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Abstract: Although the deep neural network has a strong fitting ability, it is difficult to be applied to
safety-critical fields because of its poor interpretability. Based on the adaptive neuro-fuzzy inference
system (ANFIS) and the concept of residual network, a width residual neuro-fuzzy system (WRNFS)
is proposed to improve the interpretability performance in this paper. WRNFS is used to transform a
regression problem of high-dimensional data into the sum of several low-dimensional neuro-fuzzy
systems. The ANFIS model in the next layer is established based on the low dimensional data and
the residual of the ANFIS model in the former layer. The performance of WRNFS is compared with
traditional ANFIS on three data sets. The results showed that WRNFS has high interpretability (fewer
layers, fewer fuzzy rules, and fewer adjustable parameters) on the premise of satisfying the fitting
accuracy. The interpretability, complexity, time efficiency, and robustness of WRNFS are greatly
improved when the input number of single low-dimensional systems decreases.

Keywords: comprehensive evaluation; interpretable artificial intelligence; residual network; adaptive
neuro-fuzzy interference system

1. Introduction

Neural networking is an important method in the development of artificial intelligence
and an effective tool in the research of brain-like intelligence [1]. Deep neural networks
(DNN) have a large number of adjustable free parameters, and the model construction has
high flexibility [2]. Alex applied a deep convolutional neural network in the ImageNet
contest to solve the image classification task, which creatively implemented a GPU in the
convolutional operation [3]; however, due to the excessive number of parameters, a large
number of parameters do not have practical significance, resulting in poor interpretability
of the model and lack of theoretical support for the process of adjusting parameters; thus,
Rudin called for the innovation of building a fully-interpretable system rather than making
the black box model meaningful [4].

A fuzzy system is a logical reasoning system based on natural language abstraction,
which has a great advantage in interpretability [5]. Fuzzy system abstracts fuzzy practi-
cal problems into fuzzy functional problems. Membership functions is used to generate
mappings based on IF-THEN rules in a fuzzy rule set, which can approximate any non-
linear function and effectively combine data information with expert beliefs [6]. Zadeh
proposed the ‘fuzzy’ ideology, which gives math more capability to deal with a complex
real system [7]. Combining with If-Then rules, the fuzzy interference system imitates the
human language system better than many other learning algorithms. An artificial intelli-
gence system with good interpretability has a few parameters, among which are mainly
based on expert beliefs, and most parameters have practical meaning [8]. Interpretability
means that human intelligence can reasonably explain the relationship between parameter
values and structure, and efficiently gain experience in the form of natural language [9].
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The fuzzy inference system is currently considered an interpretable system with good
accuracy [10]; however, fuzzy systems cannot avoid the “dimension disaster” problem
for high-dimensional problems, suffering from low efficiency and poor robustness [11].
The direct reason is the fuzzy inference system is based on a fuzzy rule set, which grows
inevitably in an exponential scale when the input number grows [12]. A small improvement
in accuracy usually sacrifices a lot of efficiency and interpretability, through which the
system becomes big and lousy, and parameters proliferate rapidly. Current research on
fuzzy systems tried to fix this problem using different cluster methods to reduce dimension
in the input end, such as fuzzy c-means clustering (FCM), subtractive clustering (SC), and
grid partitioning clustering (GPC), etc. [13]. FCM, SC and GPC-based ANFIS realized fuzzy
interference systems which can handle high-dimensional problems. In the meantime, the
cluster methods reduced the interpretability of the whole systems because the data lost
information and their direct meanings in the process.

ANFIS is a widely used fuzzy system based on the T-S fuzzy model, which is proved
able to approximate arbitrary nonlinear systems [14]. To deal with high-dimensional data
sets, FCM-ANFIS, SC-ANFIS, and GPC-ANFIS are applied to many practical problems;
however, after dimension reduction, the ANFIS system reduces the interpretability and
greatly affects the utilization of input data, which are greatly affected.

Several linear functions can approximate an arbitrary nonlinear function [15]. During
the approximation, the difference between the target function and the approximated func-
tion, called residual, will be the training target of the next generation. The residual network
uses residual as the medium between small systems, making manipulating information
flow easier, limiting the scale of error in each step, and leaving every small system nearly
independent [16]. The idea of residual improves the stability of the whole system and
reduces the accuracy requirement of a single layer. The time cost only increases linearly
with the increase of network depth, and the accuracy improvement efficiency is higher than
that of general deep networks.

In this paper, the residual network is used to improve the performance of ANFIS. We
improved the ANFIS with the residual network to deal with high-dimensional data sets
by increasing the width of the system. A large and deep system with many parameters is
replaced with a combination of small and fast systems. In this way, ANFIS may process
high-dimensional data while maintaining high interpretability, high robustness, and low
complexity at the expense of local accuracy.

The rest of this paper is organized as follows. The general structure of WRNFS
algorithm and the performance index are proposed in Section 2. In Section 3, three data sets
with different input numbers and different fields are used to illustrate the efficiency of the
proposed WRNFS model by comparing it with the traditional ANFIS model. Conclusions
are summarized in Section 4.

2. WRNFS Algorithm and Evaluating Indexes

As shown in Figure 1, the traditional ANFIS model contains five layers. The output
of the first layer (square nodes) is the membership corresponding to the established rules,
and the parameters of this layer are called premise parameters; the second layer (round
nodes marked with ∏) generates trigger strength; the third layer (round nodes marked
with N) standardizes trigger strength; the fourth layer (square nodes) imports training sets
to obtain output corresponding to rules, and the fifth layer sums to obtain the total output.

The basic idea of the width residual neural fuzzy system algorithm is the residual
error learning algorithm based on ANFIS model. In other words, the original output is
regarded as a signal with several levels of different energy instead of repeatedly using the
original output as a learning target. For the first-layer of WRNFS, the total output signal
is used to train ANFIS model and get the low-frequency signal. The training error of the
first layer is passed to the later stage as the residual signal to get several higher-frequency
signals. Finally, the signals at all levels are reintegrated in appropriate ways such as least
square regression to get a reasonable prediction of the original signal.
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The WRNFS algorithm is described as follows: Firstly, the input variable set is
divided into several groups. For example, the medium dimension input (6–20 dimen-
sion) is divided into several 2–6 dimension input groups. Then, these data groups are
taken as the input of the corresponding layer ANFIS function module. For the first-
layer ANFIS model, the data set {x1, x2, . . . , xn1 , y} is taken as the training data to estab-
lish ANFIS model. {x1, x2, . . . , xn1} is the first group of the divided data set and {y}
is the expected value. The predicted value {y′} is obtained by taking {x1, x2, . . . , xn1}
as the input of the established ANFIS model. For the second-layer ANFIS model, the
data set

{
xn1+1, xn1+2, . . . , xn2 , y− y′

}
is taken as the training data to establish ANFIS

model.
{

xn1+1, xn1+2, . . . , xn2

}
is the second group of the divided data set and {y− y′}

is the first-order residual between the expected value and the prediction value of the
first-layer ANFIS model. Then, the second-order residual {y− y′ − y′′ } is obtained and{

xn2+1, xn2+2, . . . , xn3 , y− y′ − y′′
}

will be used as the training data set of the third-layer
ANFIS model. Repeat the above process until the input groups are used up, or the output
and learning rate meet the target requirements. Finally, appropriate means such as least
square regression are used to reconstruct the output signals of ANFIS at all levels to obtain
reasonable prediction. As shown in Figure 2, multi-dimensional data can be fully utilized
and learning accuracy can be continuously improved through step-by-step transmission of
residuals. In the experiment of this article, we configure that n1 = n2 = . . . = m, to make
the performance of the system more controllable. Assume there is an N-dimensional input
data set {x1, . . . , xN , y}. The procedure of WRNFS is described in the following figure.

The WRNFS algorithm shown in Figure 3 can be used as an online learning mode in
practical applications. On the one hand, the training data set is divided into several groups,
which will greatly reduce the training time of the ANFIS model. On the other hand, after
partitioning and learning the input of the current data set, only the last level of residual
error is saved, without changing the previously trained levels. When the new input data
enter the system, the residual of the last level is distributed with the new input data to
train ANFIS model in the next layer. Because of the above reasons, the time efficiency and
memory efficiency of the algorithm will be improved.
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The above algorithm assumes that the influence of each set of input data on the
output is regarded as almost the same and contains the information of each level. The
possible training results are only Cn1

N Cn2
N−n1

. . . Cnn
nn , which is smaller than the possibility of

exponential growth. Obviously, there is a certain gap between the naive algorithm and the
actual data requirements. On the one hand, some input data may have a negative effect
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on ANFIS learning results, which may be corrected if other data are reused. On the other
hand, if the space of training data are small, the flexibility of the algorithm will be reduced.

3. Results and Discussion
3.1. Dataset 1: Mackey–Glass (MG) Time-Delay Differential Equation

Mackey and Glass (1977) established first-order differential delay dynamics equations
for physiological system models. The equation is a nonlinear delay differential equation,
one special form is described as follows:

ds(t)
dt

=
0.2s(t− τ)

1 + s10(t− τ)
− 0.1s(t)

When τ > 17, the whole sequence is chaotic, aperiodic, and does not converge or
diverge. The Mackey–Glass time series is one of the benchmark problems of time series
prediction in a neural network and fuzzy logic. In this section, 1000 data points are
intercepted in the MG sequence. The first 500 data points are taken as the training set and
the last 500 data points are taken as the test set. Using the common construction method of
time series prediction problem, every five data points in the series are regarded as a group
of four inputs and one output dataset. In addition, for each group, the first four data points
are regarded as input and the fifth data point as output, and thus a learning task with four
inputs and one output is constructed.

The obtained data set was used to test the performance of WRNFS after dimensionality
reduction. In other words, four input ANFIS system were divided into two two-input
ANFIS systems, and the residual error is used to transmit between ANFIS systems (WRNFS).
The performance of the ANFIS and WRNFS is list in Table 1.

Performance = RMSE× Parameter Numbers× Time Efficiency.

Table 1. ANFIS and WRNFS in the 4-input system(3 MF).

Algorithm ANFIS WRNFS

Total Input numbers 4

Membership Functions 3 4 3 4

Group Train Test Train Test Train Test Train Test

RMSE I 0.0014 0.0013 0.0006 0.0006 0.0268 0.0260 0.0245 0.0237

Parameter Numbers II 441 1328 90 144

Time Efficiency III 4.5469 >27 0.6719 1.0469

Performance IV 2.81 21.5 1.62 3.69
I: RMSE: Root-Mean-Square Error. II: Parameter Numbers: The total parameter number of the system. III: Time
Efficiency: The time used to train the whole system. The unit of this quantity is seconds. IV: Performance: The
comprehensive performance of the system.

We used the first data set to show the differences between the original ANFIS and
our WRNFS. From Table 1, although the accuracy decreased by using WRNFS, a better
comprehensive performance is obtained. As shown in Figures 4 and 5, the complexity of
the entire system is notably simplified; we plotted a line-chart to compare the precision of
ANFIS and WRNFS in Figure 6, in which the red line represents the ANFIS and the blue
line represents the WRNFS. ANFIS fits the yellow base-line better, but WRNFS has enough
precision, too.
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To further certify the result, besides three membership systems, we also experimented
with four membership systems. The results are also listed in Table 1.

From data set 1, we can draw two conclusions:

1. The training error and the test error of the same system are basically the same, which
showed that WRNFS and ANFIS have similar robustness in the four-dimensional
input system.

2. When other system parameters are set to be the same, dividing the input dimensions
will reduce the accuracy of WRNFS compared with the original ANFIS; however, the
interpretability and system complexity will be significantly reduced, and thus the
comprehensive performance will be improved.

3.2. Dataset 2: Miles Per Galon

The prediction of miles per gallon of motor vehicles is a typical nonlinear regression
problem, in which several characteristic data of motor vehicles are used for prediction.
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In this case training data are publicly available in the Irving Machine Learning Library
(UCI) of the University of California and includes various brands and models of motor
vehicles. There are seven numerical parameters in this data set: miles per gallon, number of
cylinders, displacement, horsepower, weight, acceleration, and model year. The regression
model is constructed by taking miles per gallon as the output and other six parameters as
the input variables.

We used the second data set to show the robustness and the flexibility in application of
WRNFS. When the ANFIS system with 3-dimensional input is exhausted, RMSE between
training set and test set has a large deviation value, and the over-fitting phenomenon
occurs. It indicates that when the traditional ANFIS system is used to train this data
set, increasing the number of inputs and the complexity of the model cannot reasonably
improve the accuracy of the model when the dimension of the training set is fixed. In
contrast, WRNFS can improve model training accuracy by increasing the total number of
inputs without encountering over-fitting. According to the different input dimensions of
low-dimensional system, two WRNFS of two-input and three-input of ANFIS model are
established, respectively. The results are shown in Table 2. From Table 2, it can be seen that
the over-fitting phenomenon of the WRNFS model with three inputs is much more serious
than that with two inputs. Thus, reducing the input dimension of low-dimensional system
can solve the over-fitting problem of traditional ANFIS model.

Table 2. WRNFS in the 6-input system(3 MF).

WRNFS

System
Configuration Total Input Numbers: 6 Membership Functions: 3

Low-D-ANFIS
Input Numbers 2 3

Number of
Low-D-ANFIS 3 2

Group Train Test Train Test

RMSE 0.5227 2.0980 0.2683 167.1314

MRPE V 7.47 20.95 3.78 196.45

Parameter
Numbers 135 270

Rule Numbers 27 54
V: MRPE: Mean Relative Percentage Error.

3.3. Dataset 3: Electroencephalogram

In this case, training data are publicly available in the Irving Machine Learning Library
(UCI) of the University of California and includes 13-dimensional EEG data. EEG (Elec-
troencephalogram) is a 12-input and 1-output brain wave data, instead of using biomedical
formula to calculate, we use WRNFS to learn the characteristic of the evaluating system.

We used the third data set to show the importance of using small subsystems and
the sustained effect of WRNFS. Taking the first 12-dimensional input data as input and
the 13th-dimensional stability as output, the regression model of 12-dimensional input
and 1-dimensional output is obtained. A single ANFIS system can no longer solve this
problem, so it must carry out dimension reduction in advance or use methods like WRNFS
that is capable of solving the data sets in medium scale. According to the different input
dimensions of low-dimensional systems, WRNFS with two inputs, three inputs, four
inputs, and six inputs are established, respectively. The training results of each system
are compared and shown in Table 3. From Table 3, when the input dimension of the low-
dimensional system is reduced, the overall performance of the system is greatly improved,
although the accuracy is slightly decreased.



Appl. Sci. 2022, 12, 5810 8 of 9

Table 3. WRNFS in the 12-input system (3 MF).

WRNFS

System Configuration Total Input Number: 12 Membership Functions: 3

Inputs of Low-D-ANFIS 2 3 4 6

Number of Low-D-ANFIS 6 4 3 2

Group Train Test Train Test Train Test Train Test

RMSE 0.0167 0.0175 0.0164 0.0312 0.0152 0.0201 0.0035 0.3863

MRPE 6.4036 2.7321 7.5228 2.8870 10.4399 3.5540 7.8706 31.2332

Parameter Numbers 270 540 1323 10,314

Rule Numbers 54 108 243 1458

In Figure 7, the error figure of 12-input-WRNFS below shows that through the trans-
mission of residual between low dimension systems, the error gradually decreases and
seldomly becomes larger, which indicates the robustness and the sustained effect of the
designed WRNFS.
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4. Conclusions

The WRNFS we proposed in this paper is a new system structure based on ANFIS,
which is established by using several low dimensional ANFISs and connecting these
systems through residuals. Through the experiments, we concluded that WRNFS has better
performance than ANFIS and the application fields of WRNFS are more variable than
ANFIS. The proposed WRNFS has obtained good accuracy and performance only based
on ANFIS. The program in this article is easy for researchers to write even if they are not
algorithm practitioners.

Unlike the parameter number of ANFIS grows exponentially, the parameter number of
WRNFS almost grows on a linear scale. When the total dimension of the input is divisible
by the input dimension of the ANFIS model at each layer, there is no need to reuse the input
data. In this case, the WRNFS system complexity increases discretely and linearly. When
the total dimension of the input is not divisible by the input dimension of the ANFIS model
at each layer, the data of some dimensions need to be reused. In this case, the complexity of
the WRNFS system should increase as a step function along the upper edge of the linear
growth curve described above.
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The WRNFS we proposed has a great potential of further promotion because of its
simple structure. There are several places can be optimized. First, the connection between
subsystems is established by addition; it can be replaced by methods such as linear least
square regression. Second, we did not discuss how to arrange the distribution of each input
dimension; we made every subsystem have the same input dimension for the convenience
of discussion and assigned the inputs to subsystems only by one random plan. In fact, if
the arrangement of dimensions is based on some interpretable algorithms, WRNFS may
have better precision. Third, the WRNFS is now short of pre-processing methods, or in
other words, short of forestage systems. With the help of other interpretable algorithms,
WRNFS will have more possibilities in application.
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