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Abstract: Impaired blood flow caused by coronary artery occlusion due to thrombus can cause
damage to the heart muscle which is often called Myocardial Infarction (MI). To avoid the complexity
of MI diseases such as heart failure or arrhythmias that can cause death, it is necessary to diagnose
and detect them early. An electrocardiogram (ECG) signal is a diagnostic medium that can be used
to detect acute MI. Diagnostics with the help of data science is very useful in detecting MI in ECG
signals. The purpose of study is to propose an automatic classification framework for Myocardial
Infarction (MI) with 15 lead ECG signals consisting of 12 standard leads and 3 Frank leads. This
research contributes to the improvement of classification performance for 10 MI classes and normal
classes. The PTB dataset trained with the proposed 1D-CNN architecture was able to produce average
accuracy, sensitivity, specificity, precision and F1-score of 99.98%, 99.91%, 99.99%, 99.91, and 99.91%.
From the evaluation results, it can be concluded that the proposed 1D-CNN architecture is able to
provide excellent performance in detecting MI attacks.

Keywords: myocardial infarction; CNN; ECG; 15 leads

1. Introduction

The epidemic of cardiovascular disease (CVD) has shifted from high-income countries
to parts of the developing world. More than three-quarters of deaths from cardiovascular
disease occur in low-income countries [1]. In the case of cardiovascular disease, correct
diagnosis at an early stage is very important. Therefore, a fast and effective diagnostic
technique must be given precisely and accurately. One of the pathological measures to
diagnose cardiovascular disease is an electrocardiogram (ECG). ECG is the process of
recording the electrical activity of the heart over a period of time. The ECG signal consists
of P, QRS, T, and U components, known as features [2].

Many studies have been conducted related to ECG signal. The most popular one is to
classify cardiovascular disease from ECG using artificial intelligence. One of approach is the
utilization of machine learning algorithm. Most machine learning approaches involve three
phases such as preprocessing, feature extraction, and feature normalization [3]. However,
such approach needs a prior knowledge to determine the feature. In addition the extracted
feature sometimes not suitable for different classification task in ECG.

In recent years deep learning, part of machine learning, has gained popularity due to
its high performance and effectiveness. Deep learning techniques outperform conventional
machine learning techniques by extracting the necessary features from the raw data [4].
It has less processing and high accuracy compared to traditional methods. One of deep
learning method that can process an ECG signal is Convolutional Neural Networks (CNN).
This method have been used to classify heart rate, including detection of Myocardial
Infarction (MI) disease [5]. MI refers to myocardial necrosis caused by acute and persistent
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ischemia and hypoxia in the coronary arteries [6]. MI is more common in the elderly, but
more and more young people are suffering from MI due to high pressure, fast-paced and
unhealthy lifestyles. The heart produces a change in potential with each beating cycle [7].
A fast, simple, non-invasive electrocardiogram is widely used in the diagnosis of MI.

In a study conducted by Nurmaini, et al. [8], the proposed 1D-CNN approach was
used to detect AF disease with 13 layers and 10-fold cross validation. To remove noise,
eight levels of DWT decomposition were used with Symlet5. In this study, researchers
used four data sets, such as MIT-BIH Atrial Fibrillation, Physionet Atrial Fibrillation, MIT-
BIH Malignant Ventricular Ectopy, and from hospitals in Indonesia. With 9 s of signal
segmentation and a combination of DWT and 1D-CNN to detect/classify AF, it allows
the model to automatically extract features from the ECG signal and helps improve final
classification performance.

Another study conducted by Bologlu [9], proposed a CNN architecture to classify
10 MI classes on 12 leads ECG signals without feature extraction. The dataset used is
the ECG Physiobank (PTB) dataset. The result of this research is that the highest classi-
fication performance is in lead v4 with an accuracy of 99.78%. However, this study only
utilize 12 leads from 15 leads. The remain three leads (vx, vy and vz) are the frank leads
which are needed to detect STEMI condition from ECG signal. Moreover, the proposed
architecture in [8] are quite complex with 6 layers of convolutional layers, resulting a high
computational cost.

Research conducted by Vogiatzis et al. [10] on the importance of 15 leads ECG signal
versus 12 leads ECG signal in improving the diagnostic accuracy of Acute Myocardial
Infarction (AMI). The purpose of this study was to examine the usefulness of the 15-lead
ECG signal in treating chest pain patients, especially if the 12 lead ECG signal could
not diagnose AMI. The results showed that the 12 lead ECG signal was diagnostic of
ST-elevation AMI (STEMI) in 158 patients (Group A, 84.5%) who immediately underwent
reperfusion therapy. On the other hand, posterior lead interpretation was applied to
28 patients (Group B, 15.1%) for the diagnosis of STEMI requiring reperfusion therapy. In
clinical practice, 15 leads ECG leads have better diagnoses in STEMI condition than the
12 leads ECG signal which was not conclusive (OR = 2.43, p = 0.04). It can be concluded
that the use of 15 lead ECG signals contributes to a faster and more accurate diagnosis of
STEMI, especially in the Emergency Unit.

The study of 15 ECG leads was also conducted by Brady [11]. The study aimed to
investigate the diagnostic and therapeutic impact of 15 ECG leads (15EKG) in the Emer-
gency Department (ED) for patients suffering from chest pain (CP). The study design
was a prospective use of 15 ECG with real-time physician survey and retrospective com-
parison with 12 ECG leads (12EKG). The result of this study is that of the 15 ECG cases,
81% have completed the doctor’s survey and showed that the results of the diagnosis and
management of ACIS were not changed by 15 ECGs. However, clinicians feel that the
15 ECG provides a more complete anatomical picture of ACIS especially the description
of myocardial injury without changing the ED diagnosis, ED-based therapy, or hospital
disposition in adult CP patients. The investigators suggest conducting further studies to
identify a subset of patients who might benefit from a 15EKG.

Another study was carried out by Syndrome [12], which was designed to evaluate
ST-segment deviation of the posterior lead ECG in ACS patients at Beheshti Hospital
in 2002. This study was conducted on 347 ACS patients admitted to the Emergency
Department. Diagnosed on 15 ECG leads (12 standard ECG leads with an additional three
leads (V7-V8-V9)) and performed statistical analysis, calculated percentage sensitivity, odds
ratios, 95% confidence interval. The results showed that 15 lead ECG provides increased
sensitivity in detecting ST-segment deviation in AMI and unstable angina.

This study performs 10 MI classes classification using 1D-CNN on 15 leads ECG leads.
Moreover, in order to get better performance a framework based on 1D-CNN architecture
was develop. In order to reduce the computational complexity and cost, the proposed CNN
architecture was constructed using two convolutional layers. Moreover, 700 nodes of ECG



Appl. Sci. 2022, 12, 5603 3 of 13

signal are used to provide a better feature representative. Based on the description above,
this research and the proposed method provide new contributions as follows:

• Propose an automatic classification framework for Myocardial Infarction (MI) with
15 leads ECG signal.

• Developing a simple 1D-CNN architecture for classifying 10 MI classes and Nor-
mal classes.

In measuring and evaluating the proposed method, we will analyze the performance
of the model based on the values of accuracy, sensitivity, specificity, precision, and F1 score.
With a detailed approach and to describe the proposed methods and contributions, this
paper is structured as follows: In Section 2, we present the proposed materials and methods
for ECG imaging in identifying MI. In Section 3, we present the results of applying the
method. In Section 4. we present a discussion. Finally, Section 5 draws conclusions from
the process and the results obtained.

2. Materials and Methods
2.1. Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is generally divided into three layers, namely
convolutional layer, pooling layer, and fully connected layer. The convolutional layer
represents the features of the input, and the pooling layer reduces the resolution of the
feature map [13]. The classification function is performed to generate the final vector
class in the fully connected layer [14]. All activation neurons from the previous layer
are connected to neurons in the fully connected layer. The activation function is used to
determine the classification results.

This study proposes a 1D-CNN based approach to classify 10 MI classes and normal
classes. The proposed 1D-CNN architecture will be individually trained and tested for
15 ECG signal leads. This 1D-CNN model was used because CNN was able to provide high
ECG signal recognition in all leads [9].

2.2. Dataset

In this study, the dataset used was the ECG Physiobank (PTB) [15]. The MI dataset
consisted of ECG recordings of 52 normal subjects and 148 MI patients. The records used
are 15 multi-lead ECG signals with 12 standard leads (i, ii, iii, avr, avl, avf, v1, v2, v3, v4, v5,
v6) and 3 leads Frank (vx, vy, vz) with a total of 672,907 beats with details of 548,748 beat
records MI data with 11 adjacent ECG class groupings: anterior (A), anterolateral (AL),
anteroseptal (AS), inferior (I), inferolateral (IL), inferior posterior (IP), infero-posterolateral
(IPL), lateral (L), posterior (P) and posterolateral (PL) and 126,019 Normal/Healthy records.

2.3. Experimental Results

The proposed research framework is divided into five processes: (1) signal normaliza-
tion based on normalization limits; (2) Discrete Wavelet Transform (DWT) to remove noise
in the ECG signal and search for R-peak; (3) ECG signal segmentation; (4) classification
with 1D-CNN architecture; (5) evaluate the model with five performance metrics (accuracy,
sensitivity, specificity, precision and F1 score). In detail, the proposed research methodology
is shown in Figure 1 below.

2.4. Pre-Processing

At the initial stage, normalization was carried out on the ECG Physiobank (PTB)
open-access dataset. ECG signals are commonly used in MI classification [16]. The ECG
signal can be damaged due to interference from various types of artifacts and electrical
currents [17]. After normalization, the raw ECG signal can be enhanced by removing
various types of noise and artifacts. In our research, we reconstruct the ECG signal from
the noise signal by using Discrete Wavelet Transform (DWT). The baseline of the signal is
corrected, and the ECG signal is close to zero. From several experiments conducted, Sym5
was chosen as the mother wavelet because it offers better ECG signal denoise [8].



Appl. Sci. 2022, 12, 5603 4 of 13
Appl. Sci. 2022, 12, 5603 4 of 13 
 

 
Figure 1. The proposed research methodology. 

2.4. Pre-Processing 
At the initial stage, normalization was carried out on the ECG Physiobank (PTB) 

open-access dataset. ECG signals are commonly used in MI classification [16]. The ECG 
signal can be damaged due to interference from various types of artifacts and electrical 
currents [17]. After normalization, the raw ECG signal can be enhanced by removing var-
ious types of noise and artifacts. In our research, we reconstruct the ECG signal from the 
noise signal by using Discrete Wavelet Transform (DWT). The baseline of the signal is 
corrected, and the ECG signal is close to zero. From several experiments conducted, Sym5 
was chosen as the mother wavelet because it offers better ECG signal denoise [8].  

After the denoising process, the preprocessed signal was then segmented to detect 
the R-peak (the highest positive point of the QRS complex in each ECG cycle). To ensure 
adequate coverage of the QRS complex and the ST segment that follows both and as input 
for the input of the 1D-CNN model, the signal is changed with a duration of 0.7 s [18]. 
This also allows the proposed model to learn sequence features in detail. The block repre-
sentation of the ECG signal is divided into MI and normal (Figure 2). Details of each num-
ber of beats in each MI and Normal class in each lead are presented in Table 1 below: 

Table 1. The number of beats contained in the 15 lead ECG dataset used. 

Classes i ii iii avr avl avf v1 v2 v3 v4 v5 v6 vx vy vz Total 
A 4628 4326 4215 4946 4310 3508 5239 5419 5259 5210 5243 5089 5378 4904 5357 73.031 

AL 4513 3605 3430 4143 3335 3125 5338 5582 5592 5297 4773 4848 4980 3643 5228 67.432 
AS 8769 7388 7155 8352 8026 6667 9623 9675 9540 8392 8481 8502 9407 7261 9145 126.383 
H 8257 8389 7171 8643 6805 7793 8912 8984 8924 8709 8932 8969 8986 7998 8875 126.347 
I 10,176 7972 7018 9504 8832 6190 10,257 10,545 10,658 10,689 10,579 10,069 10,693 7615 10,016 140.813 

IL 6713 4337 4931 5829 6549 3745 6454 6746 6684 6511 6464 5911 6841 4389 6585 88.689 
IP 34 34 34 34 34 34 42 42 42 42 42 42 41 35 42 574 

IPL 2099 1416 1922 2008 2187 1178 2091 2117 2190 2289 2283 2128 2291 1171 1862 29.232 
L 381 383 396 385 245 382 389 389 392 391 392 392 392 392 392 5.693 
P 388 396 267 396 237 389 390 270 388 392 393 390 393 388 381 5.458 

PL 632 628 660 558 660 663 639 564 655 643 556 558 527 658 654 9.255 
Total 46,590 38,874 37,199 44,798 41,220 33,674 49,374 50,333 50,324 48,565 48,138 46,898 49,929 38,454 48,537 672.907 

Figure 1. The proposed research methodology.

After the denoising process, the preprocessed signal was then segmented to detect
the R-peak (the highest positive point of the QRS complex in each ECG cycle). To ensure
adequate coverage of the QRS complex and the ST segment that follows both and as input
for the input of the 1D-CNN model, the signal is changed with a duration of 0.7 s [18].
This also allows the proposed model to learn sequence features in detail. The block
representation of the ECG signal is divided into MI and normal (Figure 2). Details of each
number of beats in each MI and Normal class in each lead are presented in Table 1 below:

Table 1. The number of beats contained in the 15 lead ECG dataset used.

Classes i ii iii avr avl avf v1 v2 v3 v4 v5 v6 vx vy vz Total

A 4628 4326 4215 4946 4310 3508 5239 5419 5259 5210 5243 5089 5378 4904 5357 73.031
AL 4513 3605 3430 4143 3335 3125 5338 5582 5592 5297 4773 4848 4980 3643 5228 67.432
AS 8769 7388 7155 8352 8026 6667 9623 9675 9540 8392 8481 8502 9407 7261 9145 126.383
H 8257 8389 7171 8643 6805 7793 8912 8984 8924 8709 8932 8969 8986 7998 8875 126.347
I 10,176 7972 7018 9504 8832 6190 10,257 10,545 10,658 10,689 10,579 10,069 10,693 7615 10,016 140.813

IL 6713 4337 4931 5829 6549 3745 6454 6746 6684 6511 6464 5911 6841 4389 6585 88.689
IP 34 34 34 34 34 34 42 42 42 42 42 42 41 35 42 574

IPL 2099 1416 1922 2008 2187 1178 2091 2117 2190 2289 2283 2128 2291 1171 1862 29.232
L 381 383 396 385 245 382 389 389 392 391 392 392 392 392 392 5.693
P 388 396 267 396 237 389 390 270 388 392 393 390 393 388 381 5.458

PL 632 628 660 558 660 663 639 564 655 643 556 558 527 658 654 9.255

Total 46,590 38,874 37,199 44,798 41,220 33,674 49,374 50,333 50,324 48,565 48,138 46,898 49,929 38,454 48,537 672.907
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Figure 2. 15 lead ECG signal for MI and Normal/Healthy class.

The number of beats for the normal class was 18.78% (126,347 beats) out of a total
of 672,907 beats. Among MI classes, the highest and lowest number of beats were in the
inferior (140.813 beats, 20.93%) and inferior posterior (547 beats, 0.09%). For all leads, the
highest and lowest total beats are in lead v2 and lead avf which are 50,333 and 33,674,
respectively. Figure 2 shows a segment of the 15 lead ECG signals from the Normal and MI
classes. Each ECG signal from each lead exhibits different characteristics as it represents
vector information from position sensors placed in different geographic locations of the
chest. An example of reading the lead v2 signal waveform for various MI classes and
healthy classes is depicted in Figure 3.
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3. Results

Experimental studies for all MI and normal classes in 15 leads were carried out
separately using the same 1D-CNN architecture, without changing the model parameters
with the modified data set and the implemented application. In model evaluation, all ECG
signals from all leads were partitioned 70% for training, 15% for validation and 15% for
testing. Keras library is used with Adam optimizer algorithm and cross loss entropy
function. The 1D-CNN model was individually trained for all ECG signals across all MI
classes in 15 leads over a 50 epoch period. Table 2 shows a detailed specification of each
parameter of the 1D-CNN architecture layer.

Table 2. CNN Model layer details.

Layer Layer Parameter Output Shape

Conv 1D 128 × 11, Strides = 1, Input shape = (700, 1), Activation = ReLU 639 × 128
MaxPooling1D Pool size = 2 345 × 128
Dropout Rate = 0.2 345 × 128
Conv 1D 128 × 13, Strides = 1, Input shape = (700, 1), Activation = ReLU 333 × 128
Flatten - 42,624
Dense 128, Activation = ReLU 128
Dropout Rate = 0.2 128
Softmax 11, Activation = Softmax 11

The model successfully completed the learning process for all ECG signals in a short
time (50 epochs). During the training phase, no overfitting problems occurred in the 1D-
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CNN model. After the training phase, the proposed 1D-CNN model was applied to the
test data.

The 1D-CNN architectural model is built to provide optimized ECG signal recognition
performance of all ECG leads. The proposed architecture only has 2 convolution layers. This
due to we want to avoid the vanishing gradient problem. Besides in every convolutional
layer we generate 128 unique features from ECG signal. Moreover, we use single stride to
generate more unique and detailed feature. Moreover, we also use dropout layer in fully
connected layer to avoid overfitting. The block representation of proposed 1D-CNN model
is summarized in Figure 4.
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ECG signals 10 MI and Normal class with 700 samples are input into this model layer.
They pass through hierarchically arranged convolution layers and turn into feature maps
of different sizes. In this model, the dropout technique is used to avoid overfitting while
the model is in training. The model will check all training data at each epoch and the
model will record training data if the selected epoch number is too large. Table 3 show
the performance of the trained 1D-CNN model at the end of the 50th epoch on test data in
15 ECG leads. The proposed 1D-CNN model recognizes test data for all vector groupings
in all MI and Normal classes with a testing accuracy of more than 99.5% for each ECG lead.

From Table 3, it can be seen that the highest classification performance results for the
10 MI classes and normal classes is in lead v2 with a testing accuracy value of 99.87% while
the lowest accuracy level is in lead aVR with an accuracy of 99.58%. Moreover, the test set
performance was slightly better than train set performance was due to the number of test
set is lower than train set. This resulting training data more vary than testing data, makes
the model covers the distribution on test data. Hence, the testing data has a slightly better
performance compared to training data. In addition the detailed Graph of Training and
Validation (Accuracy and Loss) for v2 leads was displayed on Figure 5.
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Table 3. The accuracy of the trained CNN model on the test data.

Lead Training Accuracy Validation Accuracy Testing Accuracy

i 99.35% 99.66% 99.76%
Ii 98.11% 99.79% 99.61%
iii 99.80% 99.77% 99.83%

avr 99.49% 99.72% 99.58%
avl 99.19% 99.73% 99.76%
avf 99.70% 99.62% 99.63%
v1 99.81% 99.71% 99.73%
v2 99.69% 99.85% 99.87%
v3 99.62% 99.88% 99.84%
v4 99.75% 99.85% 99.81%
v5 97.57% 99.81% 99.74%
v6 99.65% 99.82% 99.72%
vx 99.79% 99.85% 99.81%
vy 99.66% 99.58% 99.77%
vz 98.11% 99.79% 99.61%

Average 99.61% 99.76% 99.74%
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MI and Normal classes in lead v2.

A confusion matrix is a detailed tabulation that describes the classification results
in a model. From the results of the confusion matrix in lead v2 (Figure 6), it shows that
the model built has a very good accuracy value in almost all MI classes. The CNN model
used recognizes well (100%) in classes A, AL, IP, L, P, and PL, while the normal class has a
value of 99.94% with only one data having an error in labeling. In general, the proposed
CNN model is tested using test data with several test values such as accuracy, sensitivity,
specificity, precision, and F1-score. The performance results obtained were above 99.9% for
accuracy and specificity and ranged from 99.5% to above 99.9% for sensitivity, precision,
and F1 score (Figure 7). The model with the highest accuracy was chosen as the best model
for this study from all the models analyzed.
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Table 4 shows the performance result values for accuracy, sensitivity, specificity, preci-
sion, and F1-score in 15 ECG leads and Table 5 shows the performance matrix values for
10 MI and normal classes.
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Table 4. Performance result (%) 15 lead ECG.

Lead ACC (%) SEN (%) SPE (%) PRE (%) F1-Score (%)

i 99.96 99.82 99.98 99.82 99.98
ii 99.94 99.62 99.96 99.62 99.96
iii 99.97 99.89 99.98 99.89 99.98
avr 99.92 99.67 99.95 99.67 99.95
avl 99.96 99.69 99.98 99.69 99.98
avf 99.94 99.75 99.96 99.75 99.96
v1 99.95 99.60 99.97 99.60 99.97
v2 99.98 99.91 99.99 99.91 99.99
v3 99.97 99.88 99.98 99.88 99.98
v4 99.97 99.86 99.98 99.86 99.98
v5 99.95 99.82 99.97 99.82 99.97
v6 99.95 99.82 99.97 99.82 99.97
vx 99.97 99.76 99.88 99.76 99.88
vy 99.96 99.80 99.98 99.80 99.98
vz 99.93 99.52 99.96 99.52 99.96

Table 5. Performance Metrics (%) 10 MI and Normal classes.

Performance Class

Matrics A AL AS H I IL IP IPL L P PL

Accuracy 99.74 99.49 99.74 99.87 99.79 99.67 100.00 99.79 99.89 99.90 99.76

Sensitivity 99.69 99.38 99.83 99.90 99.83 99.63 100.00 99.80 99.87 99.80 99.64

Specificity 99.97 99.96 99.92 99.96 99.94 99.96 100.00 99.99 100.00 100.00 99.93

Precison 99.79 99.66 99.65 99.84 99.76 99.71 100.00 99.79 99.72 100.00 99.89

F1-Score 99.74 99.49 99.74 99.87 99.79 99.67 100.00 99.79 99.89 99.90 99.76

The performance results (%) for each of the 15 ECG leads are presented in Table 4.
The best average accuracy value for all MI and Normal classes is in lead v2 with a value
of 99.98%. Likewise, the best values for sensitivity, specificity, precision, and F1-score are
in lead v2 with values of 99.91%, 99.99%, 99.91% and 99.91%. More details on the values
of accuracy, sensitivity, specificity, precision, and F1-score for each MI class and normal in
each lead.

In Table 5, the MI class accuracy value which has the lowest value is AS class (99.80%)
and the best MI class accuracy value that reaches 100% is A, H, IP, IPL, L, P, and PL classes.
Similarly, the sensitivity value was obtained from the test data for all MI and normal classes.
The lowest sensitivity value is PL class (98.28%) and the highest sensitivity value is in
almost all MI classes (100%) except AL (99.80%) and IL (99.85%) on all ECG signals in all
leads. The CNN model can recognize MI class with a high sensitivity value of 99.80% for all
leads. In other words, the proposed model is good for heterogeneity in all ECG segments.
For the specificity value, the lowest value is below 99.85% in the PL class (98.92%), while
the highest value of 100% specificity is in almost all MI classes and normal except for class
I (99.99%). For precision, the highest value is in almost all MI and normal classes, while the
lowest precision value is in the PL class (99.15%). For F1-Score, the highest score of 100% is
in class A, H, IP, IPL, L, P, and PL, while the lowest score is in class AL (98.97%).

Based on the accuracy, sensitivity, specificity, precision, and F1-score, the diagnostic
test is found to be able to identify patients with MI disease with great relevance. The
highest values of accuracy, sensitivity, specificity, precision, and F1-score for 10 MI classes
and normal in 15 leads are at the maximum values of 99.98%, 99.91%, 99.99%, 99.91, and
99.91%. Meanwhile, the lowest values of accuracy, sensitivity, specificity, precision, and
F1-score are 99.92%, 99.52%, 99.88%, 99.45%, and 99.64%. The evaluation results above
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shows that the proposed CNN model is able to classify MI disease very well for 10 classes
of MI and normal in 15 ECG leads.

4. Discussion

Many literatures describe approaches to MI signal classification. The difference in the
number of MI classes used as well as the number of leads used must be taken into account
when comparing the performance of each. Table 6 presents some of the published research
results for the current approach.

Table 6. Comparison of methods for detecting MI.

No. Study Year Lead/Class Classifier Acc. Rate

1. Acharya et al. [19] 2016 12 lead, Normal and MI KNN 98.74%
2. Kumar et al. [16] 2018 12 lead, Normal and MI LS-SVM 99.31%
3. Dohare at al [20] 2018 12 lead, Normal and MI SVM 98.33%
4. Baloglu et al. [9] 2019 12 lead, Normal and 10 MI End to end, CNN 99.78%
5. Han et al. [21] 2019 12 lead, Normal and 6 MI class ML–ResNet 99.72%
6. Dey et al. [22] 2021 12 lead, Normal, MI dan Non MI CNN and biLSTM 99.246%
7. Yadav et al. [4] 2021 12 lead, Normal and MI CNN 99.82%
8. Li et al. [23] 2022 MI dan Healty SLC-GAN 99.06%
9. Proposed 2022 15 lead, Normal and 10 MI class 1D-CNN 99.98%

Research Acharya et al. [19], detected MI and Normal for 12 lead ECG signals with
KNN classification and achieved 98.74% performance on lead v3. Kumar et al. [16], clas-
sified MI and Normal classes for 12 ECG lead signals with the LS-SVM classification.
The results obtained are 99.31% accuracy in lead ii. Dohare et al. [20], achieved an ac-
curacy of 98.33% using the SVM classification to distinguish MI from healthy classes.
Bologlu et al. [9], used CNN model 10 layer to classify 10 MI and Normal classes on
the 12 lead ECG signals. The model output obtained reaches a performance of 99.78%.
Han et al. [21], used ML–ResNet for the diagnosis of 6 classes of MI and normal with an
accuracy of 99.72% and an F1-score of 99.67%. Dey et al. [22] classified 12 ECG signal
leads for MI and Non MI classes using CNN and bi LSTM models and the performance
evaluation results obtained were 99.246%. While Yadav et al. [4] classified MI and Normal
classes for 12 lead ECG signals with the CNN model which achieved an accuracy of 99.82%.
Research Li [23], proposed an automatic MI detection model SLC-GAN which synthesizes
single ECG data with high morphological similarity through Generative Aversive Network
(GAN). MI detection is automated using the Convolutional Neural Network (CNN) with
the original ECG data and the synthetic ECG from the GAN. Empirical results show that the
SLC-GAN method performs very well compared to other MI classification methodologies
on single lead ECG from PTB Diagnostic ECG Database. The MI SLC-GAN classification
accuracy reaches 99.06% with 5-fold cross validation. For our proposed model, we use a
15 lead ECG signal with 1D-CNN architecture for 10 MI and Normal classes.

In Table 6, it can be seen that the MI classification problem can be proposed as a binary
classification problem, namely distinguishing ECG signals for Normal and MI classes.
The difference between this study and previous studies (1,2,3,5,6,7) lies not only in the
number of MI classes used, but also in the number of ECG signal leads. All previous studies
generally used 12 standard leads, while this study used 15 ECG signals (12 standard leads
and 3 frank leads). It can be seen that the performance results for 3 lead franks (vx, vy, vz)
reached an average accuracy of 99.97%, 99.96% and 99.93% and an average sensitivity of
99.76%, 99.80% and 99.52% (Table 4). From the performance results, it can be seen that
the three leads (vx, vy, vz) were able to give the best contribution to the classification
performance for 10 MI and Normal classes.

Research conducted by Baloglu et al. [8], using the same number of MI and Normal
classes as this study. The difference lies in the segmentation for the length of the ECG
signal (Baloglu [8] 651 pulse samples, while for this study using a longer signal of 700 pulse
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samples/signal modified with a duration of 0.7 s) which causes a difference in the number
of beats produced. Another difference lies in the number of layers of the CNN architecture
and the size of the kernel used. Baloglu [8] used 10 CNN layers while this study used
8 CNN layers. A smaller number of layers will reduce the computational load on the CNN
architecture used so that the computing process can be faster. The difference in kernel size
results in the difference in the size of the detected features. The result of this research is that
the performance value obtained is better than previous studies. The advantage of this study
is that the proposed 1D-CNN method on 15 leads of ECG signals successfully distinguishes
10 types of MI and normal signals with a classification performance of more than 99.9%.

5. Conclusions

This study proposes a 1D-CNN model to classify MI disease on 15 ECG signal leads.
With the proposed 1D-CNN model, it is ensured that the ECG signal is classified without
going through feature extraction. ECG signals for 10 MI and normal classes were obtained
from the Physiobank ECG dataset (PTB). From the results of experiments carried out with
the proposed 1D-CNN model, the performance result accuracy, sensitivity, specificity,
precision, and F1-score are more than 99.5% in all types of MI and normal in 15 ECG leads.
Based on these results, it can be concluded that the 1D-CNN model is the best predictor
and can be applied to classify MI disease. This study is expected to provide an effective
framework for the classification of MI on ECG signals. Specifically, this CNN model is
able to detect 10 different MI class types with an average accuracy of 99.98% in lead v2. In
the next study, the performance evaluation of the proposed model will be carried out by
testing the 1D-CNN model to classify heart disease by adding several classes from different
datasets with different segmentation to get a single best architecture for MI.
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