# Modular Spiral Heat Exchanger Thermal Modelling

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Geometry Model

#### 2.2. Mathematical Model

- Steady state performance of the SPHE
- No heat loss to the ambient environment through the inner and outer surfaces and the exchanger end walls
- Neglected axial conduction in the SPHE
- The middle surface of the spiral walls is considered as a heat transfer area between the hot and cold channels
- Neglected variation in the stream’s thermal properties for both streams.

#### 2.3. Numerical Model

## 3. Results and Discussion

#### 3.1. One-Module SPHE

#### 3.2. Two Module SPHE

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

CFD | computational fluid dynamics |

SPHE | spiral plate heat exchanger |

1M | one module |

2M | two module |

## References

- Minton, P. Designing Spiral-Plate Exchangers. Chem. Eng. Prog.
**1970**, 77, 103–112. [Google Scholar] - Picón-Núñez, M.; Canizalez-Dávalos, L.; Martínez-Rodríguez, G.; Polley, G.T. Shortcut Design Approach for Spiral Heat Exchangers. Food Bioprod. Process.
**2007**, 58, 322–327. [Google Scholar] [CrossRef] - Sabouri Shirazi, A.H.; Jafari Nasr, M.R.; Ghodrat, M. Effects of Temperature Differences in Optimization of Spiral Plate Heat Exchangers. Process Integr. Optim. Sustain.
**2020**, 4, 391–408. [Google Scholar] [CrossRef] - Bidabadi, M.; Sadaghiani, A.; Azad, V. Spiral heat exchanger optimization using genetic algorithm. Sci. Iran. B
**2013**, 20, 1445–1454. [Google Scholar] - Bes, T.; Roetzel, W. Thermal Theory of the Spiral Heat Exchanger. Int. J. Heat Mass Transf.
**1993**, 36, 765–773. [Google Scholar] [CrossRef] - Bes, T.; Roetzel, W. Approximate Theory of Spiral Heat Exchanger. In Proceedings of the EUROTHERM Seminar No. 18, Hamburg, Germany, 27 February–1 March 1991; Springer: Berlin/Heidelberg, Germany, 1991; pp. 223–232. [Google Scholar]
- Bes, T. Eine Methode der thermische Berechnung von Gegen-und Gleichstrom-Spiralwärmeaustauschern. Wärme-und Stoffübertragung
**1987**, 21, 301–309. [Google Scholar] [CrossRef] - Buonopane, R.; Troupe, R. Analytical and Experimental Heat Transfer Studies in a Spiral Plate Heat Exchanger. In Proceedings of the IV International Heat Transfer Conference, Paris, France, 31 August–5 September 1970; Volume I, pp. 1–11. [Google Scholar]
- Strenger, M.; Churchill, S.; Retallick, W. Operational Characteristics of a Double-Spiral Heat Exchanger for the Catalytic Incineration of Contaminated Air. Int. Eng. Chem. Res.
**1990**, 29, 1977–1984. [Google Scholar] [CrossRef] - Nguyen, D.K.; San, J.Y. Heat Transfer and Exergy Analysis of a Spiral Heat Exchanger. Heat Transf. Eng.
**2016**, 37, 1013–1026. [Google Scholar] [CrossRef] - Targett, M.J.; Retallick, W.B.; Churchill, S.W. Solutions in Closed Form for a Double-Spiral Heat Exchanger. Ind. Eng. Chem. Res.
**1992**, 31, 658–669. [Google Scholar] [CrossRef] - Burmeister, L. Effectiveness of a Spiral-Plate Heat Exchanger with Equal Capacitance Rates. J. Heat Transfer
**2006**, 128, 295–301. [Google Scholar] [CrossRef] - Djordjević, M.; Stefanovic, V.; Vukić, M.; Mančić, M. Numerical investigation on the convective heat transfer in a spiral coil with radiant heating. Therm. Sci.
**2016**, 20, 1215–1226. [Google Scholar] [CrossRef] - Roetzel, W.; Spang, B. 11. Auflage; chapter Berechnung von Wärmeübertragern. In VDI-Wärmeatlas; Springer: Berlin/Heidelberg, Germany, 2013; pp. 39–74. [Google Scholar]
- Chowdhury, K.; Linkmeyer, H.; Bassiouny, M.; Martin, H. Analytical Studies on the Temperature Distribution in Spiral Plate Heat Exchangers: Straightforward Design Formulae for Efficiency and Mean Temperature Difference. Chem. Eng. Process.
**1985**, 19, 183–190. [Google Scholar] [CrossRef] - Martin, H. Heat Exchangers; Hemisphere Publishing Co.: Washington, DC, USA; Philadelphia, PA, USA; London, UK, 1992; pp. 142–149. [Google Scholar]

**Figure 4.**Prediction of the effectiveness parameter for a one-module (1M) SPHE in comparison to results from the literature.

**Figure 5.**Effect of ${N}_{t}$ on predicted effectiveness parameter for one- and two-module SPHEs. 2M, ${N}_{t}=2.375$ is equivalent to 1M, ${N}_{t}=3.625$.

**Figure 6.**Predicted temperature profile in one-module SPHE with geometry from Strenger et al. [9]. (

**a**) Low NTU. (

**b**) Optimal NTU. (

**c**) High NTU.

**Figure 7.**Comparison of the predicted effectiveness parameter for one- and two-module SPHE. 2M, ${N}_{t}=5.6$ is equivalent to 1M, ${N}_{t}=8.75$ SPHE.

**Figure 8.**Predicted temperature profile in two-module SPHE with equivalent geometry to Strenger et al. [9]. (

**a**) Low NTU. (

**b**) Optimal NTU. (

**c**) High NTU.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Červenka, B.; Holubčík, M.; Drga, J.; Malcho, M.
Modular Spiral Heat Exchanger Thermal Modelling. *Appl. Sci.* **2022**, *12*, 5805.
https://doi.org/10.3390/app12125805

**AMA Style**

Červenka B, Holubčík M, Drga J, Malcho M.
Modular Spiral Heat Exchanger Thermal Modelling. *Applied Sciences*. 2022; 12(12):5805.
https://doi.org/10.3390/app12125805

**Chicago/Turabian Style**

Červenka, Bystrík, Michal Holubčík, Juraj Drga, and Milan Malcho.
2022. "Modular Spiral Heat Exchanger Thermal Modelling" *Applied Sciences* 12, no. 12: 5805.
https://doi.org/10.3390/app12125805