Precision Medicine framework thanks
to its capability to improve the knowledge about the clinical phenomenon under considera-
tion (regardless of its nature) [9]. In addition, a considerable amount of recent literature
has already shown the capabilities of functional imaging methods to build an in-vivo
representation of tumour processes from a biological perspective [10]. This characteristic
made imaging methods good candidates for allowing the identification of biosignatures for
phenotyping the tumour.

Radiomics is an emerging method based on algorithms for data characterization,
which allows the extraction of a large number of features from medical images. By exploit-
ing the information carried out by such features, radiomics approaches aim to uncover
and quantitatively describe tumoral patterns and characteristics, otherwise not observable
through traditional algorithms for image analysis [11–15]. This new perspective for ex-
tracting phenotypic information from imaging, which is already performed for biomedical
signals, such as electromyography or electroencephalography [16,17], may thus provide
valuable information for setting up personalised approaches for therapies.

Several authors carried out radiomics-based studies in the context of characterising
solid cancers [18,19] or lesions [20] in the lung region. It also allowed the design and
implementation of several applications in oncology, such as solid cancer, glioblastoma [21],
hepatocellular carcinoma [22] and breast cancer [23] classification, among many others.

While the description of images by a large number of features may help in the compre-
hension of the underlying phenomena, it may also lead to several drawbacks. In fact, due
to the high dimensionality of radiomic features, dimensionality reduction and clustering
techniques may be needed to improve the classification and generalisation capabilities of
automatic systems for supporting decisions [24].

Parmar et al. performed analyses to extract clusters of radiomic features and prognostic
signatures specific for lung and head and neck (H&N) cancers [25]. In their work, the
authors performed consensus clustering before classifying tumour phenotypes, revealing
eleven stable clusters of radiomic features for lung tumour classification, also showing
associations with clinical parameters.

Besides the high dimensionality of data, classification approaches based on radiomics
suffer from other data-related problems, including the “big-p, little-n” problem, feature
redundancy, and class unbalancing [24]. Zhang et al., trying to address such problems, com-
pared many feature selection techniques and predictive models to improve the radiomics-
based prognosis of patients with non-small cell lung cancer (NSCLC) [26]. With respect
to the problem of feature redundancy, their analysis showed that Random Forests (RF)
were the optimal predictive model, whereas Principal Component Analysis (PCA) was
the optimal feature selection method. The Synthetic Minority Over-sampling (SMOTE)
technique was employed to mitigate the problem class unbalancing, significantly increasing
the predictive accuracy.

In this work, we designed and implemented a quantitative approach based on a radiomics
pipeline to classify lung nodules between adenocarcinoma (LUAD) cases and other histological
classes from unenhanced CT images. The overall radiomics pipeline consists of the following
stages, as reported in Figure 1. First, we collected CT images of patients with lung cancer
in a cohort from the Azienda Ospedaliero—Universitaria “Policlinico Riuniti” in Foggia, Italy.
Images were manually segmented by expert radiologists to identify and extract the Regions
of Interest (ROIs) to process. Radiomic features were then extracted from the ROIs. To do
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this, we used PyRadiomics, an open-source python package for the extraction of radiomics
features from medical images [27], which also has the advantage of increasing reproducibility
among different studies, thanks to the adoption of the Imaging Biomarker Standardization
Initiative (IBSI) [13], to define and compute the features. Statistical analyses for selecting
features based on their discriminative power were accomplished, and predictive models were
set up on the extracted feature data to make the decision on the histological subtype. Finally,
external data were considered to validate the predictive model.

Figure 1. Radiomics workflow. The complete workflow includes the segmentation of the lung region,
filtering to enhance the image, extraction of radiomics features, classification models and statistical analysis.

Concerning the task of lung cancer phenotyping, several works could be found in
the literature. For example, Ferreira-Junior et al. studied which quantitative features
coming from contrast-enhanced CT scans would be more helpful in performing associations
with histopathological data, such as the histological subtype classification [28]. However,
contrast-enhanced imaging analyses include, albeit minimal, risk factors also related to
the injection of the contrast medium. To overcome this, in this work, we analyse radiomic
features on unenhanced CT scans for making decisions.

Linning et al. also included unenhanced CT scans in their work [29]. To demonstrate
the validity of their approach, the authors performed a ten-fold cross-validation. How-
ever, validating the models on external and independent datasets is crucial in radiomics
studies [30]. Instead, a similar work, which validated predictive models considering ex-
ternal data, was the one by Wu et al. [31]. The authors, in fact, developed a Naïve Bayes
classifier and validated it with external datasets. However, in their work, Wu et al. consid-
ered images acquired in the Netherlands only. In our work, instead, external validation is
performed using image data obtained in different countries.
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To do this, we included in our analysis data from two cohorts employed in the work
by Grossmann et al., who made it publicly available in terms of clinical data, radiomics
features and genetic characteristics [32]. Grossmann et al. discovered a relationship
between imaging features, immune response, survival and inflammation. They found
that imaging features have predictive value for specific pathways; also, they concluded
that a combination of clinical information, radiomics and genetic biomarkers improve the
prognostic predictive performance, showing the complementary value of these data [32].
In this work, we considered only the radiomics features.

The rest of this paper is organised as follows: Section 2 describes materials, i.e., the
characteristics of the considered CT images. Section 3 describes the methodology adopted
in this work, including feature extraction, a feature reduction strategy, and the experiments’
description for training the optimal classifiers. Section 4 discusses the experimental results.
Finally, Section 5 draws the final remarks about the conducted study and delineates ideas
for future works.

2. Materials

To implement and validate the radiomics approach detailed in Section 3, we used
three different datasets of radiomic features. We first considered the two datasets analysed
in a previous study by Grossman et al. and which have been made publicly available [32].
They consist of two independent cohorts of North American and European patients with
lung cancer. These datasets have been considered in order to assess the validity of the
radiomic approach for phenotyping lung cancer. Specifically, Dataset1 (D1) contains data
from 262 patients treated within the Thoracic Oncology Program at the H. Lee Moffitt
Cancer Center, Tampa, FL, USA. The histological analysis was available for 224 patients;
129 subjects (57.6%) had adenocarcinoma, whereas the others (42.4%) suffered from cancer
forms other than adenocarcinoma (i.e., 61 patients had squamous carcinoma, whereas the
remaining were not further categorized). Dataset2 (D2) includes data from 89 patients
treated at the MAASTRO Clinic in the Netherlands. The analysis for revealing the histolog-
ical cancer subtype was available for 87 patients; it showed that 42 subjects (48.3%) had
adenocarcinoma, whereas 45 subjects (51.7%) experienced other cancer types, of which 33
(37.9%) were squamous carcinoma.

Lastly, we collected 51 CT scans from patients with lung nodules provided by the
Azienda Ospedaliera—Universitaria “Policlinico Riuniti” in Foggia. This cohort included
29 patients (56.9%) affected by adenocarcinoma and 22 patients (43.1%) having other can-
cers, including squamous carcinoma, large cell lung carcinoma, chronic benign inflamma-
tion, hepatocarcinoma metastasis, intestinal adenocarcinoma metastasis and endocrine
small cell carcinoma). This cohort included only unenhanced CT scans. This choice was
made to verify whether the discrimination of lung cancer was also possible from this kind
of image, also considering that, in this way, the patient is exposed to a lower amount of
radiation. All patients were 18 to 85 years old and accidentally discovered solitary pul-
monary nodules 10 to 50 mm in size diagnosed with Computed Tomography. The reports
of the histological examinations were collected and the malignancy of the nodules was
documented with the relative genetic panel. Subjects with incomplete clinical data and
an absence of histological examination in nodules with highly suspected CT criteria of
malignancy were excluded.

These CT images were segmented manually by a radiology resident from Azienda
Ospedaliera—Universitaria “Policlinico Riuniti” in Foggia using the ITK-Snap Software [33],
and radiomic features have been subsequently extracted following the pipeline detailed in
Section 3.

Figure 2 shows nine slices randomly selected from the CT scans included in D3, with
the relative masks. Dataset1 and Dataset2, instead, have been shared by Grossman et al.
in terms of radiomic features [32], thus no image processing steps were required. Table 1,
instead, summarises the characteristics of the datasets in terms of sample size, imaging
modality and type of available data.
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Figure 2. Sample Images with masks from the dataset of the local cohort.

Table 1. Dataset Information.

Dataset Acronym Sample Image Modality Type of Data

Dataset1 [32] D1 262
CT scans

(89% contrast-enhanced)
Radiomic features, clinical

data, genomic features

Dataset2 [32] D2 89
CT scans

(71% contrast-enhanced)
Radiomic features, clinical

data, genomic features

Dataset3 D3 51 Unenhanced CT scans Radiomic features,
hystological type

3. Methods

The workflow designed and implemented in this work included three steps, namely
features extraction, features selection and classification. Specifically, the features extrac-
tion step was performed only for creating Dataset3, since Dataset1 and Dataset2 already
included features. Based on Dataset1, univariate statistical methods were implemented
in order to select a reduced number of features that allowed the discrimination between
lung adenocarcinoma and other cancer types. Then, classification models were evaluated
in different training and validation conditions in order to classify LUAD and other cancer
types, and investigate the reproducibility of this study on external validation data. The
following paragraphs describe in detail the radiomic features constituting the three datasets,
the features selection procedure and the classification approaches.
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3.1. Radiomic Features

Radiomic features are quantitative descriptors extracted from images using several
algorithms. They express different levels of complexity, from local characteristics to global
ones. Gillies et al. distinguished radiomic features into two main categories, i.e., “semantics”
and “agnostics” [34]. Semantics are those features commonly used by radiologists to
describe ROIs visually. Agnostic features, instead, are quantitative descriptors obtained by
mathematical operations on the data, which do not necessarily have a meaning in terms of
imaging characteristics. These descriptors include first-, second-, or higher-order statistical
indicators and shape features.

Radiomic features can be divided into different classes, i.e., intensity-, morphological-
and textural-based characteristics. The intensity-based features, also known as first-order
features, describe the distribution of the intensity values in the ROIs based on the computa-
tion of the intensities histogram; such features do not take into consideration the spatial
relationship between pixels, or voxels in the case of 3D Volumes of Interest (VOIs). Morpho-
logical features, instead, describe the geometric characteristics of the region. Textural-based
features, also known as second-order statistics, describe the spatial composition of the in-
tensity levels; they are defined starting from several data structures, such as the Gray Level
Co-occurrence Matrix (GLCM) [35], the Gray Level Size Zone Matrix (GLSZM) [36,37],
the Gray Level Run Length Matrix (GLRLM) [38], the Neighboring Gray Tone Difference
Matrix (NGTDM) [39] and the Gray Level Dependence Matrix (GLDM) [40].

In this work, we used only agnostic features; in particular, we considered only 3D
features extracted from VOIs. After having been segmented manually in CT images, VOIs
of the tumoral area were reconstructed as a 3D volume before the features extraction step.
To extract the radiomic features, we exploited the open-source Python framework PyRa-
diomics, which implements methods for extracting radiomic features in compliance with
the definition present in IBSI [13]. The image processing and features extraction steps were
performed in accordance with the analogous procedures described in Grossman et al. [32].
We extracted features from both the original VOIs and the filtered VOIs. In particular, we
considered both the image after having applied a wavelet transform, where eight decompo-
sitions were obtained with Coiflets from 3D volumes, and the image after filtering with the
Laplacian of Gaussian (LoG). The sigma parameter for the LoG filter varied from 0.5 to 5,
with ticks spaced by 0.5 each.

3.2. Feature Selection

Before setting up the classification stage, data were preliminarily processed. In the
first phase, we applied z-score normalisation. Then, we considered techniques for reducing
the dataset dimensionality.

We exploited the algorithm presented in Bevilacqua et al. [20] to eliminate the features
of D1 mostly correlated among them. This algorithm iterates over each couple of features
and discards those with a correlation value higher than a threshold, set to 0.5. The procedure
allowed us to retain 29 uncorrelated features. Figure 3 shows the correlation matrices before
and after the aforementioned features reduction phase. In particular, it should be noted that
clusters of correlated features, evident in Figure 3a, are not present anymore in Figure 3b.

In order to determine the discriminating relevance of each feature, we performed on
D1 a cross-validation procedure with a univariate logistic regressor, assessing the mean
AUC obtained. We then selected the features which satisfied the following equation:
mean(xi)− 1

2 · std(xi) > 0.5, i = 1, ..., m, where m is the number of features. Figure 4 shows
the results of the univariate logistic regression analysis. The choice of employing 1/2
standard deviations as features inclusion criterion allowed us to not discard too many of
them in the univariate analysis, since they could result in being helpful in the subsequent
multivariate model for the classification task. This analysis allowed us to retain 10 features
in D1. The same features were also retained from D2 and D3.
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Figure 3. Correlation matrices on the features extracted from D1. (a) Correlation matrix before
features reduction (k = 495). (b) Correlation matrix after feature reduction (k = 29).

Figure 4. AUC for univariate logistic regression. The blue bar represents the mean AUC obtained in
the 10-fold cross-validation, whereas the orange bar depicts 1

2 standard deviations. Features marked
with * satisfy the condition for being retained after univariate analysis.

Statistical Analysis

A statistical analysis was conducted in order to investigate how the features distribute
in D1 between patients with adenocarcinoma and patients characterised by other histolog-
ical subtypes. The Mann–Whitney U statistical test was used for unpaired comparisons
between the features of subjects with adenocarcinoma and subjects with other histological
types of cancer. A correction for multiple testing, using the Benjamini–Hochberg method
was conducted for all the resulting p-values. Corrected p-values lower than 0.05 were
considered significant. The statistical analysis revealed three significant features, namely
the original_glcm_Autocorrelation (p = 0.001), the wavelet-LHH_firstorder_Median
(p = 0.003) and the original_firstorder_Mean (p = 0.016). Figure 5 shows the box plots
for the features selected in the features reduction step. In particular, the distributions
of the statistically significant features are different among patients with adenocarcinoma
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with respect to subjects with other histological types of cancer. For visualisation purposes,
normalised values have been clipped in the range [−4, 4], so that outliers do not alter
the range of visibility of the boxplots. This difference between the distributions of the
statistically significant features can also be seen in Table 2, where summary statistics for
the distribution of the features, z-score normalised, is reported. For each feature, Table 2
reports the mean, the median, the standard deviation and the interquartile range for each of
the two conditions, and the corrected p-value. The statistical analysis was carried out with
Python 3.7, using the scikit-learn 0.22.2, numpy 1.21.5 and scipy 1.7.3 libraries.
Visualisation was performed with matplotlib 3.5.1 and seaborn 0.10.0 libraries.

Figure 5. Box plots of the selected features. Feature distributions are shown on the data
from D1 images. Normalized values have been clipped in the range [−4, 4], to avoid that
some outliers will after the nature of the boxplots. Features original_glcm_Autocorrelation,
wavelet-LHH_firstorder_Median, and original_firstorder_Mean, have p-value < 0.05 in Mann–
Whitney U test. The p-values are, respectively, 0.001, 0.004, and 0.021.
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Table 2. Statistics for features distribution between adenocarcinoma and other cases. Std is the
standard deviation, IQR is the interquartile range. Mann–Whitney U tests was used to calculate the
p-values. The multiple comparisons problem was handled with Benjamini–Hochberg (BH) correction.
* indicates statistically significant features (p-value < 0.05).

Feature Name
Mean Std Median IQR p-Value

LUAD Other LUAD Other LUAD Other LUAD Other BH

O_glcm_Autocorrelation −0.2449 0.3470 0.8658 1.0672 −0.3783 0.3439 1.2597 1.6090 0.0011 *

O_glcm_CP −0.1698 0.2334 0.6434 1.3142 −0.3974 −0.1727 0.6376 1.0980 0.1406

O_glszm_SALGLE 0.1244 −0.1560 1.0337 0.9384 −0.0800 −0.2190 0.9632 1.2388 0.1993

O_firstorder_Mean −0.1230 0.1965 1.1544 0.6577 0.1154 0.2908 0.8318 0.6643 0.0207 *

W-HHH_glcm_JointEnergy −0.0526 0.0776 1.0925 0.8696 −0.3825 −0.1291 0.8819 1.0823 0.1591

W-HHH_glcm_Imc1 −0.0565 0.0869 1.0679 0.9050 0.1817 0.3549 0.7541 0.6453 0.1993

W-HHH_firstorder_Energy −0.0917 0.1253 0.1835 1.5198 −0.1577 −0.1340 0.0651 0.1342 0.1591

W-LHH_firstorder_Energy −0.1404 0.1940 0.5804 1.3641 −0.3493 −0.2788 0.2868 0.6737 0.1406

W-LHH_firstorder_Median 0.1818 −0.2496 1.1321 0.7358 −0.0498 −0.1823 0.6231 0.4321 0.0036 *

W-LLH_glcm_Correlation −0.0680 0.0908 1.0421 0.9493 0.0318 0.1667 1.1192 0.9215 0.1993

3.3. Classification

The main task of this work was to classify the histological subtype of lung nodules
using radiomic features. In order to accomplish this task, we trained several classifiers
considering a variable number of features. Specifically, features were added to the input
pattern of each classifier according to their mean univariate AUC calculated in the features
selection phase (as described in the previous section whose results are reported in Figure 4).

The employed classification models include Logistic Regression (LogReg), Support
Vector Machines (SVM) with a linear kernel, AdaBoost (AdaBo), Random Forest (RF),
Multi-layer Perceptron (MLP), Gradient Boost (GB); these models were selected since they
are widely used in radiomic studies for medical classification purposes [41,42].

We also evaluated an ensemble of five models (En5) composed by the models men-
tioned above, except for GB. The ensemble model makes decisions following a voting
strategy; the classification output by LogReg, SVM, and MLP was weighted 2; RF and
AdaBo prediction was weighted as 1. Simpler models tend to be more robust and so they
have received a larger weight. GB was not included since its adding to the ensemble did
not lead to performance improvements. Moreover, it already suffered from low accuracies
in many cases when more features were considered. The hyperparameters of all the models
are reported in Table 3.

To assess the performance of the classifiers and the reliability of the radiomic features
considered, we performed four experiments:

Experiment 1: Internal cross-validation on each dataset (D1, D2, D3) separately; this
experiment aimed to investigate if the radiomic signatures found by our approach could be
discriminative for this classification task;
Experiment 2: To train models on D1 and validate them on D2 and D3; this experiment
aimed to investigate if the classifiers trained on a single dataset could perform on different
datasets;
Experiment 3: To train models on D1 and D2 (as a single dataset) and validate them on
D3; this experiment aimed to investigate if increasing the training sample size could have
improved the classification performance on the external validation;
Experiment 4: Internal cross-validation merging D1, D2 and D3; this experiment aimed to
investigate if considering all the datasets together could have led to a better performance
than considering datasets separately, even at the cost of lower generalisation capabilities of
the models.
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In all the experiments, cross-validation was performed with 10-folds and stratified
samples, i.e., the distribution of classes remains the same across folds. Figure 6 shows the
workflows implemented for the four classification experiments in terms of input data and
output results.

Figure 6. Experimental Setup. (a) Workflow for experiment 1. It consists of separate internal cross-
validation for each cohort. (b) Workflow for experiment 2. It consists of using D1 for training and D2
and D3 as external validation cohorts. (c) Workflow for experiment 3. It consists of using D1 and
D2 for training and D3 as external validation cohort. (d) Workflow for experiment 4. It consists of
performing internal cross-validation considering D1, D2, and D3 as a single large cohort.

Table 3. Training hyperparameters.

Model Hyperparameters Value

LogReg
max_iter 100
penalty 12

C 1.0

SVM
kernel rbf

C 1.0
penalty 12

AdaBo n_estimators 50
learning_rate 1.0

RF
n_estimators 100
criterion gini
max_depth None
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Table 3. Cont.

Model Hyperparameters Value

MLP

neurons_per_layer 100
hidden_layers 1

b1 0.9
b2 0.999

solver adam
learning_rate_init 0.001

max_iter 200
early_stop None
penalty 12
alpha 0.0001

activation relu

GB
learning_rate 0.1
n_estimators 100
criterion friedman_mse

4. Results and Discussion

The results of each experiment are reported in Figure 7. Each matrix in the figure
shows the mean AUC per model per number of features of the input pattern.

Experiment 1 aimed to assess if the radiomic signature obtained from Dataset1, thanks
to the implemented approach for features reduction, could be discriminative for classifying
LUAD and other histological types also on the other datasets. To do this, we trained
the classification models on the selected features from D1, D2 and D3, respectively. The
performances of these models are reported in Figure 7(I-a, I-b and I-c), respectively.

The classifiers reached the highest robustness in classifying samples from D1, regard-
less of the number of features and the classifier itself. Specifically, the mean (±standard
deviation) AUC for all the considered models and features was 0.64 (±0.04), 0.54 (±0.06),
and 0.56 (±0.09), considering data from D1, D2 and D3, respectively. Considering input
data from D1, the best model was LogReg, which allowed us to obtain an AUC of 0.70 when
trained with the input pattern size of six features. Internal cross-validation with input data
from D2, instead, showed an increased variability among models’ performances, regardless
of the number of features, as can be noticed in the heatmap reported in Figure 7(I-b). In
this case, the best model was the SVM trained on only one feature, which allowed us to
achieve an AUC of 0.65. Considering the models trained on input data from D3, LogReg
and MLP allowed us to achieve the best results in the univariate version; also in this case,
with a mean AUC of 0.75.

Experiment 2 aimed to assess if models trained on the histotype signature from D1
could generalise to make decisions also on D2 and D3. The results obtained show that GB,
trained on two features, and AdaBo, trained on four features, allowed us to achieve an
AUC of 0.62 considering data from D2 (Figure 7(II-a)). However, better performances were
obtained, validating models on D3, with an AUC of 0.70 for SVM trained with one, five,
and six features (Figure 7(II-b)).

In Experiment 3, instead, we investigated if increasing the training sample would al-
low us to obtain a higher performance on D3 as a validation set with respect to Experiment
2. As shown in Figure 7III, the MLP trained with an input pattern of seven features allowed
us to obtain an AUC of 0.69 on data from D3 considering a joint train set composed of D1
and D2. Comparing this experiment to the previous one, a small improvement in terms of
mean performances were obtained; in fact, this training configuration allowed us to achieve
a mean (±standard deviation) AUC of 0.58 (±0.07), instead of 0.59 (±0.09), on the external
validation set D3.

Concerning Experiment 4, it has been designed to evaluate how the models would
have performed if D1, D2 and D3 would be merged. The internal cross-validation revealed
that merging D1, D2 and D3 led to more robust performance of the classifiers, except for the
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comparison with the case of internal cross-validation performed on D1 (in Experiment 1).
LogReg, RF, and Ensemble-5 models allowed us to achieve an AUC of 0.65 in their best case,
i.e., trained considering two, six and seven features, respectively (as shown in Figure 7 IV).
The overall mean (±standard deviation) AUC obtained in this experiment is 0.61 (±0.03).

Since the feature set has been chosen considering data in D1, we observed in some
cases, i.e., Experiments 1 and 2, that a single feature allowed us to achieve the best perfor-
mances in some external validation settings. It should be noted that, in the case of input
patterns composed of a single feature, MLPs tend to behave very similarly to LogReg,
considering that MLP is a set of neurons each with the capability of LogReg; thus, this
configuration could not extract more information in the presence of only one feature.

The best ROC curves in external validation settings for cases II-a, II-b and III are
reported in Figure 8.

Figure 7. Heatmaps with AUC for all the experimental setups. (I-a,I-b,I-c) Heatmaps with mean
AUC of internal cross-validation from experiment 1 for D1, D2, and D3, respectively. (II-a,II-b)
AUC of external validation, from experiment 2, on D2 and D3, respectively. (III) AUC of external
validation, from experiment 3, on D3. (IV) Mean internal cross-validation AUC from experiment 4
on D1, D2, and D3 considered as a single cohort.
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Figure 8. ROC curves for the considered external validations. (a) External validation of the SVM
classifier (5 features) trained on D1 and validated on D2. (b) External validation of the AdaBoost
classifier (7 features) trained on D1 and validated on D3. (c) External validation of the AdaBoost
Classifier (10 features) trained on the merged dataset D1, D2 and validated on D3.

5. Conclusions

Radiomics is a research field in which several algorithms are exploited to extract quan-
titative high-dimensional characteristics from images. Several authors have already used
this methodology to address classification problems that involve radiological images. The
use of algorithms for the processing and reduction of features may allow the design and
implementation of more robust classification models that are able to improve the capabilities
of automatic intelligent systems to support decisions in the biomedical field. However, the
reproducibility of radiomic studies on external validation data is considered a crucial point.

In this study, we extracted a reduced set of radiomic features to classify the histolog-
ical subtype in lung nodules to discriminate between adenocarcinoma cases from other
histological classes. In this work, we used three datasets, namely D1 and D2, which were
provided by Grossman et al., and D3, which was built starting from a local cohort of lung
CTs opportunely processed to extract radiomic features.

Starting from D1, we designed and implemented a pipeline based on univariate analy-
sis to select the most discriminative features to discriminate between lung adenocarcinoma
and other histological types.

Then, four experiments were performed to investigate whether and how the number
of features, the input dataset, and the model affect the classification performance and the
reproducibility of radiomic studies.

Our analyses revealed that the best configuration for reproducibility on our local
dataset D3 is the one using D1 for training the model. However, also combining D1 and D2
as a single training set led to good performances on data from D3.

In any case, internal cross-validations evaluated in Experiment 1 allowed us to
reach higher performances, highlighting the importance of considering external validation
datasets when performing radiomics studies, so that the real effectiveness of the discovered
feature set can be measured. Eventually, the best result for the D3 dataset comes from
internal cross-validation, but then this result would be less generalisable on unseen data.

Such a conclusion is also endorsed by other authors, such as Wu et al., who also
performed external validations in a similar case study, but with a reduced cohort for external
validations, obtaining similar results (AUC of 0.72 with Naïve Bayes’ classifier) [31].

Future works may include the comparison between different kinds of enhancement modal-
ities from CT scans before performing the radiomics feature extraction and the correlation
of radiomic signatures with genomics data. The collection of new data may also help in the
direction of designing a robust radiomics pipeline for histological and genomic classification.

Author Contributions: Conceptualization, B.P., M.G. and V.B.; methodology, A.B., N.A., D.B. and B.P.;
formal analysis, A.B., N.A. and B.P.; data curation, N.A., E.G., F.C., M.G. and B.P.; writing—original
draft preparation, A.B., N.A., D.B. and B.P.; writing—review and editing, all authors; visualization,



Appl. Sci. 2022, 12, 5829 14 of 16

B.P. and N.A.; supervision, A.B., M.G. and V.B.; All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki. Ethical review and approval were waived for this study since this was a
retrospective observational study with anonymised data.

Informed Consent Statement: Patient consent was waived due to the fact that this was a retrospective
observational study with anonymised data, already acquired for medical diagnostic purposes.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AdaBo AdaBoost
LogReg Logistic Regression
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AUC Area Under Curve
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