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Abstract: Two-stream convolution network (2SCN) is a classical method of action recognition. It
is capable of extracting action information from two dimensions: spatial and temporal streams.
However, the method of extracting motion features from a spatial stream is single-frame recognition,
and there is still room for improvement in the perception ability of appearance coherence features.
The classical two-stream convolution network structure is modified in this paper by utilizing the
strong mining capabilities of the bidirectional gated recurrent unit (BiGRU) to allow the neural
network to extract the appearance coherence features of actions. In addition, this paper introduces
an attention mechanism (SimAM) based on neuroscience theory, which improves the accuracy and
stability of neural networks. Experiments show that the method proposed in this paper (BS-2SCN,
BiGRU-SimAM Two-stream convolution network) has high accuracy. The accuracy is improved by
2.6% on the UCF101 data set and 11.7% on the HMDB51 data set.

Keywords: action recognition; two-stream convolution network; BiGRU network; SimAM attention
mechanism

1. Introduction

In the era of big data, more and more videos are shared. How to quickly extract
information from massive video resources has high research and application value. Human
action recognition in videos has gradually become a major research hotspot in the field of
computer vision, and has been widely used in public video surveillance, scientific cognition,
medical rehabilitation and other fields.It has broad application prospects in the fields of
human-computer interaction [1], robot teleoperation [2], etc.

The method of human action recognition has experienced the development from
manual feature extraction to deep learning feature extraction. Compared with manual
feature extraction, deep learning feature extraction puts forward higher requirements for
the computing power of the computer. Therefore, for a long time, researchers carry out
action recognition by manually extracting features.

In the early stages, people recognized actions through the geometry of the human
body, that is, the action recognition method based on a template. Bobick, A. et al. [3]
first proposed using motion energy image (MEI) for action recognition. Then Weinland,
D. et al. [4] proposed using motion history image (MHI) for action recognition. Afterwards,
people developed the feature representation method from global feature representation to
local feature representation. Laptev, I. et al. [5] used optical flow histogram for local feature
representation. Wang et al. [6,7] successively proposed DT and IDT algorithms, which
further developed the local feature representation into an action recognition method based
on joint and skeleton trajectory. Hu, K. et al. [8] proposed a multi-scale skeleton action
recognition method, so that the skeleton motion model has deep spatio-temporal features.
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Yang, X. et al. [9] proposed a skeleton action recognition method based on 3D depth data,
which achieved good results in online action recognition scenes.

However, the manual feature extraction method is sensitive to the direction, position,
and background environment of human action, and needs an accurate action template
as support. It has high accuracy only for simple actions in limited scenes. Deep learning
can automatically extract features when the model is uncertain, and has been widely
used in object detection [10], automatic control [11], remote sensing image processing [12],
system parameter identification [13] and other fields. In recent years, with the continuous
improvement of computer computing power, deep learning has been deeply developed,
and human action recognition algorithms based on deep learning have gradually emerged.

At present, the more commonly used deep learning network is the classical convolu-
tional neural network (CNN). CNNs are widely used in many image semantic segmentation
tasks [14]. The derivative networks based on CNN include AlexNet [15], VGG network [16],
GoogleNet [17], ResNet [18] etc. These networks can extract features from a single image
and classify them and have achieved good results on ImageNet. The action recogni-
tion algorithms based on these neural networks are mainly divided into three categories:
(1) Single-stream network model. In this network model, the three-dimensional convolu-
tional neural network proposed by Ji, S. et al. [19], namely 3D CNN is widely used. Its
convolution network structure includes a hard connection layer, three 3D convolution lay-
ers, two pooling layers, and a full connection layer. (2) Two-Steam network model. Inspired
by the two-stream hypothesis of neuroscience, simonyan et al. [20] creatively proposed the
two-stream network model for the first time in 2014. (3) Multi-Stream network model. This
network model is an extension of the Two-Steam network model. Based on the Two-Steam
network model, other deep learning networks are added to extract different features.

Among the three kinds of action recognition algorithms, the Two-Steam network
model method has good generalization and expansibility. Therefore, people have proposed
many improved models based on this model, such as adding the attention mechanism
module to the Two-Steam network model to form the structure of the “Two-Steam network
model + attention mechanism”. The existing attention mechanisms include circular atten-
tion mechanism [21], global attention mechanism [22], SE attention mechanism [23], CBAM
attention mechanism [24], DA attention mechanism [25], SAM attention mechanism [26],
multi-head attention mechanism [27], etc.

In early studies, people proposed classical recurrent neural network (RNN) [28] and
long short-term memory network (LSTM) [29]. Afterwards, Cho, K. et al. [30] proposed
a gated recurrent unit (GRU). Abhisek et al. [31] proposed Bidirectional Gate Recurrent
Unit (BiGRU) based on GRU for supervised and language-independent context-sensitive
lemmatization. This composite deep neural network structure exhibits an outstanding
ability to capture contextual information for a given word. These neural networks with
the ability of memory can well complete the tasks of emotion analysis and named entity
disambiguation in the field of NLP combined with context. Similar to lemmatization
being context-sensitive, an action is also sensitive to its state before and after it, which is
a higher-dimensional “context”. We intend to introduce BiGRU into the field of action
recognition to improve the neural network’s ability to perceive pre- and post-action states
(the coherence feature of action appearance). In terms of attention mechanism, Yang,
L. et al. [32] proposed the attention mechanism SimAM based on neuroscience theory.
Compared with the two-dimensional attention weights provided by the existing channel
attention and spatial attention modules, SimAm provides 3D attention weights for the
feature maps in the network, which is consistent with the feature dimension of action
recognition tasks. At the same time, SimAm can effectively improve the accuracy of the
neural network. Another advantage of SimAm attention is that most of the operators are
chosen according to the solution of the defined energy function, thus avoiding excessive
structural tuning work [32].

However, many action recognition algorithms still face some problems:
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(1) The main task of a spatial stream network in the classical Two-Stream network model
is to extract the appearance features of actions, and its feature extraction method
is only single frame recognition (still frame). However, the appearance features
of actions may have great differences in different stages. The way of single frame
recognition will make the neural network unable to learn these coherence features
of appearance.

(2) At present, there is still room for improvement in the accuracy and stability of the
classical two-stream network for action recognition. In addition, the classical Two-
Stream network treats each pixel equally, which will lead the network to extract
features weakly related to the action recognition task, such as video background.
Therefore, a neural network needs a method to filter irrelevant information.

In this paper, we construct a new network structure (BS-2SCN) based on a two-stream
convolution network to solve the two problems mentioned above. To solve these two
problems, we add a bidirectional gated unit to the spatial stream network model of a
two-stream convolution network to form a BiGRU network. For a video clip, we no
longer only recognize a single frame, but use the method of uniform sampling to input
multiple frames of images into the BiGRU network in order, and use its memory ability to
improve the perception ability of a neural network to the coherence characteristics of action
appearance. Due to the BiGRU network, the neural network can make use of the past and
future information at the same time. In addition, we also inserted the SimAM attention
mechanism into the ResNet unit, which further improves the accuracy of action recognition.

To sum up, this paper has made the following contributions:

(1) Propose a new network structure based on the two-stream convolution network model
and combined with a bidirectional gated recurrent unit. This network structure can
well solve the shortcomings of the original neural network model in the perception of
motion appearance coherence features.

(2) Combine the SimAM attention mechanism, which is based on the spatial inhibition
effect of neurons, with the ResNet network organically to improve the accuracy and
stability of action recognition.

The overall framework of this paper is as follows: Section 1 introduces the research sta-
tus in the field of action recognition; Section 2 briefly introduces the traditional two-stream
convolution network, the attention mechanism, and the neural network with memory
capability; In Section 3, the improved two-stream convolution network structure is intro-
duced in detail; In the Section 4, ablation experiments and comparative experiments on
two representative public data sets, UCF101 and HMDB51, verify the effectiveness and
stability of the network; Section 5 is the conclusion of this paper.

2. Related Works
2.1. Two-Stream Convolution Network

The two-stream hypothesis assumes that the visual cortex has ventral and dorsal
pathways. The ventral pathway is sensitive to the shape and colour of the target, and the
dorsal pathway is sensitive to the spatial transformation caused by the movement of the
target. The two-stream network architecture imitates the visual cortex to establish the
temporal information path and spatial information path. The independent parallel CNN
network is used to extract the temporal and spatial features of the video. Finally, fusing
the features. The structure of the two-stream convolution network is shown in Figure 1.
After sampling, scaling, and clipping, the input video will be input into the spatial stream
convolution network and temporal stream convolution network respectively. The input
of the spatial stream network is a video single frame image (after RGB three-channel
decomposition), and the input of the temporal stream network is a stacked optical stream
image. The dense optical stream can be regarded as a set of displacement vector fields
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between continuous frames t and t + 1. Note the point (u, v) in frame t, and the optical
stream in frame t is It, The calculation formula is as follows:

It(u, v, 2k− 1) = dx
t+k−1(u, v) (1)

It(u, v, 2k) = dy
t+k−1(u, v) (2)

In the above formula, u = [1; w], v = [1; h], k = [1; L].

Conv1

Stride2

Norm

Pool

Class

Score 

fusion

Spatial stream network

motion stream network
Input video

Conv2

Stride2

Norm

Pool

Conv3

Stride1

Conv4

Stride1

Conv5

Stride1

Pool

Full6

Dropout

Full7

Dropout
softmax

Single frame

Multi-frame

Optical folw

Conv1

Stride2

Norm

Pool

Conv2

Stride2

Norm

Pool

Conv3

Stride1

Conv4

Stride1

Conv5

Stride1

Pool

Full6

Dropout

Full7

Dropout
softmax

Figure 1. Classical two-stream convolution network structure.

The two-stream convolution network adopts the VGG16 network. After 5-layer
convolution, 3-layer pooling, and 2-layer full connection, the input image is input into
the SoftMax classifier to complete the classification. Finally, the two-stream network is
fused by the weighted addition or support vector machine (SVM) method to obtain the
final classification result. In this paper, we use a two-stream convolution network as
the framework and the effective ResNet network to replace the VGG16 network at the
same time.

2.2. Attention Mechanism

Attention mechanism is a useful tool applied in the field of deep learning in recent
years, which originated from the human visual attention mechanism. Allport [33] proposed
the concept of visual-spatial attention. Humans scan the global image to obtain target
areas that need to be focused on, and then invest more attention resources in these areas
while ignoring other unimportant information. Through this visual attention mechanism,
the limited attention can be used to quickly filter out high-value information from a
large amount of information. The attention mechanism in neural networks is a resource
allocation scheme that allocates computing resources to more important tasks and solves
the problem of information overload in the case of limited computing power. The problem
of information overload refers to the use of too many parameters to improve the expression
ability of the model, resulting in an excessive amount of information stored in the model.
By introducing an attention mechanism, the neural network can pay attention to more
important information among many input information, while reducing the attention to
other information, and even filtering irrelevant information. The neural network can solve
the problem of information overload and improve the processing efficiency and accuracy
of the neural network.

In 2014, Bahdanau, D. et al. [21] first introduced the attention mechanism into NLP,
built a neural machine translation model, and achieved excellent results. Subsequently,
Luong, M.T. et al. [22] improved the circular attention model, proposed the concept of the
global attention mechanism, and expanded the calculation method of the attention mecha-
nism. In 2017, Vaswani, A. et al. [27] and others proposed a transformer architecture based
entirely on attention mechanisms and achieved standout results in NMT and other tasks.

In 2018, Hu, J. et al. [23] proposed the SE attention mechanism, which has achieved
excellent performance on the existing CNN model. Cheng, X. et al. [34] proposed a new
network structure based on the SE attention mechanism, which improved the performance
of deep architecture. Jin, X. et al. [35] improved the SE attention mechanism and proposed a
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new spatial pooling method. In terms of application, SE attention is widely used in phonetic
recognition [36], aquaculture [37], medical lesion identification [38], remote sensing imagery
recognition [39], communication [40] and other fields.

Based on SE attention mechanism, Woo, S. et al. [24] proposed CBAM attention
mechanism, which can capture more important information between indistinguishable
objects [41]. Hou, Q. et al. [42] combined SE attention with CBAM attention to improve
the performance. Many scholars combined the CBAM attention mechanism with neural
network and gave birth to convolutional attention residual network (CARNET) [43], CBAM
confrontation network (CBAM-GAN) [44], etc. In terms of application, the CBAM attention
of Wang, S.H. et al. [45] is combined with the classical VGG network to identify COVID-19.
In addition, CBAM attention has been well applied in face detect [46], facial expression
recognition [47], ocean target detection [48], agriculture [49], vessel detection [50].

Based on the research on the human brain’s attention [51], Yang, L. et al. [33] proposed
a parameterless attention mechanism, SimAM. This is an attention mechanism with full
three-dimensional weights, and the weights are calculated by an energy function. SimAM
attention has been widely used in complex tasks due to its simplicity, non-participation,
and plug and play characteristics, such as pathologic portrait recognition [52,53], extreme-
exposure image fusion [54]. In this paper, we intend to use SimAM attention as a powerful
method to improve the accuracy of action recognition.

2.3. Neural Network With Memory

Neural networks with memory are widely used in NLP. Tasks such as text sentiment
analysis, machine translation, and named entity disambiguation often need to be analyzed
in combination with the language environment (the context of the object to be analyzed).
In 1991, Elman, J.L. et al. [28] proposed the classical recurrent neural network (RNN), which
is characterized by having a memory module to store the output of the previous time and
use it as the network input together with the input of the next time. However, the problems
of gradient disappearance and gradient explosion of RNN limit its application. The long
short-term memory network (LSTM) proposed by Hochreiter, S. et al. [29] in 1997 solves this
problem well. LSTM is still widely used by researchers. Recently, Hu, K. et al. [55] proposed
an enhanced input differential feature based on LSTM—Spatio-Temporal Differential Long
Short-Term Memory (ST-D LSTM), and added a differential link to the LSTM network
to effectively extract the dynamic characteristics of the target. In 2014, Cho, K. et al. [30]
proposed a gated recurrent unit (GRU), which simplifies the structure and improves the
speed of calculation with the same effect as LSTM. In 2017, Abhisek, et al. [31] proposed
a BiGRU network with a strong ability to mine context features. Its structure is shown in
Figure 2.

In Figure 2, given an input word w, the goal is to obtain a high-dimensional vector
representing the syntactic structure of w. w is represented as a sequence of characters
c1, c2 . . . cm, where m is the word length. Each character ci is defined as a one-hot encoding
vector 1ci , and each one-hot encoding vector obtains its corresponding projection vector
eci through the embedding layer. For a series of projection vectors ec1 , ec2 . . . ecm , the state
sequences h f

m and hb
1 are generated by the forward GRU unit and the reverse GRU unit. f

represents the forward sequence, and b represents the reverse sequence. Finally, the two
state sequences are connected to obtain a high-dimensional vector esyn

w representing the
syntactic structure of w. At this time, esyn

w has the context feature of w.
In this paper, we intend to use a bidirectional gated recurrent unit (BiGRU) in a

spatial stream network. Compared with a unidirectional gated recurrent unit, BiGRU can
remember not only the past action characteristics but also the future action characteristics,
which will give our neural network higher accuracy.
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Figure 2. BiGRU network structure for mining contextual features.

3. Improved Network Structure
3.1. General Network Structure

Due to the shortcomings of the classical two-stream convolution network in obtaining
the coherence features of action appearance, an improved two-stream convolution network
is proposed in this paper. The original spatial stream input changes from a single video
frame to a multi-video frame sampled at equal intervals. In order to improve the perfor-
mance of the network, the network used in the feature extraction process is replaced by a
VGG16 network with deeper ResNet. The network used in the motion stream has the same
change. Moreover, this paper adds an advanced SimAM attention mechanism to the ResNet
network, which greatly improves its feature extraction ability. The overall structure of the
improved two-stream convolution network proposed in this paper is shown in Figure 3.
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Figure 3. Improved two-stream convolution network structure.

To make the network work better, for an input video, first carry out equal spacing
sampling, optical flow calculation, and other preprocessing work. The calculation formula
of optical flow has been given by Formulas (1) and (2).
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The number of spatial stream input frames can be adjusted according to the actual
situation, but the input images need to be arranged in strict order and equidistant order.
Figure 3 shows the network structure and the process of forwarding propagation by taking
the input three frames as an example. These three frames are sampled at equal intervals
from the input video. Therefore, for a video, the three frames represent the appearance
of the action at different times in a continuous action.A frame of images first passes
through a convolution layer, a normalization layer, an activation layer, and a max-pooling
layer. Then enter a continuous number of ResNet network basic block layers (BasicBlock).
Each of the three frames goes through the same network.The feature map generated by
three consecutive frames of images passing through the above network is input into the
BiGRU network in sequence, and finally, the recognition result is obtained through the
SoftMax layer.

The input of the motion stream is the stacked optical flow image. After passing
through the same front-end network as the spatial stream, the optical flow image enters
multiple continuous basic unit layers of ResNet (Buttleneck), and finally enters the SoftMax
layer to obtain the recognition result. The motion stream does not use the bidirectional
Gru network.

The recognition results of spatial stream and motion stream are fused by the classical
weighted fusion method to obtain the final action recognition result.

3.2. Network Structure of BasicBlock & Buttleneck

With the increase in the difficulty of classification tasks and the complexity of classifi-
cation scenes, people must increase the depth of neural networks to adapt to the change.
The traditional AlexNet, VGG, GoogleNet, and other networks have different degrees of
degradation after increasing the network depth. With the increase in depth, the recognition
accuracy does not increase but decreases. Kaiming He et al. proposed a powerful ResNet
in 2015, which effectively solved the problem of network degradation and can extract deep
image information [56]. ResNet is composed of many residual blocks, and the basic residual
block structure is shown in Figure 4.

Figure 4. Structure of basic residual block.

The input x is superimposed with the original input after being activated by two
weight layers. The output retains a certain original gradient and characteristic information
to make the network easier to optimize and provide a guarantee for the increase of the
number of network layers. The network model proposed in this paper uses ResNet instead
of VGG to achieve better performance. Figure 5 shows the structure of BasicBlock and
Buttleneck network.
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Figure 5. Structure of BasicBlock and Buttleneck.

The input feature maps will pass through the convolution layer, normalization layer,
and activation layer in BasicBlock in turn. Buttleneck thickens the convolution layer,
normalization layer, and activation layer compared with BasicBlock. In this paper, the
SimAM layer is added between the last convolution layer and the normalization layer.
SimAM is a nonparametric attention mechanism of convolutional neural network proposed
by Yang, L. et al. [32] based on the spatial inhibition effect of neurons. It studies the
importance of each neuron by calculating the energy function of each neuron, forming
the attention of the corresponding neuron, and using the energy function enr indicates.
The calculation formula is as follows:

enr(wer, br, y, qi) =
1

M− 1

M−1

∑
i=1

(−1− (werqi + br))
2 + (1− (werr + br))

2 + λwe2
r (3)

where r represents the target neuron in a single input channel; qi represents other neurons
in the input channel, and i is the serial number; wer and br is the linear conversion of
weight and offset; µr is the average value; σ2

r indicates variance; M is the number of other
neurons on the channel; y is the variable; λ Is the coefficient. The calculation formula of
wer, br, µr, σ2

r is:

wer = −
2(r− µr)

(r− µr)2 + 2σ2
r + 2λ

(4)

br = −
1
2
(r + µr)wer (5)

µr =
1

M− 1

M−1

∑
i=1

xi (6)

σ2
r =

1
M− 1

M−1

∑
i=1

(xi − µr)
2 (7)

In neuroinformatics, Webb et al. [57] found that the most informative neurons are
usually those that display different firing patterns from other surrounding neurons. On this
basis, Yang, L. et al. [32] found that the easiest way to find these neurons is to measure the
linear separability between one target neuron and other neurons, find the target neuron
and all other neurons in the same channel The linear separability of neurons is equivalent
to minimizing Formula (3), so the smaller the energy of each neuron, the more important
that neuron is compared to other neurons in the same channel. Yang, L. et al. [32] marked
the minimum neuron energy as en∗r , and used the reciprocal 1/en∗r of the minimum neuron
energy to represent the weight of the neuron. Calculate the minimum neuron energy en∗r
using the following formula:

en∗r =
4(σ2

r + λ)

(r− µr)2 + 2σ2
r + 2λ

(8)
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The energy of all neurons of a single channel constitutes the energy matrix e of the
channel. The attention weight matrix E′ of the channel is obtained after the reciprocal of
each element in the energy matrix E is normalized by the sigmod function. The calculation
formula is:

E′ = sigmod(
1
E
) (9)

Finally, the feature map is fused with the attention weight of the channel to calculate
the fused feature map S′i (Si is the original feature map), and its calculation formula is:

S′i = Si · E′ (10)

The feature map processed by a BasicBlock or Buttleneck will be superimposed with
the original feature map as the final output of the network.

To enable the spatial stream network to learn the appearance coherence characteristics
of the action, the input image is input into the BiGRU network for processing after passing
through the ResNet. The network structure of BiGRU is shown in Figure 6.

Figure 6. Network structure of BiGRU.

The input feature maps are input into the BiGRU network in strict order. The same
group of feature maps is not only the input of sequential GRU but also the input of reverse
GRU. GRU evolved from LSTM, which simplifies the input gate and forgetting gate in
LSTM into an update gate. Its basic structure is shown in Figure 7.



Appl. Sci. 2022, 12, 5784 10 of 21

Figure 7. Structure of GRU.

3.3. Network Structure of BiGRU

The updated formula of GRU is as follows:

rt = σ(Wr · [ht−1, xt]) (11)

zt = σ(Wz · [ht−1, xt]) (12)

h̃t = tanh(W · [rt × ht−1, xt]) (13)

ht = (1− zt)× ht−1 + zt × h̃t (14)

The above formulas can be expressed by ht = GRU(xt, ht−1), where rt represents
the reset gate at time t, zt represents the update gate at time t, h̃t represents the state
of candidate activation at time t. The tilde represents the output of the tanh function,
ht indicates the state of activation at time t, ht−1 represents the state of hidden layer at
time (t− 1), Wr, Wz, W are the weight matrixes. GRU network can reduce the amount of
computation and training difficulty under the effect equivalent to that of an LSTM network,
but its memory ability is unidirectional. Inspired by GRU, our network uses the BiGRU
network to realize the bidirectional memory and enhance its memory ability.

BiGRU network is composed of two unidirectional GRU network in opposite direc-
tions. The hidden layer state of BiGRU network at time t can be obtained by weighted
summation of forward hidden layer state

−−→
ht−1 and reverse hidden layer state

←−−
ht−1 with the

calculation formula as follows:

−→
ht = GRU(xt,

−−→
ht−1) (15)

←−
ht = GRU(xt,

←−−
ht−1) (16)

ht = wt
−→
ht + vt

←−
ht + bt (17)

where wt, vt are weight matrixes, bt is offset. The right arrow indicates the output of the
sequential GRU unit, which is specifically expressed as the output of the lower-layer GRU
unit h1

1, h1
2, h1

3 in Figure 5; the left arrow indicates the output of the reverse-order GRU unit,
which is specifically expressed as the upper-layer GRU in Figure 5. The output of the unit
h2

3, h2
2, h2

1 sums the three groups of inputs of the BiGRU network to obtain the output of the
whole BiGRU network.
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4. Experiments

To demonstrate the performance of the neural network proposed in this paper, four
groups of experimental subjects were designed for ablation experiments: basic control
group (2SCN), SimAM attention mechanism group (S-2SCN), BiGRU network group (B-
2SCN) and neural network group (BS-2SCN) proposed in this paper. Ten independent
repeated experiments were carried out respectively. The independently repeated exper-
iments are divided into two parts, which are run on the classic UCF101 data set and the
HMDB51 data set respectively. The four groups of experimental subjects on the same
data set have the same experimental conditions except for the network structure, and each
group of experimental subjects carried out 10 experiments respectively. Between these two
different data sets, we optimized the parameters of the neural network to fit the different
datasets. Subsequently, we compare the highest accuracy of the BS-2SCN network with
other action recognition algorithms on both datasets.

This paper will analyze the performance of the proposed neural network from the
aspects of recognition accuracy, learning rate and loss value, and the stability of recognition
results. This experiment runs on the classic UCF101 data set and HMDB51 data set.

4.1. Data Set

In the field of action recognition, there are many data sets that are used. These include
UCF101 and UCF50, HMDB, KTH, Hollywood, Hollywood 2, Kinetics and more.

KTH data set [58], released in 2004, is one of the earliest published action recognition
data sets. The data set includes 6 types of actions in 4 scenes, which are completed by
25 people, and the total number of videos is 2391. This data set is a milestone in the field
of computer vision and has been widely used in the field of traditional action recognition
by manually extracting features. However, due to its single background, few scenes, fixed
perspective, and other restrictive conditions, it has not been widely used in recent years.

The Hollywood [59] and Hollywood2 [60] data sets are successively released by the
IRISA Research Institute of France in 2008 and 2009. As its name suggests, the Hollywood
dataset comes from the films and television works produced by Hollywood. The Hol-
lywood2 dataset contains 12 action categories in 10 scenes, and the number of videos
is 3669 in total. The feature of the data set of film and television works is that people’s
actions, expressions, and gestures are relatively rich, and the background factors, such
as the movement of viewing angle and lighting conditions are full of changes. Therefore,
it is very challenging for the action recognition algorithm. However, there are still a few
action categories.

The HMDB data set [61] is a data set released by Brown University in 2011. The data
set contains a rich number of scenes, including some from many public data sets and some
from online video databases, such as YouTube. The data set contains 51 action categories,
with a total of 6849 videos. Compared with the KTH and Hollywood data sets, the HMDB
data set has greatly improved the number of video types and includes network video data.
Its complexity and diversity lay a foundation for improving the generalization performance
of action recognition algorithms.

The UCF50 data set [62] and UCF101 data set [63] were published by Florida Central
University in 2012 and 2013 respectively. The UCF101 data set contains 101 action categories,
and the number of videos has reached 13,320. The data set widely contains video data from
radio and television channels and the Internet. It is one of the data sets with the largest
number of action categories at present. Among them, the amount of equal scale data and
high video quality provide help for the application of action recognition algorithms with
deep learning as a means of feature extraction.

The Kinetics data set [64] was released in 2017. The dataset has multiple series sets,
such as Kinetics400, Kinetics600, and Kinetics700, including 400, 600, and 700 action
categories respectively. The number of videos has reached 500,000. This almost increases
the number of action categories in multiple existing datasets by one order of magnitude.
The data set is born for deep learning, and its massive video data is conducive to the
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training of the neural network. Unfortunately, not all devices can make full use of this data
set, and the high hardware conditions limit the wide use of this data set.

Considering the hardware conditions of experimental equipment and neural network
structure, the UCF101 data set and HMDB51 data set are used in our experiments.

4.2. Details of Experiments

The main network structure is shown in Figure 3. Before the image is input to the
neural network, a series of preprocessing needs to be taken to enhance the stability of the
network. The preprocessing method used in our experiments is the transform method
under the PyTorch framework. Firstly, the input images are randomly cropped and unified
in the format, which is randomly cropped to the size of 224 × 224. Then, the images
are randomly flipped horizontally with a 50% probability. Then it is converted to tensor
data type; Finally, standardized image data. The process of standardization is to subtract
the mean value and then divide it by the standard deviation. After the preprocessing,
the images will be decomposed into three channels: red, green, and blue, which will be
input into the neural network in the form of a high-dimensional array.

In terms of the loss function, This paper uses the cross-entropy loss function that can
effectively avoid gradient dispersion [65], whose calculation formula is:

L = − 1
N ∑

i

M

∑
c=1

yiclog(pic) (18)

where M represents the number of action categories, here is 101; yic is a symbolic function,
whose value is 0 or 1. If the value of sample i is equal to c, take 1, otherwise, take 0; pic
represents the prediction probability that sample i belongs to category c.

This paper employs the cross-entropy loss function, which is characterized by ampli-
fying the loss when the model effect is poor, so as to speed up the learning speed. When
the model effect is good, reduce the loss, slow down the learning speed, make the model
converge quickly and improve the accuracy accurately.

In terms of the optimization method, this paper adopts the random gradient descent
algorithm (SGD), and the learning rate adopts the stagnant descent method to decline in
segments. When the accuracy of the model verification set stops improving, the learning
rate will be reduced to one-tenth of the original, and the training will continue. The initial
learning rate of the spatial stream network is set to 0.0005. The initial learning rate of the
motion stream network is set to 0.01.

The hardware configuration of our experiments is: an Intel Xeon E5-2678 V3 CPU;
Four GeForce RTX 2080ti GPUs; 4 × 16 GB, 64 GB memory in total. The experimental
software is configured as Ubuntu 16.04.6 LTS operating system (Canonical Ltd.; Isle of Man,
UK); python version 3.8 (Guido van Rossum; Holland); CUDA version 11.0. (NVIDIA;
Santa Clara, CA, USA)

4.3. Results of Experiments and Analysis
4.3.1. Ablation Experiments of Network Structure

To analyze the influence of different components of the neural network on the accuracy
of action recognition, we conducted ablation experiments. Figures 8 and 9, respectively
show the top1 accuracy and top5 accuracy of four groups of experimental objects on the
spatial stream network and motion stream network in the basic control group (2SCN),
SimAM attention mechanism group (S-2SCN), BiGRU network group (B-2SCN), and neural
network group (BS-2SCN) proposed in this paper.
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Figure 8. Accuracy of spatial stream network on two data sets. (a) UCF101 (top1). (b) HMDB51
(top1). (c) UCF101 (top5). (d) HMDB51 (top5).
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Figure 9. Accuracy of motion stream network on two data sets. (a) UCF101 (top1). (b) HMDB51
(top1). (c) UCF101 (top5). (d) HMDB51 (top5).
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Figure 8 shows the top1 accuracy and top5 accuracy of four groups of experimental
objects on the spatial stream network. As shown in Figure 8, the action recognition accuracy
of the proposed network on the UCF101 and HMDB51 data sets is the highest when
reaching the stable stage. It is worth noting that the experiment with the BiGRU network
has low initial accuracy and slow convergence speed, which is due to the improvement in
the complexity of the network. This phenomenon is not obvious in the experiment with
SimAM, which is due to the advantage of the SimAM attention mechanism without neural
network parameters.

Figure 9 shows the top1 accuracy and top5 accuracy of four groups of experimental
objects on the motion stream network. In Figure 9a,b the accuracy of the basic control group
is low and the fluctuation is obvious, but the fluctuation of the training process has been
improved after adding the SimAM attention mechanism and the BiGRU network alone.
After the superposition of SimAM and BiGRU network, its stability characteristics are
retained, and the accuracy of action recognition is improved. The trend shown in Figure 8
is roughly the same as that shown in Figure 9. Combining Figures 8 and 9, the network
model proposed in this paper has achieved satisfactory results in terms of accuracy and
stability in training on the two datasets.

4.3.2. Comparative Experiment and Analysis

To verify the performance of the neural network proposed in this paper, it is compared
with other action recognition algorithms. The results are shown in Table 1.

Table 1 shows some advanced action recognition algorithms on UCF101 data set and
HMDB51 data set. We can see that the action recognition accuracy of the TLE network
proposed by Diba, A. et al. [66] on the UCF101 data set has reached an amazing 95.6%,
which is due to its expansion of the advanced 2D CNN network architecture into 3D CNN
network, which can extract more in-depth Spatio-temporal features. Other works that
achieve greater accuracy use more input [67] (75 frames) or a new network architecture [68].
The lower half of Table 1 shows the accuracy of the action recognition algorithm based on
a two-stream convolution network. We can observe that our BS-2SCN network achieves
the best performance on both data sets, and the accuracy on the UCF101 data set is 89.9%.
The accuracy of the HMDB51 data set has reached 71.3%, which is the highest accuracy
among all the comparison methods in Table 1.

Table 1. Accuracy comparison of action recognition algorithms on UCF101 dataset and HMDB51
dataset (%).

Method Data Set
UCF101 HMDB51

Slow Fusion [69] 65.4 -
BiLSTM [70] 70.0 39.8

ST-D LSTM [55] 75.7 44.4
P3D ResNet [71] 88.6 -

Transformations [68] 92.4 62.0
MiCT-Net [67] 94.7 70.5

TLE [67] 95.6 71.1

Method based on Two Stream Convolutional Networks (2SCN)

2SCN (VGG) [20] 86.9 58.0
2SCN (ResNet) 87.5 59.6

2SCN (Conv Pooling) [72] 88.2 -
2SCN (LSTM) [72] 88.6 -
2SCN (Fusion) [73] 89.6 57.6
2SCN (Hidden) [74] 89.8 -
BS-2SCN (proposed) 90.1 71.3
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4.3.3. Experimental Overall Analysis

Table 2 shows the average and the best accuracy (both top1 accuracy) of the four
groups of subjects on the UCF101 data set and HMDB51 data set in ten independent
repeated experiments.

Table 2. Comparison of action recognition accuracy (%).

Data Set Network Accuracy Model
2SCN S-2SCN B-2SCN BS-2SCN

UCF101

Spatial Average 78.75 78.90 78.70 80.52
Best 78.80 79.34 78.70 81.47

Motion Average 78.99 78.18 78.33 80.00
Best 79.83 79.67 78.51 80.21

Fusion Average 87.47 88.83 88.45 90.07
Best 88.52 88.95 88.68 90.32

HMDB51

Spatial Average 78.75 78.90 78.70 80.52
Best 78.80 79.34 78.70 81.47

Motion Average 78.99 78.18 78.33 80.00
Best 79.83 79.67 78.51 80.21

Fusion Average 87.47 88.83 88.45 90.07
Best 88.52 88.95 88.68 90.32

It can be seen from Table 2 that both the BiGRU network and SimAM attention
mechanism can effectively improve the action recognition accuracy of the two-stream
convolution network. The combination of the two can greatly improve the accuracy of
action recognition.

As shown in Figure 10, the fusion network accuracy of ten independent repeated
experiments is summarized. Figure 10 shows the accuracy distribution of the neural
network proposed in this paper in ten repeated experiments on two data sets. The box
graph is the summary of the accuracy of each experimental object, and the broken line
graph represents the average accuracy of each experimental object.
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Figure 10. Accuracy distributions and means for ten independent repeated experiments of four
groups of subjects on two data sets (a) UCF101. (b) HMDB51.

Figure 10 shows that, from the upper edge value, the action recognition accuracy of the
neural network (BS-2SCN) proposed in this paper is the highest. It is worth noting that in
Figure 10a, the highest accuracy of the 2SCN network is equivalent to the average accuracy
of the S-2SCN network and B-2SCN network, but this accuracy is represented by outliers
and is not referential. From the perspective of interquartile distance (IQR), the interquartile
distance of the 2SCN network is the largest, which shows that the accuracy distribution of
the 2SCN network is relatively discrete. On UCF101 data set, the interquartile distance of
the S-2SCN network is the smallest. On the HMDB51 data set, the interquartile distance of
the B-2SCN network is the smallest. In addition, the red broken line diagram in Figure 10
shows the average accuracy of each neural network. By comparing the mean and median of
each neural network (the purple horizontal line in the box), we can find that the two values
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are relatively close, which shows that in many experiments, the accuracy distribution of
each neural network is relatively uniform and the degree of dispersion is low.

To analyze the stability of the action recognition accuracy of each neural network in
multiple experiments, we compared the accuracy variance of each neural network in ten
independent repeated experiments, and the results are shown in Figure 11.

0 0.1 0.2 0.3 0.4 0.5 0.6

2SCN

S-2SCN

B-2SCN

BS-2SCN

variance(UCF101)

(a)

0 1 2 3 4 5

2SCN

S-2SCN

B-2SCN

BS-2SCN

variance(HMDB51)

(b)

Figure 11. variances of multiple experiment. (a) UCF101. (b) HMDB51.

Figure 11a shows the accuracy variance of ten independent repeated experiments of
each neural network on the UCF101 data set. We can see that the variance of the 2SCN
network is much larger than that of the other three networks, while the variance of the
S-2SCN network is the smallest. However, as shown in Figure 11b, the variance of the
B-2SCN network is the smallest, while the variance of the 2SCN network is still much
larger than that of the other three networks. Overall, the neural networks with the BiGRU
network reduce the variance of action recognition accuracy, which shows that the BiGRU
network plays a positive role in increasing the stability of action recognition.

Learning rate is a crucial parameter in the training process of neural networks. A too
small learning rate will lead to too slow convergence of the network model, or it will not
converge due to the disappearance of the gradient. An excessive learning rate will cause
the gradient to vibrate violently near the minimum value and it will not converge. A fixed
learning rate can achieve good results in simple tasks, while in more complex tasks such as
action recognition, a fixed learning rate is likely to lead to the inability of neural network
convergence. Therefore, the dynamic adjustment of the learning rate is very necessary.
The experiments in this paper adopt the stagnation descent algorithm to dynamically adjust
the learning rate.

Figure 12 compares the learning rate and loss of spatial stream network and motion
stream network. We can find that the declining trend of learning rate and loss is roughly
the same, and the learning rate decreases with the stagnation of loss. The algorithm has
achieved satisfactory results. The loss of motion stream is finally stable at about 0.17,
and the loss value of motion steam is finally stable at about 0.7.
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Figure 12. Learning rate and loss of spatial stream network and motion stream network. (a) UCF101.
(b) HMDB51.

As can be seen from Figure 8, the spatial stream network ablation experiments im-
proved the accuracy by 2% on the UCF101 data set and 1.5% on the HMDB51 data set.
Figure 9 shows that the motion stream network ablation experiments improved the ac-
curacy by 2.1% on the UCF101 data set and 6.2% on the HMDB51 data set. Through
the box graph and variance histogram of action recognition accuracy, we find that both
BiGRU network and SimAM attention can increase the stability of action recognition. In the
comparative experiment, our BS-2SCN network has the highest accuracy in the framework
of a two-stream convolution network. On HMDB51 data set, our BS-2SCN network has
achieved the effect of state-of-the-art. This proves that the BiGRU network with strong
mining ability for contextual features helps our neural network to perceive the coherent
features of appearance, and the effect of SimAm attention mechanism to improve the
accuracy and stability of the neural network.

5. Conclusions

In this paper, we propose an improved two-stream convolution network. The recogni-
tion mode of a single frame of a spatial stream is changed to multi-frame image recognition
by using the BiGRU network, which solves the shortcomings of a classical two-stream net-
work in the perception of action appearance coherence features. Compared with the GRU
network, the BiGRU network can record past information and predict future information
at the same time, which makes the neural network more robust. Furthermore, the intro-
duction of the SimAm attention mechanism improves the accuracy and stability of action
recognition. After ablation experiments and comparative experiments, the accuracy and
stability of the improved two-stream convolutional neural network (BS-2SCN) proposed in
this paper have been improved on both the UCF101 dataset and the HMDB51 dataset.
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Abbreviations
The following abbreviations are used in this manuscript:

GRU gated recurrent unit
BiGRU bidirectional gated recurrent unit
2SCN Two-stream convolution network
S-2SCN SimAM Two-stream convolution network
B-2SCN BiGRU Two-stream convolution network
BS-2SCN BiGRU-SimAM Two-stream convolution network
CNN convlutional neural network

Parameter symbols
The following Parameter symbols are used in this manuscript:

I optial stream Equation (1)
t sign of a frame
k sign of a frame
d sign of differential
u abscissa of a frame
v Ordinate of a frame
k Ordinate of a frame
w input word of BiGRU
m length of a word
c characters of a sequence
e projection vectors
h state sequence
syn syntactic structure
en energy of each neuron Equation (3)
we linear conversion of weight
b linear conversion of offset
r target neuron in a signal input channel
q other neurons in a signal input channel
i serial number
M the number of other neurons
y variable
λ coefficient Equation (4)
µ average value Equation (6)
σ indicate variance Equation (7)
E energy matrix Equation (9)
E′ weight matrix of attention
S original feature map Equation (10)
S′ fused feature map
rt reset gate at time t Equation (11)
zt update gate at time t Equation (12)
h̃t state of candidate activation at time t Equation (13)
W weight matrix of GRU
xt input of GRU
−−→
ht−1 forward hidden layer state Equation (15)
←−−
ht−1 reverse hidden layer state Equation (16)
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