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Featured Application: Applications of polygon mirror-based scanning heads include laser
scanning, 2D and 3D printing, laser manufacturing, imaging, optical metrology, and Remote
Sensing.

Abstract: Polygon Mirror (PM)-based scanning heads are one of the fastest and most versatile op-
tomechanical laser scanners. The aim of this work is to develop a multi-parameter opto-mechanical
analysis of PMs, from which to extract rules-of-thumbs for the design of such systems. The character-
istic functions and parameters of PMs scanning heads are deduced and studied, considering their
constructive and functional parameters. Optical aspects related to the kinematics of emergent laser
beams (and of corresponding laser spots on a scanned plane or objective lens) are investigated. The
PM analysis (which implies a larger number of parameters) is confronted with the corresponding,
but less complex aspects of Galvanometer Scanners (GSs). The issue of the non-linearity of the
scanning functions of both PMs and GSs (and, consequently, of their variable scanning velocities) is
approached, as well as characteristic angles, the angular and linear Field-of-View (FOV), and the duty
cycle. A device with two supplemental mirrors is proposed and designed to increase the distance
between the GS or PM and the scanned plane or lens to linearize the scanning function (and thus
to achieve an approximately constant scanning velocity). These optical aspects are completed with
Finite Element Analyses (FEA) of fast rotational PMs, to assess their structural integrity issues. The
study is concluded with an optomechanical design scheme of PM-based scanning heads, which unites
optical and mechanical aspects—to allow for a more comprehensive approach of possible issues of
such scanners. Such a scheme can be applied to other types of optomechanical scanners, with mirrors
or refractive elements, as well.

Keywords: laser scanners; Polygon Mirrors (PMs); Galvanometer Scanners (GSs); scanning function;
scanning velocity; Field-of-View (FOV); multi-parameter analysis; Finite Element Analysis (FEA);
optomechanical design

1. Introduction

Laser scanners can be roughly divided in systems with or without moving parts [1–3].
The first category includes the most common Galvanometer Scanners (GSs) [3–13], Polygon
Mirrors (PMs), in various configurations (i.e., prismatic or pyramidal, normal or inverted,
regular or irregular) [14–35], holographic scanners [2], as well as devices with refractive
elements (i.e., lenses [36] or prisms [37–42]). The second category includes electro- or acousto-
optical scanners, which have the clear advantage of no mechanical inertia, therefore a much
higher positioning velocity than the first category [2]. However, they have the drawback of

Appl. Sci. 2022, 12, 5592. https://doi.org/10.3390/app12115592 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12115592
https://doi.org/10.3390/app12115592
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5558-4777
https://doi.org/10.3390/app12115592
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12115592?type=check_update&version=3


Appl. Sci. 2022, 12, 5592 2 of 32

a lower scanning resolution [1,2], and this makes them less attractive, especially for high-
end applications such as biomedical imaging—including Optical Coherence Tomography
(OCT) [43–49] and Confocal Microscopy (CM) [50].

Each system in the first category (i.e., of optomechanical scanners) has different
advantages and drawbacks that makes it more suitable for a certain application. Broadly, in
the competition between scanners with reflective and refractive elements, the former usually
win, because of a higher versatility in terms of spectral range, as well as fewer aberration
and dispersion issues. An exception could be made by Risley prisms scanners, because of
their high positioning precision and velocity for two-dimensional (2D) scanning [37–42],
but in general, mirror-based systems (i.e., GSs and PMs) are the most common for the
largest range of applications because of the above advantages [1–4].

Within this latter narrower category, in the 1990s, the GSs seemed to take over the
field almost completely because of their overall good characteristics, which include high
positioning precision at a large Field-of-View (FOV) and good resolutions at satisfactory
scanning velocities, all achieved in compact, light-weight constructions, and at a reasonable
cost per scan axis. However, PMs seemed to make quite a comeback starting in the early
2000s because of their particular advantage: High scanning velocity. With the necessity to
develop broadband laser sources scanned in frequency for Swept Source (SS) OCT [44],
PMs caught the attention of both research [19–26] and technological development [51].
Various SS configurations have been developed, with on-axis [19] and off-axis PMs [20],
as well as telescope [19–22] and telescope-less, the latter in Littrow [23], Littman [24], and
Littrow–Littman [25] setups. One of the most critical features of PM scanners for today’s
applications, i.e., the maximum limit of their rotational velocity (ω), has been approached
by the industry. Thus, high-end PM scanners have rotational motors that commonly reach
54 krpm and even 70 krpm, while developments to reach 120 krpm exist. This results in
scan frequencies (f s) equal to this rotational frequency multiplied by the number of PM
facets. This pushes forward the design of motors and (especially aerodynamic) bearings, as
well as fast and robust sensors and control structures. It also imposes performing a Finite
Element Analysis (FEA) for each particular design, to assess the structural integrity and
level of deformations, as highlighted in the literature [1]. Another direction of research
in the scanners field, especially in the last decade, is related to handheld scanning probes
(for example, for OCT [52–57]), and scanning heads in general (for applications such as 3D
printing or laser manufacturing [58–60]). While the former usually implies GSs or Micro-
Electro-Mechanical Systems (MEMS), the latter also utilizes PM plus GS 2D systems to
increase scanning velocity, and therefore productivity in industrial processes, for example.

Starting from the necessity to clarify their fundamental characteristics, the basis of
a theory regarding the optical functions and parameters of PM scanning heads has been
approached in a preliminary study [32], based on a series of previous works [28–31]. The
focus has been to develop a theory that is both simple to use and rigorous, in the context
of valuable but rather complex existing approaches [1,14–17]. PM-based SSs optimization
is one of its field of interest [26], but the preliminary theory developed in [32] has raised
interest for other applications as well, such as additive manufacturing/3D printing. In [35],
for example, the functions developed in [32] were applied by using the suggestion made
regarding the capability of the theory to pass from single rays to finite diameter laser beams,
as we aim to complete in the present study. Moreover, in [61,62] steps have been taken
to develop monogon-type PMs with a curved facet to avoid using an objective lens, by
linearizing PM scanning functions starting from the study and equations in [32].

Another motivation of the present study is the necessity to better unite optical analysis
and design with other essential PM issues, such as mechanical ones, as pointed out in the
literature [1]. Such mechanical (but also electrical and control) aspects of PM scanners are
usually left to manufactures, to come with as-good-as-possible solutions between various
(and commonly contradictory) aspects of scanner analysis and design.

Therefore, the aim of the present work is to study optical aspects of PMs, which
are essentially related to the kinematics of the laser beam, but also to relate them to
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mechanical issues. The latter is performed through a multi-parameter FEA that must
consider constructive elements of the system. A limitation of the present work in this
respect is the fact that only examples of these parameters are considered, as the scope is not
to complete an exhaustive FEA (for all possible configurations, materials, and dimensions
of PMs), but to develop connections of optical and mechanical aspects in order to complete
both an analysis and design methodology of such scanners. Another limitation is not
approaching control and automation aspects of the PMs, with their fast motors, because
this is an entirely different topic, as in the case of GSs [11–13].

Finally, one must point out that, similar to scanners with oscillatory elements, the
work completed on macro-devices can be applied, at least in part, to MEMS, as shown
in the case of GSs [10]. Therefore, the development of an as comprehensive and rigorous
as possible analysis and design of macro-PMs can be of interest in the context of the
tendency to miniaturize optical and laser systems, for example, in endoscopes (to enter
body lumens) [63–65], but also in other areas where a decrease in mass and dimensions is a
critical aspect, as in Remote Sensing or Security and Defense.

The remainder of this paper includes, in Section 2, the presentation of the two consid-
ered scanning systems, with their principles and constructive parameters. Their functions
and parameters are obtained, in a parallel between PMs and GSs. In Section 3, the multi-
parameter analysis of the two scanners is performed, for their deduced functions. In
Section 4, a solution to linearize the scanning function (and thus to obtain approximately
constant scanning velocities) is developed. Section 5 presents the performed FEA of PMs,
while Section 6 unites these two aspects, optical and mechanical, in a single design scheme.
Section 7 provides conclusions, as well as directions of future work.

2. Characteristic Functions and Parameters of PMs versus GSs
2.1. GSs and PM Scanning Heads

The schematics of 1D GSs and of PM-based scanning heads are presented in
Figures 1 and 2, respectively.

GSs have a mirror mounted on the mobile element (i.e., on the shaft of its electric
motor) that performs oscillatory movements with a certain angular amplitude θm (of up to
30◦ for modern devices [1–4,58–60])—Figure 1a.

In contrast, PMs perform a continuous rotational movement—Figure 2a. This gives
the PMs the advantages of a much higher scanning velocity and of a one-direction scan,
which is important, for example, for SSs [19–26] and for lateral scanning in imaging, for
example, with CM or OCT [43–50].

The GS oscillatory mirror must stop and turn, which is where mechanical inertia
comes into play, therefore its deceleration and acceleration periods cannot provide a
constant scanning velocity v—Figure 1b. This proves to be a major drawback. Thus, for
the most common triangular and sawtooth input signals of the device, non-linearities
occur in the corresponding time intervals (∆t in the example in Figure 1c for triangular
signals). This phenomenon was demonstrated and studied in detail in [7], with examples
of galvoscanning in OCT. For such imaging methods, it means that the corresponding
distorted portions (i.e., with non-equally spaced pixels) must be discarded, as performed
in [8] based on the study in [7]. This reduces the useful angular scan amplitude from θm to
θa, and the useful linear scanning field (i.e., the one scanned with constant velocity), from
2H to 2xa—Figure 1a. In consequence, the duty cycle (i.e., the time efficiency of the scanning
process) decreases as well—as modelled mathematically in [9] to perform collations of
individual GS-based OCT images. Thus, (larger) mosaic images can be obtained, to reach a
higher FOV than the one for individual scans.
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ters, incident, and reflected beams; (b) PM facet in three characteristic positions: for θ = θ1, π/4, and 
θ2, where θ1 and θ2 are the angles for which the margins of the objective lens are reached. 
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Figure 1. Galvanometer scanner (GS): (a) Principle scheme and main components; (b) beam deflection
and corresponding angles and functions; (c) a common triangular signal of a GS, with a comparison
between input and output (the latter given by the angular position of the GS mirror).
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Figure 2. Polygon mirror (PM) scanning head: (a) 3D view with characteristic torques (T), parameters,
incident, and reflected beams; (b) PM facet in three characteristic positions: for θ = θ1, π/4, and θ2,
where θ1 and θ2 are the angles for which the margins of the objective lens are reached.

For other common, sinusoidal inputs applied to the GS, the scan is performed with
variable velocity over the entire FOV, therefore the duty cycle is even lower than for trian-
gular or sawtooth scanning, as only a small portion of the characteristic can be considered
approximately linear. In fact, the entire scan (i.e., the image in the case of CM or OCT)
is distorted and must be post-processed, and this can produce artefacts. On the other
hand, sinusoidal inputs have the advantage of a smoother mechanical regime, therefore the
maximum scan frequency f s is higher than for sawtooth scanning, for example, as indicated
by manufacturers [58–60].
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Finally, there is a clear trade-off for GSs between f s and θm: As modelled from exper-
imental data [7,9,10], the maximum possible/limit scan amplitude (i.e., the one that still
corresponds to a controlled and not to a chaotic movement of the mobile element) drops
almost exponentially with f s, therefore one cannot utilize the higher f s of GSs for a larger
FOV [10]; the FOV is significantly reduced for f s close to the maximum value of 1 kHz that
is specific to a GS with an aperture of around 4 mm used in OCT or CM, for example [58].
For other applications where GSs of different apertures are utilized (higher, as in laser
manufacturing, for example [60]), the values of such limits and dependences are different,
but the phenomenon is similar [10].

In contrast, for PMs, the FOV is constant and irrespective of the rotational velocity, but
dependent on the dimensions of the PMs. The latter are determined in the literature using
a simple, common design algorithm that addresses the calculus of f s [1], as discussed in
Section 6.

In terms of geometrical parameters, GSs are characterized by the mirror aperture and
the distance L from the mirror pivot O (which is commonly the incidence point of the
incoming laser beam) to the scanned plane or lens. In the latter case, L is equal to the object
focal distance f of the lens, as shown in Figure 1a.

In contrast, PMs have three more main geometrical parameters: R, the apothem
of the polygon; e, the eccentricity of the fixed incident laser beam from the pivot O; n,
the number of PM facets, which gives the angle that corresponds to half of a PM facet,
α = π/n—Figure 2a. Other constructive parameters of PMs in Figure 2a, such as facet width
a and thickness b, are necessary only for the FEA (and not for the optical analysis), therefore
they are considered only in Sections 5 and 6.

As, in general, an objective lens is utilized for both setups (with GS or PM), both
scanners are also characterized by its diameter D (or aperture in the meridian plane Oyz).

In most of this study, to simplify the mathematical discussion, only the axis of the laser
beam is considered, therefore it is as if the beam is reduced to its center ray, a situation that
may roughly correspond to a well-collimated laser beam. We return to this simplifying
hypothesis in Section 3, where a finite diameter 2ρ of the beam is considered, as well. The
advantage of the theory to be developed is that, as observed from Figure 2b, a variation
of the eccentricity e can consider this beam radius ρ in the equations to be deduced, as
demonstrated further on in Section 3.5.

2.2. Characteristic Functions of GSs and PM Scanning Heads

From the point of view of the movement of the reflected/emergent laser beam (and of
the corresponding spot on a scanned plane or objective lens), both types of scanners are
characterized by several functions, as pointed out in Figures 1b and 2b:

(i) The scanning function h(θ) is defined by the (current) position of the laser spot on the
scanned plane/lens or of the laser beam emerging the lens with regard to its optical axis (O.A.).

To allow for a comparison of GS and PM scanning heads, the O.A. of both scanners
is considered perpendicular on the fixed incident laser beam, in a common setup utilized
in numerous applications [1]. Furthermore, to allow for a comparison of the functions
of the two systems, the θ = 0 position is considered for a horizontal position of the GS
mirror, as well as for a horizontal PM facet (i.e., for the PM apothem on the vertical axis
Oζ)—Figure 2b.

(ii) The scanning velocity v(t) = dh/dt represents the sweeping velocity of the laser beam
on the scanned plane or in the image space of the lens.

(iii) The scanning acceleration a(t) = dv/dt represents the acceleration of the laser beam
in the scan direction—perpendicular on the O.A.

For the GS, the condition of having the reflected beam permanently parallel to the
O.A. (i.e., with both v(t) and a(t) perpendicular to the beam emerging the lens) is fulfilled
by placing the pivot O in the object focal point of the lens. For the PM, this condition
can be fulfilled only approximately, as discussed in Section 2.3, but it also represents the
desired aspect.
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These three functions are obtained for a GS from Figure 1b and for a PM scanning
head from Figure 2b:

• For a GS, the start position of the GS mirror is at π/4 [rad] with regard to the horizontal
axis Oz. As the mirror rotates with θ, the reflected beam rotates with 2θ, therefore
the scanning function would be h(θ) = L·tan2θ. While this simple equation is usually
utilized for GSs [7,9,10], in the present study, to allow for a comparison to PMs, the
θ = 0 position is considered for a horizontal position of the GS mirror (when the
reflected beam would be superposed to the incident one), as previously pointed out.
In this case, the scanning function results in being h(θ) = −L/tan2θ, therefore the
scanning velocity and acceleration have Equations (2) and (3), respectively (Table 1).
The graphs of these three functions are presented in Figure 3a.

Table 1. Overview of characteristic functions and parameters of GSs versus PM scanning heads.

Characteristic Function/Parameter Galvanometer Scanner
(GS) Polygon Mirror (PM) Scanning Head

Scanning function
h(θ) h(θ) = −L

tan 2θ
(1)

h(θ) = y(θ)− L
tan 2θ =

R
√

2− e− R
cos θ + e · tan θ − L

tan 2θ

(4)

Scanning velocity
v(t) = dh

dθ ·
dθ
dt

v(t) = 2ωL
sin2 2θ

(2) v(t) = ω
cos2 θ

[
e− R· sin θ + L

2 sin2 θ

]
(5)

Scanning acceleration
a(t) = dv

dθ ·
dθ
dt

a(t) = −8ω2L· cos 2θ
sin3 2θ

(3)
a(t) =

ω2

cos3 θ

[
2e· sin θ − R

(
1 + sin2 θ

)
− L· cos 2θ

sin3 θ

] (6)

Migration functions -
Transversal

y(θ) = R
√

2− e− R
cos θ + e · tan θ

(7)

Longitudinal/axial
z(θ) = y(θ)· tan 2θ

(8)

Scan angles,
Figures 1a, 2a

and 3

Extreme

π/2 − θm and θm,
where

2θm − π/2 =
atan(L/H), with H ≤

D/2

(9) θmin,max = arcsin e·cos α
R ∓ α (12)

Effective

π/2 − θa and θa,
where

2θa − π/2 =
atan(L/xa), with xa ≤

H

(10) θ1 and θ2,
where h(θ1,2 ) = ∓H, with H < D/2 (13)

Field of View
(FOV)

Angular Dom θ = 2θm − π/2 (11) Dom θ = 2(θmax − θmin) = 4α (14)

Linear/
Scanning domain

Dom h = 2h(θm) =
−2L

tan2θm

(15)
Dom h = h(θmax)− h( θmin) =

sin 2α
(1−x2)·cos2 α

[
2e + L cos 2α

2(x2cos2 α−sin2 α)

]
,

where x = e/R
(16)

Duty cycle,
Figures 1a,c

and 2a

Theoretical (of the
input) ηt =

ta
T = 1− ∆t

T (17)
η = θ2−θ1

θmax−θmin
= n θ2−θ1

2π (19)
Effective (of the

output) η = t′a
T

(18)

• For a PM scanning head, a facet is represented in three positions in Figure 2b, consid-
ering θ = 0 for the facet in a horizontal position. Similar to GSs, the rotational angle
θ = π/4 defines the facet position in which the (fixed vertical) incident beam is reflected
on the (horizontal) Oz axis, which defines the O.A. of the lens. For θ1 and θ2 (with
θ1 < π/4 < θ2), the reflected beam reaches the inferior and superior margins of the lens
in the meridian plan Oyz, therefore h(θ1,2) = ∓H (where H < D/2), Figure 2. Points P1,
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M, and P2 are the intersections of the incident ray with the PM facet for these three
rotation angles considered (i.e., θ1, π/4, and θ2, respectively). For a current rotational
angle θ, from Appendix A, the scanning function is deduced, with Equation (4), there-
fore the scanning velocity and acceleration are obtained with Equations (5) and (6),
respectively (Table 1). An experimental validation of this PM scanning function was
completed in [32].

• The comparison of each corresponding pair of functions (i.e., for GSs and PMs)
is performed in Figure 3b, on a numerical example with L = 40 mm, R = 15 mm,
e = 6 mm, and ω = 10 krpm (the latter corresponding to an idle rotation of the PM).
The asymmetry of the PM functions graphs can be remarked, in comparison to the
symmetry of (dotted graphs of) GS functions—to be discussed in Section 3.
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2.3. Migration Functions

One can observe, from the expressions of the scanning function, velocity, and accel-
eration of PMs versus GS in Table 1, the supplemental terms in each PM function. They
complicate the discussion, but also offer more degrees-of-freedom in the design process
of a PM scanning head, which is an advantage. Thus, in [28,29,32], a novel concept has
been introduced, of migration functions, transversal y(θ) = (hPM − hGS)(θ) and longitudi-
nal/axial z(θ). They have, from Figure 2b, Equations (7) and (8), respectively (Table 1).
The former represents the coordinate of the incidence point P (of the beam on a PM facet),
while the latter represents the coordinate of the axial point A from which it is as if the beam
incident on the lens starts. Their graphs are obtained in Figure 4.
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2.4. Scan Angles and Angular FOV

The two (different) pairs of characteristic scan angles of each system are marked on
the graphs in Figure 3:

• For a GS, shown in Figure 1a, the total rotational angles interval is [π/2 − θm, θm]
(Equation (9), Table 1) and the useful rotational angles interval is [π/2 − θa, θa]
(Equation (10), Table 1), with the latter corresponding to the portion scanned with
constant velocity [9,10]. Therefore, the angular FOV could be considered with either
its useful value, 2θa − π/2, or with its total one, 2θm − π/2, Equation (11), Table 1.

• For a PM, two pairs of scan angles are important: θ1 and θ2, which define the useful
angular FOV, as discussed in Section 2.2—Figure 2a,b; θmin and θmax, which define the
down-reflected and up-deflected positions of the reflected beam of a scanner (in a con-
cept introduced by Beiser [2]), therefore the total possible FOV—Figure 5a. To charac-
terize these latter beams for a PM, we introduced the construction in Figure 5a [29,32],
where the reflection is considered at the beginning and end of a PM facet (without
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referring to the vignetting produced by the finite beam diameter). From this figure,
these two reflected beams are characterized by{

θmax − θmin = 2α
sin(θmin + α) = e cosα

R
,

therefore the expressions of the two (extreme) scanning angles are given by Equation (12),
Table 1. These equations also give the total angular FOV of the PM—Equation (14), Table 1.
The values of the useful angles θ1 and θ2 are obtained by solving Equation (13), Table 1.
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2.5. Linear FOV

• For a GS, using Equation (1), the linear FOV (i.e., the maximum dimension that can be
scanned on a certain target plane/lens) is obtained, with Equation (15), Table 1.

• For a PM, by combining Figures 2b and 5a, the linear FOV/scanning domain can be
obtained as

Dom h = h(θmax)− h(θmin)

Using Equations (4) and (12) in Table 1, the two terms in the above relationship have
ratheer complicated expressions

h(θmin,max) = R
√

2− e− R−e(x· cos2 α±sin α·
√

1−x2 cos α)
(
√

1−x2 cos α±x· sin α)· cos α·

−L (
√

1−2x2 cos2 α) cos 2α±2x·sin2α· cos α·
√

1−x2 cos α

2 cos α·[x
√

1−2x2 cos2 α· cos 2α±(2x2 cos2 α−1) sin α]

where the same notation x = e/R was used, but a simpler, more elegant expression is
obtained using these relationships for

Dom h =
sin 2α

cos θmin· cos θmax

(
2e + L· cos 2α

2· sin θmin· sin θmax

)
,

therefore the final Equation (16) in Table 1 is deduced.
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2.6. Duty Cycle

The duty cycle of a scanner is defined as its time efficiency, i.e., the ratio of the
useful time (for the scanning process) and the total considered time interval. Essentially,
this parameter is related to the scan angles above, but also to the specific structure (and
application) of the scanner:

• For a GS, the duty cycle cannot be, for example, η = 2θa/2θm (as one may consider
at a rapid glance), as the extreme angular intervals (i.e., the stop-and-turn portions
between π/2− θa and π/2− θm, as well as between θa and θm) are not scanned with
a constant velocity, even for a triangular input signal, as shown in the example in
Figure 1c. Therefore, for such a signal, Equation (17) in Table 1 is the appropriate
one for low f s, while Equation (18) in Table 1 is appropriate for high f s, as studied in
detail in [9,10]. For sawtooth input signals, the discussion is similar, and one must
differentiate between the theoretical duty cycle ηt (Equation (13) in Table 1) and the
effective one η (Equation (14) in Table 1) with regard to f s, as discussed in [7–9]. These
values of the duty cycle can be improved with the use of (rather expensive) F-theta
lenses, to linearize the scan, but we have shown that even a well-calculated (and
cost-effective) achromatic doublet can be utilized for certain GS-based setups [54].

This discussion often assumes the small-angle approximation for applications such
as OCT, which is commonly θm < 5◦, to allow for obtaining high-resolution images (as
the aquisition time is limited, especially for in vivo imaging, therefore f s must be high).
However, for larger scan angles θm, this approximation produces errors that must be
calculated or minimized. The latter solution is addressed further in Section 4.

• For PM scanning heads, this problem of the duty cycle is less complicated, because the
rotational velocity ω of the PM is constant. Therefore η = (θ2 − θ1)/(θmax − θmin), and
this gives the final Equation (19) in Table 1. One must point out that this η is “n” times
higher than for monogon scanners (i.e., pyramidal PMs with a single facet), which
seemed to make a comeback in the context of developing fast rotational scanning
heads that may avoid the use of an objective lens [61,62].

• For both GSs and PMs, due to the finite diameter of the beam, η is also affected by
vignetting at the margins of a facet/mirror [26]—an effect minimized by placing the
incidence point in (for GSs) or around the object focal point (for PMs).

3. Multi-Parameter Optical Analysis and Design of PM Scanning Heads
3.1. Scan Angles and FOV

From Equation (12), Table 1, the two extreme scan angles θmin and θmax in Figure 5a
are functions of two constructive parameters: The number n of PM facets (i.e., of the angle
α = π/n) and the unitless parameter x = e/R. The latter allows for a comparison of the scan
angles regardless of the PM dimension (given by the apothem R). The former influences
both the scan angles and the angular FOV (equal to 4α). From the study of the scan angles
with regard to these two parameters in Figure 6, several conclusions can be drawn:

(a) From the study with regard to the parameter x, Figure 6a:

- Three values of n are considered, from n = 5 (i.e., for a pentagonal PM utilized, for
example, in commercial or industrial applications such as printers or handheld probes)
to n = 10, and finally, to n = 100, with the latter being specific, for example, to high-end
applications such as PM-based SSs [19–26]. One can observe the way the 2α = FOV/2
difference between the two scan angles decreases with n.

Thus, the FOV = 4α is 144◦ for n = 5, 72◦ for n = 10, but decreases to 7◦12′ for n = 100.
This is a major issue in designing PM scanning heads: While for small n commercial PMs
there is a large FOV available to place the lens, for high-end applications (such as OCT),
which require fast PMs with a high n (to maximize f s), the FOV is extremely small, therefore
it might be difficult to place the objective lens within its limits. Furthermore, in the latter
case, the lens must have a small diameter D, therefore the linear FOV is small, as well.
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The positive aspect is that in applications such as OCT, this level of FOV is common, as
the scan amplitude is small to avoid distortions but also to maximize the resolution in the
time-limited imaging procedure specific to in vivo investigations, for example.
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- Regardless of the particular values of n, the possible domain of the parameter x has
a lower limit equal to tan α (for which θmin = 0 and θmax = 2α) and an upper limit
equal to sec α (from which both θmin and θmax are not defined anymore). At the limit,
θmin,max(x = sec α) = π/2∓ α.

If x < tan α, one would have θmin < 0, and this corresponds to the situation when
the down-reflected ray in Figure 5a would be directed opposite to the (positive sense of
the) Oz axis. One might exploit values of x < tan α, depending on the required FOV, as
for x > − tan α, a small FOV can be still obtained. However, in this situation, the O.A.
of the lens cannot be perpendicular to the incident beam, as the π/4 value of θ is no
longer contained in the [θmin, θmax] interval. Actually, to contain the θ = π/4 value in the
[θmin, θmax] interval, one must have θmax < π/4, which gives, using Equation (12),

x < (1− tan α)/
√

2 (20)

(b) From the study with regard to the angle α, Figure 6b:

- Two specific intervals of the parameter x, smaller and larger than 1, are considered, as
well as the particular case x = 1. Although θmin and θmax are considered as functions
of the angle α = π/n, the rows of values of the two angles are actually relevant, as
only integer values of the number n of facets correspond to reality.

The interval of α is considered between 0 (for which the PM would become a circle)
and π, which would correspond to the case of the monogon (i.e., single facet pyramidal
scanner). For α→ 0, the graphs of both θmin and θmax start from arcsinx for x ≤ 1 (and in
particular from π/2 for x = 1). However, the smallest value of α is actually π/nmax (where
nmax is the maximum technologically appropriate value of n, as discussed in Section 6).
This gives the limit values of the scan angles, corresponding to the lowest admissible FOV.
For x > 1, the minimum value of α is, from Equation (12) in Table 1,

αm = arccos1/x. (21)

For this interval of x, the value of α for which θmin = 0 is αmax = atanx > π/4. Thus,
the αε[αm, atanx] interval includes the (common) case of the square PM.

- A useful limit value of α is π/3, corresponding to 1 < x <
√

3. However, as observed
above, the case of a too high x (for a small n) must be avoided, to minimize vignetting.
Therefore, in practice, n is equal to 4 or higher, as discussed in another context in [32].
An exception may be the n = 2 case (of a plane or pyramidal rotational mirror with
two facets) or the n = 1 case (of the pyramidal monogon).

To conclude this part of the study, the results of the analysis in Figure 6 are synthesized
in Figure 5b, for the most relevant parameter intervals of x < 1 and of α < π/4 (therefore
of n > 4). The two surfaces correspond to the scan angles θmin and θmax, and they meet in
the Oθx plane in the θ = arcsin(x) curve. One can obtain, with transversal sections in these
surfaces in Figure 5b, the graphs in Figure 6(a1–a3),(b1).

3.2. Duty Cycle

Using Equation (19), Table 1, a discussion on the duty cycle η can be made for the
scanner design. Three cases can be considered:

(i) η < 1 corresponds to the case where the lens diameter D (Figure 2) is positioned within
the FOV defined by the θmin and θmax rotational angles in Figure 5a. Thus, the rays
corresponding to the θ1 and θ2 angles (i.e., to the useful scanning domain) can be
placed symmetrically to the O.A. and

θmin < θ1 < θ2 < θmax (22)
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(ii) η = 1 is a difficult condition to apply. It is fulfilled for

θmin = θ1 and θ2 = θmax (23)

and it means that the O.A. is no longer perpendicular to the incident ray, because the
FOV is, in general, asymmetric with regard to the horizontal axis. From Figure 5a,
using Equation (12), the particular case of the symmetry of the down-reflected and
up-reflected rays with regard to the horizontal can be achieved for:

π/2− 2θmin = 2α=> x = (sec α)/
√

2 (24)

(iii) η > 1 corresponds to a lens with a diameter D larger than the linear FOV. This may
be the case of a PM with a large n. From Figure 6, for a small angle α, the angular
FOV = 4α narrows—see, for example, Figure 6(a3). In practice, this case is applicable
for double-pass PMs [1, 2], for which the incident beam is split in two. For such a
configuration, the scan of the following PM facet begins before the scan on the current
facet is completed. In this case θ1 < θmin < θmax < θ2.

3.3. Scanning Function and Velocity

The first study of the scanning function of a PM versus a GS is shown in Figure 3b—for
a certain set of the parameters R, x, and L. The asymmetry of the PM functions (in contrast
to the symmetry of the dotted GS functions) can be observed, as well as the fact that the
minimum scanning speed for GSs is reached for θ = π/4 (i.e., from Equation (3), with the
acceleration aGS(θ = π/4) = 0), while for PMs, the condition v = min. provides, by using
Equation (5) in Table 1, the following equation:

R sin5 θ − 2e sin4 θ + R sin3 θ − 2L sin2 θ + L = 0. (25)

It can be demonstrated numerically that this equation has solutions for values higher
than (but, in general, close to) θ = π/4. From a(π/4), using Equation (6), the condition
v(π/4) = min. is fulfilled, in a particular case, for

x = 3
√

2/4 ∼= 1.06. (26)

However, in general, for PMs

v(π/4) = 2ω
(

L + e + R
√

2
)
6= vmin, (27)

with two more terms with regard to the GS case, for which v(π/4) = min. = 2ωL.
The main aspect of the scanning functions of both GSs and PMs is their non-linearity.

Even for PMs, one may observe that the scanning velocity is variable, as a(θ) 6= 0 regardless
of the relationship between the e, R, and L parameters. Moreover, given the common values
of this set of parameters, it can be easily observed that the condition v(θ) > 0 is always
fulfilled, therefore the scanning function is strictly increasing; there is no turning back of
the scanning beam.

A multi-parameter study of the PM scanning function and velocity in this respect,
with regard to all these three characteristic parameters, is performed in Figure 7:

(a) The apothem R is considered from 15 to 40 mm, although smaller values are also
utilized in practice (e.g., for square PMs in printers), while higher values of R are
necessary for large PMs utilized in high-end applications for which high f s values
are acquired. To achieve the latter, the PMs must have a high n, therefore R must
be large to keep the facet aperture over a useful threshold (to accommodate a laser
beam of a certain diameter and minimize the negative effect of vignetting). It can be
observed that a larger R means a better linearity of the scanning function h(θ) and an
approximate constant scan velocity v(θ) over a slightly larger domain of θ, therefore
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such an R is advantageous. However, it also implies a trade-off with structural aspects,
as approached using FEA in Section 5.
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(b) The parameter x = e/R is considered with three values, corresponding to the three
characteristic cases considered in Figure 6, as well for x < 1 or x > 1, and with their
in-between limit case x = 1. As at the previous point, a slightly more linear h(θ) and
more constant v(θ) over a larger domain of θ can be obtained with a smaller x, i.e., for
the x < 1 case. This result is in good agreement with the discussion on the scan angles
and the most advantageous case from that point of view—Figure 6(b1).

(c) The distance L is considered from the small value of 20 mm, which allows one
to capture a large part of the graph of the scanning function and to highlight its
non-linearity—as observed in the experimental study in [32], as well. The largest
considered dimension of L is 200 mm, which may require folding the beam, as
addressed further in Section 4. As L = f (Figure 2), a more common value of L would
be approximately 40 mm, as considered in Figure 3b, to have a reasonable dimension
of the scanning head. However, for such a value, the non-linearity of h(θ) is already
manifested for common values of the scan angles (i.e., FOV), therefore the solution
developed in Section 4 is useful, as well.

From this analysis, one can conclude that the distance L has the highest impact on the
linearity of h(θ), while the parameter x has the smallest impact. However, by combining
the influence of all three parameters, the non-linearity of h(θ) can be further improved. The
issue is that, as R results from calculus (such as the one in Section 6) and x from design
equations (such as those in this section and in Section 3.5), the options regarding these two
parameters are limited.

Therefore, one must find solutions to increase L, as addressed in Section 4. This is
also favorable from the point of view of the scanning velocity v, which is proportional to
L—Equation (5) and Figure 7(c2). Furthermore, v is proportional to the rotational velocity
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ω: As ω increases, it has a portion of approximately θ = π/4, where it is approximately
constant, as observed from the second row of Figure 7.

3.4. Migration Functions

These two functions have been introduced in [28–32] to characterize a phenomenon
that is specific to PM scanning heads, i.e., the displacement of the incidence point P on a
PM facet—Figure 2b. Thus, the “migration” of the object point A of the lens is produced
along the O.A., where point A was defined in Section 2.3 by the intersection between the
reflected ray and the O.A.

Referring to the two migration functions, transversal (Equation (7), Table 1) and longitu-
dinal/axial (Equation (8), Table 1), the former appears in the scanning function (Equation
(4), Table 1), but the latter is the most important for the scanner design. It allows for the
design of a simpler (and lower cost) lens for a PM scanning head. The method requires one
to correlate z(θ) with the spherical aberration of the lens dsh. It may allow one to obtain
these two sources of errors of the scanning process to partially compensate for each other.
The scope is to produce emerging beams from the lens that are more accurately parallel to
the O.A. While this optical design is not within the scope of this study, it is the subject of
future work in our group—including for SSs [26] and handheld probes for OCT [53,54].

In Figure 4, the two migration functions are studied analytically for the three char-
acteristic intervals of the x = e/R parameter that are relevant to them: (1) x <

√
2− 1;

(2)
√

2− 1 < x < 1; (3) 1 < x <
√

2. A discussion on x is necessary to obtain the case (thus,
the graph) that is optimal for the PM setup—Section 3.5. For the study of the y(θ) function
in Figure 4a, the marked values in these graphs are:

y0 = R
(√

2− 1− x
)

(28)

ymax = R[
(√

2− x
)
−
(

1 + x2
)1/2

] (29)

For cases (1) and (3), the solution of the equation is

y(θ) = 0 => θy =
√

2/
[√

2 + 1− x
]

(30)

For all the cases, the tangent to the y(θ) graph in the origin is characterized by the
angle ξ0 = atan(e). One can see that for x =

√
2− 1 (i.e., the transition from the case (1) to

the case (2)) the value of y0 passes through zero.
In Figure 4b, the graphs of z(θ) are obtained for three values of x included in the same

three intervals of the parameter x as in the y(θ) study in Figure 4a. One can observe the
possibilities offered by correlating this function with the spherical aberration of the lens.

3.5. Rules-of-Thumb for the System Design

To conclude the discussion, several rules-of-thumb can be extracted from the multi-
parameter analysis to allow for choosing the constructive parameters of the PM. Thus,
from Figure 2b and considering the above discussion, one should (ideally) have the entire
scanning domain available to position the lens, therefore θ1 > 0 and θ2 < π/2, as well as
the scanned space situated on both sides of the O.A., therefore θmin < π/4 < θmax. Using
all these conditions, one obtains for the η < 1 case, therefore with Equation (22),

0 < θmin < θ1 < π/4 < θ2 < θmax < π/2

which gives, using Equation (12), Table 1,∣∣∣1− x
√

2
∣∣∣ < tanα < x < 1. (31)

From these conditions, one obtains, for the design of PM scanning heads, the following:
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The transversal migration function y(θ), Equation (7), Table 1, is characterized by the
graph obtained for

√
2− 1 < x < 1 in Figure 4(a2). The other two cases of the y(θ) function

in Figure 4 do not correspond to this scanner configuration, but they can be used for the
other two cases of the duty cycle in Section 3.2.

(i) The longitudinal/axial migration function z(θ), Equation (8), Table 1, is characterized
by the graph in Figure 4b considered for the same interval of x (i.e., for the x2 case).

(ii) The x < 1 interval in Figure 6(b1) is the one that applies to the angles θmin and θmax
studied as functions of the angle α.

(iii) The conditions θmin > 0 and θmax < π/2, which are necessary to increase the duty
cycle, Equation (12), Table 1, provide n ≥ 5, therefore at least a pentagon PM must be
used for this scanner configuration.

3.6. Spot Variations Due to the Finite Diameter of the Laser Beam

The variation of the dimensions of the laser spot on a lens or a scanned plane (as a
consequence of the scanning process) is an issue that has to be approached for any type of
scanner [1,2]. Therefore, the study in Figures 2 and 3b is extended in Figure 8 by considering
the finite diameter (2ρ) of the laser beam incident on a PM facet.
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Figure 8. (a) Reflection of a laser beam (of finite diameter 2ρ) on a PM facet for θ = θ1, π/4, and θ2—
as considered in Figure 2b for the axis of the beam; (b) reflection of the laser beam at the beginning
and end of a PM facet. (c) The scanning function for the entire beam—generalized case of Figure 3b1,
with (d) the variation ∆y(θ) of the spot on a direction perpendicular to the O.A.

The discussion performed so far referred to a single ray (i.e., the center axis of the laser
beam), represented with a solid line in Figure 8. For the left and right margins of the beam
in the meridian plane, the scanning functions in Table 1 can be written by considering,
in Equation (4), L − ρ and L + ρ, respectively (instead of L), as well as e + ρ and e − ρ,
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respectively (instead of e). With these considerations, for the left and right margins of the
beam, one has

hle f t,right(ρ, θ) = R
√

2− (e∓ ρ)− R
cos θ

+ (e∓ ρ)· tan θ − L± ρ

tan 2θ
(32)

However, one must note that these two functions, hleft(θ) and hright(θ), are measured
from Figure 8 with regard to the positions hleft(π/4) and hright(π/4) from the O.A., which
are equal to −ρ and ρ, respectively. Therefore, to return to the Oyz system of coordinates,
the left and the right margins of the beam are characterized (with regard to the Oz axis) by

hle f t(θ)− ρ = R
√

2− e− R
cosθ + (e− ρ) · tanθ − L+ρ

tan2θ

hright(θ) + ρ = R
√

2− e− R
cosθ + (e + ρ) · tanθ − L−ρ

tan2θ

(33)

Therefore, the dimension of the laser spot on the y-axis is

∆y(θ) =
(

hright(θ) + ρ
)
−
(

hle f t(θ)− ρ
)
= 2ρ/ sin 2θ. (34)

One can remark that, from Equations (4) and (33) one has

(hright(θ) + ρ)− h(θ) = h(θ)− (hle f t(θ)− ρ) = ρ(1/ sin 2θ − 1), (35)

therefore the laser spot is symmetrical with regard to the axis of the beam, as it is also
observed from Figure 8b. The graph of the ∆y function is presented in Figure 8c.

At the margins of the scanning domain, the variation of the spot can be evaluated as

∆y(θmin,max) = 2ρ/ sin 2θmin,max (36)

However, the problem at the margins of the FOV is more complex, as it can be seen
from Figure 8d: At the beginning and at the end of a PM facet, the beam is actually split
in two, and one has a down-reflected part of the beam, corresponding to θ = θmin, and an
up-deflected part, corresponding to θ = θmax. This particular consequence of the initial
theory in [29,32] recently led to a development of a PM-based surface cleaning system [35].

A numerical example related to the discussion on the spot variation is presented
in Figure 8c for a PM with n = 5 facets, R = 15 mm, and e = 13.58 mm. For a beam
with the radius ρ = 0.15 mm and for θ1 = π/6 and θ2 = π/3 (symmetrical with regard to
θ = π/4), one obtains ∆y(θ1) = ∆y(θ2) = 0.346 mm. From Equation (12), θmin = 0.104 rad and
θmax = 1.36 rad, while the corresponding dimension of the spot on the y-axis would be
∆y(θmin) = 0.736 mm and ∆y(θmax) = 1.446 mm if the spot was entirely contained on the
PM facet for the beginning and end of a facet scan.

For the same values of the parameters, but with a PM with 72 facets, as for a SS [20,21,26],
one obtains θmin = 0.86 rad and θmax = 0.948 rad, therefore ∆y(θmin) = 0.1002 mm and
∆y(θmax) = 0.1582 mm. These values are much smaller (therefore more convenient), but
from this discussion, another issue emerges: one cannot choose the same value of the
eccentricity e when a PM with a small or with a high n is considered, as in this case, the
angular scanning domain does not contain the direction perpendicular to the incident laser
beam. Therefore, the choice of e for a certain R (i.e., of the parameter x) must be made by
considering the number n of facets as well, as discussed in reference to the other previously
considered functions.

4. Linearization of the Scanning Function

The scanning functions of both GSs and PMs are non-linear (Table 1), while their
scanning velocity is variable (Figures 3 and 7). The scanning functions could be considered
with a linear expression, but only for a limited FOV. Furthermore, to properly make such an
assumption, the distance L (Figures 1 and 2) must be increased, as concluded in Section 3.4.
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4.1. The Two-Mirrors Angular Device

As the distance L (equal to the object focal distance f of the objective lens in Figures 1 and 2)
is the main parameter that influences the non-linearity of the scanning function h(θ), we
proposed in [66] several devices, with three or two supplemental (fixed) mirrors that are
capable of folding the laser beam reflected by a GS or a PM. Thus, an improvement of the
scanning linearity can be made possible in a reasonably compact construct. The simplest
(and thus, lowest-cost) device that can be utilized is the one with two plane mirrors placed
at a certain angle with regard to one another—Figure 9 [66]. While there are several methods
to approach this problem of geometrical optics, the Williamson construct is utilized in this
study [2].
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placed between a laser scanning mirror (an oscillatory one of a GS is shown as example) and its
objective lens; (b) ascertainment of the maximum possible number N of reflections between the two
fixed mirrors.
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The path of a laser beam reflected by a GS (considered for simplicity, although a PM
can be utilized as well) is presented in Figure 9a, with its multiple reflections Ij, j = 1, N
on the two fixed mirrors M1 and M2, placed with an angle 2ψ between them. N is the
total number of reflections on the two mirrors. The successive images M1′ and M2′ of each
mirror into each other are considered.

It can be easily demonstrated that the length of a beam that would pass un-deflected
after the reflection on the GS mirror in its pivot O through the incidence point I1 is equal
to the one between the two mirrors M1 and M2. Using the construction in Figure 9a,
this is briefly discussed in Appendix B. Starting from such well-known aspects, to utilize
this device for a scanning system, there are several aspects that must be determined, as
addressed in the following.

4.2. The Incidence (and Reflection) Angles

These angles are ε j, j = 1, N in each incidence point Ij, j = 1, N. They are equal to the
angles marked in each point I′j , j = 1, N, and from Figure 9a and Appendix B, they have
the expression

ξ j =

{
ξ − 2ψ(j− 1), j < k
−ξ + 2ψ(j− 1), j ≥ k

. (37)

4.3. The Returning Incidence Point

From Figure 9a, considering Equation (A4), the following conditions can be made:{
ˆCI′kO > π/2
ˆCI′k+1O ≤ π/2

=>
ξ

2ψ
≤ k <

ξ

2ψ
+ 1, k =

[
ξ

2ψ
+ 1
]

. (38)

therefore the reflection “k” for which the beam returns at the “k + 1” reflection is

k =

[
ξ

2ψ
+ 1
]

. (39)

In the two examples in Figure 9, k = 2 in Figure 9a (as the returning point is I3 on
mirror M1) and k = 3 in Figure 9b (as the returning point is, in this case, I4 on mirror M2).

4.4. The Positioning of the Two Mirrors of the Device

One can observe from Figure 9 that the system does not use the entire lengths of the
two mirrors M1 and M2.

To determine their useful lengths and the way they must be positioned, the construc-
tion in Figure 9b is used, to refer to the situation when all possible reflections on the two
mirrors are included on the utilized portions.

Let the position of the most distant incidence point I1 (with regard to the point C) on
M1 be CI1 = p(I1) = p. The minimum distance from C to an incidence point on M1 is for
the incidence point Ik+1, and it is equal to pmin = CIk+1 = CI’k+1. From the sine theorem in
triangle I1CI’k+1 is

pmin = p
cos ξ

cos(2ψk− ξ)
= p(Ik+1), (40)

where k is provided by Equation (39). While this is, in all situations, the minimum distance
from C to an incidence point, the minimum distance from C to an incidence point on the
other mirror is

min{p(Ik), p(Ik+2)} = min
{

p
cos ξ

cos(2ψ(k− 1)− ξ)
, p

cos ξ

cos(2ψ(k + 1)− ξ)

}
, (41)

On the other hand, the maximum distance from C to an incidence point is not neces-
sarily p(I1) = p, but
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pmax = max
{

p
(

Ij
)
, p(IN)

}
= max

{
p

cos ξ

cos(2ψ(j− 1)− ξ)
, p

cos ξ

cos(2ψ(N − 1)− ξ)

}
, where j = 1 or 2. (42)

In conclusion, the two mirrors M1 and M2 must have portions corresponding to
the above distances/polar coordinates from their intersection point C. In the example in
Figure 9b, I1 is on M1, Ik+1 is on M2, and IN is on M2, therefore the useful portion of the
mirror M1 is between min{p(Ik), p(Ik+2)}, Equation (41), and p = p(I1), while the useful
portion of the mirror M2 is between pmin = pk+1, Equation (40), and pmax, Equation (42).

4.5. The Maximum Number of Reflections (N)

In the construction in Figure 9a, one can see that, after I5, another reflection could still
occur on mirror M2, because one has π/2− ξ5 > 2ψ. Similarly, another reflection point
could have been placed before I1 and O. Therefore, to determine the maximum possible
N, the construction in Figure 9b must be made, for which, as π/2− ξ < 2ψ, no reflection
previous to I1 is possible (i.e., no intersection between the ray and M2). The number N
corresponds to the last incidence point IN, where the beam can still encounter a mirror (M1
or M2) or, equivalently (considering the discussion in Section 4.1), the last point where the
line OI1 can still encounter one of the reflections M1′ or M2′ . From Figure 9b, one has:{ ˆI2CIN + π/2− ξ ≤ π, ˆI2CIN = 2N

2α(N + 1) + π/2− ξ > π
=>

π/2 + ξ

2ψ
− 1 ≤ N <

π/2− ξ

2ψ
, (43)

therefore

N =

[
π/2 + ξ

2ψ
+ 1
]

. (44)

In Figure 10a,b, this function is studied with regard to its two parameters. It can be
observed how N increases on a hyperbola when ξ decreases and how it increases linearly
with ψ.

4.6. The Maximum Possible Value of the Distance L

This value Lmax (i.e., the distance between the pivot O of the GS and the center V of
the objective lens) can be obtained from the geometry in Figure 9b, as

L = OI1 + ∑N
j=1 Ij Ij+1 + INV = OI1 + ∑N

j=1 Ij I′j+1 + INV = OI′N + INV. (45)

From the sine theorem in triangle I1CI’N, one has

I1 I′N = p
sin(2ψ(N − 1))

cos(2ψ(N − 1)− ξ)
, (46)

where p = CI1 and N is given by Equation (44). From Equations (45) and (46), the expression
of the maximum length of the laser beam that can be folded by the device is

Lmax = OI1 + p
sin2ψ

[
π/2+ξ

2ψ

]
cos
(

2ψ
[

π/2+ξ
2ψ

]
− ξ
) + INV, (47)

which is a function of three parameters: The angle 2ψ between the two mirrors, the distance
p, and the incidence angle ξ in the first point of incidence. The parameter that can increase
Lmax the most is the distance p, but this is limited to obtain a device as compact as possible,
therefore the influence of the angles 2ψ and ε must be considered as well.

In Figure 10c, the unitless function l(ξ) = I1 I′N/p obtained from Equation (46) is
studied with regard to ξ for the same three values of ψ considered in Figure 10b. This
function, which represents the optical path between the first and the last reflection on
the two mirrors M1 and M2, is the one to be optimized. Thus, by choosing an angle 2ψ
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between M1 and M2, the first incidence angle on these mirrors ξ > π/2− 2ψ = ξmin can
be obtained to reach a certain length l(ξ), therefore a certain value of L. For ψ3 = π/12,
for example, one obtains ξmin = π/3, therefore the useful domain of the first incidence
angle is ξ ∈ [π/3, π/2 ]. These limits are pointed out in Figure 10c: For ψ1 = π/48,
ξ ∈ [11π/24, π/2 ]; for ψ2 = π/24, ξ ∈ [10π/24, π/2 ]; for ψ3 = π/12, ξ ∈ [8π/24, π/2 ].
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Thus, one can observe how the length l(ξ), and therefore the path L, can be maximized;
a value equal to 10 could be reached using the graphs in Figure 10c. However, one must
also consider, in this respect, the calculus of the dimensions of the two fixed mirrors in
Section 4.4, in a trade-off between the functionality and volume of the system. This way,
an approximate linear scanning function h(θ) can be achieved in a construct as compact
as possible.

5. Finite Element Analysis (FEA) of PMs

In the context of the high rotational velocities ω that are necessary to obtain a scan
frequency f s of PMs as high as possible, as required by most applications, an FEA must be
performed to determine the amount of mechanical stress produced by centrifugal forces
within the PM. While such an FEA is specific to each design and set of materials of the PM
assembly (including shaft and other parts), the multi-parameter analysis in this section is
made for PMs with a common configuration. Several constructive parameters of the PMs



Appl. Sci. 2022, 12, 5592 22 of 32

are considered for an ω of up to 120 krpm (but also for lower, common values of ω of up to
60 krpm). An Al alloy 5052 is considered for the PM material, with a tensile yield strength
of 214 MPa and an ultimate tensile strength of 268 MPa. While such a material is the most
common and appropriate one to be utilized, steel and plastic could be employed for small
values of ω. However, if Al alloys fail the FEA, beryllium alloys must be considered for
high values of ω; however, they are expensive and toxic during manufacturing.

The main scope of an FEA for a PM, as addressed in the following, is to verify its
structural integrity. A secondary scope would be to determine the level of deformations,
which can be the start of another analysis, considering manufacturing and tolerances,
as well. Such an analysis is the subject of future work, as in this study, we consider no
manufacturing or mounting errors. This is a necessary simplifying hypothesis to carry out
the proposed analysis. Another direction of future work is the validation of such an FEA
by experiments—to be carried out for a number of materials, dimensions, and PM designs.

The main parameters of the PM for the FEA are the number of facets n, the apothem
R, the PM thickness b, and the rotational velocity ω—Figure 2a. However, several other
constructive parameters must be considered as well (Figure 11). They include the radius r
of the central hole (to mount the PM shaft), the number nh of supplementary (identical)
holes (to mount the PM on a rotational disk, as usually utilized in such an assembly), and
each of these holes has a δ diameter and placed with its center on a circle of Rh radius. The
number nh of these supplementary holes must be chosen without affecting the structural
integrity of the PM, i.e., the effective section at the radius Rh. They must be considered in
the direction of the apex of the PM to obtain a symmetrical deformation of the facets. When
this is not possible because there are too many facets, a limited number of holes (three to
six) should be used [1].
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Figure 11. Selection of a quarter of a (hexagonal) PM (a) for an FEA (b), highlighting the three
constructive (mounting) parameters r, δ, and Rh.

In the following FEA, a quarter of each PM plate is considered, as shown in Figure 11.
The analysis is carried out using ABAQUS (Dassault Systèmes, Paris, France). In Figure 12,
three PMs are considered, with n equal to four, six, and eight facets (on each of the three
rows, respectively), for four steps of the rotational velocity ω: (a) 60 krpm, (b) 80 krpm, (c)
100 krpm, and (d) 120 krpm, on each of the four columns, respectively.

The PM parameters are R = 25 mm, r = 5 mm, b = 10 mm, Rh = 13 mm, and δ = 2 mm.
The number of mounting holes is nh = n in each case, and they are placed in the direction
of the PM apex.

The color code for the mechanical stress σ, preserved in this entire FEA, is presented
in Figure 12(a3): The maximum value (red) was set at 200 MPa, bellow the tensile strength
of the material (218 MPa), as a safety margin. The color code ranges from blue (low stress,
the minimum set at zero) to green (medium stress) and red; the values of stress that exceed
200 MPa appear in white (see, for example, the inner part of the central hole at the upper
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limit of ω in Figure 12). One can observe that the maximum stress σmax is reached in the
inner part of the PM and in its central plane, and increases consistently with ω, but not
with n. Thus, σmax is almost equal to the yield value for n = 6 (i.e., 217 MPa), while it is
lower for n = 4 (i.e., 185 MPa), as well as for n = 8 (for which σmax = 210 MPa, therefore
closer to the yield limit). This conclusion may lead to exploring other designs, which may
avoid mounting the PM on a distinct rotational shaft. The minimum level of the stress
is reached in the exterior of the apex of the PM. It increases with n for ω = 120 krpm,
σmin (n = 4) = 8.53 MPa < σmin (n = 6) = 13.96 MPa < σmin (n = 8) = 21.01 MPa.
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Figure 12. Extreme values of the stress (σmax and σmin) for rotational PMs with (a) n = 4,
(b) n = 6, and (c) n = 8, for four levels of the rotational speed ω: (1) 60 krpm; (2) 80 krpm; (3) 100 krpm;
(4) 120 krpm.

In Figure 13a, a study with regard to the apothem R is carried out, for a hexagonal PM
and two values of ω: A common one of 60 krpm (on the first row) and an extreme one of
120 krpm (on the second row). The apothem increases in the three columns, for R equal to
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(a) 20 mm, (b) 25 mm, and (c) 30 mm. At ω = 120 krpm, σmax becomes slightly higher than
the yield tension for R = 25 mm and reaches 338.1 MPa for R = 30 mm, in the latter case
with σmax in the small mounting hole. For the maximum value of ω, the dimension R can
be thus obtained (from the point of view of the FEA) for a certain set of parameters.
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Figure 13. Variation of σmax and σmin of hexagonal rotational PMs (with b = 10 mm and r = 5 mm)
for two levels of ω, (1) 60 krpm and (2) 120 krpm, for three values of R: (a) 20 mm, (b) 25 mm, and
(c) 30 mm.

To complete the design process, the other PM parameters must be explored (and
exploited) as well. Thus, in Figure 14, the contrast between two levels of two of these
parameters is considered, with b = 5 mm versus b = 10 mm in Figure 14a versus Figure 14b,
respectively, and r = 2.5 mm versus r = 5 mm in Figure 14c versus Figure 14b, respectively.
The maximum stress σmax decreases slightly when b increases (from 219.3 MPa for b = 5 mm
to 217.2 MPa for b = 10 mm) and r decreases (from 217.2 MPa for r = 5 mm to 200.2 MPa for
r = 2.5 mm).

In Figure 15, the influence of the constructive parameters is explored. A variation of the
radius Rh from 13 mm to 14 mm is considered in Figure 15a,b, respectively. In consequence,
σmax decreases from 217.2 MPa to 212.2 MPa, just lower than the yield limit. A variation of
the radius δ of the supplementary holes is considered from 2 to 3 mm from Figure 15a,c,
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while all parameters remain the same. In consequence, σmax decreases from 217.2 MPa
to 192.7 MPa. In Figure 15d, the six mounting holes are moved from the symmetry axes
oriented towards the PM apex (as in Figure 15a) to positions oriented towards the middle
of the PM facets. In consequence, for the configuration in Figure 15d, σmax = 207.7 MPa,
lower than σmax for the configuration in Figure 15a.
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Figure 14. FEA of a hexagonal PM (with R = 25 mm) for two levels of ω, (1) 60 krpm and (2) 120 krpm,
for a change in the width b from (a) 5 mm to (b) 10 mm, as well as for a change in the radius r of the
central shafts, from (c) 2.5 mm to (b) 5 mm. For (a) r = 5 mm, while for (c), b = 10 mm.

In conclusion, for the high ω limit of 120 krpm considered in this FEA, depending on
the values of n and R (which are imposed by the application, as discussed in Section 6),
σmax can pass the limit of the tensile yield strength, as determined from Figures 12 and 13,
respectively. To avoid this, appropriate modifications of the design must be considered,
such as a smaller diameter of the central hole, 2r—Figure 14(c2). Other parameter adjust-
ments include increasing the thickness of the PM or slightly altering the position, diameter,
and number of supplemental mounting holes, as studied in Figure 15. All these measures
should be combined to be able to increase the upper value of ω that can be applied to the
PM. However, despite measures such as the above, for the upper limits of ω, materials
such as beryllium may be necessary, despite its disadvantages, to keep σmax lower than the
yield limit.
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Figure 15. FEA of a hexagonal PM for ω = 120 krpm, R = 25 mm, r = 5 mm, and b = 10 mm. Variation
with regard to the radius of the circle on which the centers of the supplemental holes are placed,
Rh, from (a) 13 mm to (b) 14 mm; with regard to the diameter δ of these holes from (a) δ = 2 mm to
(c) δ = 3 mm; with regard to the situation when these holes are placed in the direction of the PM apex
(a) versus in the direction of the middle of PM facets (d).

6. Optomechanical Design Scheme

The calculus of some of the main constructive parameters of PM scanning heads is
rather straightforward, as described in [1]. The synthesis of such an algorithm is shown in
Figure 16. Essentially, the imposed scan frequency f s provides the number of PM facets

n = 2π· fs/ω, (48)
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By considering technological, but also cost, limitations that provide the maximum
possible rotational velocity ω. On the other hand, the calculus starts from the necessary
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laser beam diameter 2ρ that must be accommodated on the PM facet with a maximum
admissible level of vignetting (e.g., with a common value of 50% [2,26]).

This beam diameter and vignetting level give the necessary width a of a PM facet—
Figure 2a. Therefore, using Equation (48) and α = π/n, the PM apothem is

R = 0.5·a/ tan α. (49)

The issue is that all other optical and mechanical aspects are left to be solved by
the designer and manufacturer, respectively. Simplified, approximate (i.e., linearized)
equations have been utilized for aspects such as scanning function and velocity, or the PM
position, as well as (mostly) experimental approaches in obtaining functional setups [18–27].
To fulfil the scope of this study to offer the community a tool to approach the optical aspects
(pointed out in the left-bottom block in Figure 16) in a rigorous, but as simple as possible
way, they are detailed in the left-side track in Figure 17, based on the equations deduced
and discussed in this work. The most important aspect is the off-axis position e of the PM
and the impact it has on the deduced characteristic functions and parameters, as discussed
in Sections 2 and 3.
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On the other hand, a more overlooked part of a PM design refers to mechanical aspects,
as pointed out in the left-bottom block in Figure 16. These are mostly left to manufacturers,
and they make progress pushed by ever-increasing requirements of high-end applications
such as OCT, evolving in a trade-off between performances and costs.

Based on the present work, in the more detailed optomechanical scheme proposed in
Figure 17, these aspects are listed in its right-side track and linked to the optical track in its
left-side track. Such links in this concluding scheme include the following:

- The scan frequency f s, in connection to the maximum chosen level of the rotational
speed ω, imposes, through the FEA, the type of material for the PM.

- From this step, the manufacturing method is imposed, in relation to the type of scanner
that results, from a range of optical parameters (for a PM, with normal or inverted,
prismatic and pyramidal, simple or double polygons [1,2]).

- From the type of scanner, one can chose the scanner architecture: Pre- or post-objective,
with an on- or off-axis PM, telescope- or telescope-less, with different types of lenses
(or prisms), with single- or double-pass, etc.

- The previous point, together with the optical parameters calculus, leads to the optical
design and then to the geometric parameters of PM, including eccentricity e and
distance L—with the functions developed in the present study.

- A lens design (achromatic doublet or F-theta lens) may follow or, alternatively, a
solution such as the two-mirrors device proposed in Section 4 to linearize the scanning
function even without a lens (or with as low cost as possible).

- The optical calculus is linked to technological tolerances: It imposes them, but it must
also consider their levels to calculate (supplemental) functional errors.

- The geometric optical parameters and functions also influence the decisions regarding
kinetostatic and dynamic aspects such as torques, calculus of motors, and, related to
this, bearings, as well as windage calculus and solutions to decrease it. The type of
chosen PM impacts the design with dynamic balance calculus.

- The design can be completed after considering (necessary) thresholds implying cost
and reliability.

One must remark that, as pointed out from the beginning of this work, sensors and
control structure (i.e., automation) aspects have not been considered in the present study.
However, they are, as in the case of GSs [11–13] or other scanners, a distinct problem,
starting from parameters such as f s, precision, reliability, and resistance to disturbances.
They also impact cost and output characteristics.

Although the theory in the present study was developed for prismatic normal PMs, it
can be applied to pyramidal (normal or inverted) ones, as well. As a guiding tool, the design
scheme in Figure 17 can be applied to MEMS PMs, as well, and—in part—other types
of optomechanical scanners (including GSs), considering their characteristic parameters
concerning the optical design part.

7. Conclusions

Characteristic functions and parameters of PM scanning heads were deduced. Their
multi-parameter analysis and design were developed, considered in contrast to the more
common GSs. PMs are characterized by a larger number of parameters than GSs, and this
complicates the mathematical discussion, but also provides more degrees-of-freedom in
the design process of PM-based scanning heads. Furthermoree, PMs are driven by fast
rotational motors, with common rotational speeds ω of 54 krpm, and up to 70 krpm, while
velocities of 120 krpm are envisaged in the context of the development of appropriate
sensors and control structures that may be able to provide rotational velocity uniformity
of the PM shaft. Such a high ω requires performing an FEA of the rotational PM to assess
the structural integrity. This study completes such a dual, opto-mechanical approach by
proposing a designing scheme that includes both aspects, with their characteristic links.

Rules-of-thumb were extracted from both the analysis of optical aspects and the FEA
to design PM scanning heads by choosing or calculating their constructive and functional
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parameters. The deduced and analyzed characteristic functions are appropriate for a variety
of such scanners [2]: Macro and micro, prismatic or pyramidal, normal or inverted, single-
or double-pass, with simple or double [27] PMs. Furthermore, a range of applications can
benefit from the developed theory, from industrial (for example, optical metrology and
laser manufacturing, the latter including 3D printing) to high-end (for imaging using, for
example, OCT or CM, but also for Remote Sensing).

Aspects of PM scanning heads that may benefit from the developed theory include
the ability (i) to obtain optimized 2D scanning heads with PM plus GS; (ii) to design more
efficient SSs for OCT and (iii) handheld laser scanning probes; (iv) to carry out FEA and thus
to optimize different PM configurations; (v) to consider tolerances and errors in analyses in
relation to manufacturing methods; (vi) to develop more performant control structures to
support higher rotational velocities of PMs (in an effort similar to the development of GSs);
and (vii) to develop PM-type MEMS, a solution that can be more versatile with a larger
FOV than resonant scanners.
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Appendix A

The Myz system of coordinates is considered in Figure 2b. Its origin is the incidence
point M = P(θ = π/4), which characterizes the horizontal position of the reflected ray (on
the O.A. of the lens). P(y, z) is the current point of incidence of the laser ray on the PM facet.
To obtain the coordinate y of the point P, we write the equation of the PM facet on which
the reflection is produced in the fixed system of coordinates Oµζ (with the origin in the PM
pivot O): {

ζ = ζB + (µ− µB)tanθ
µB = Rsinθ; ζB = −Rcosθ

(A1)

where point B is the base of the perpendicular from O to the facet. As M is the incidence
point for θ = π/4, from Equation (A1){

ζP = −Rcosθ + (e− Rsinθ)tanθ

ζM = e− R
√

2
(A2)

Therefore, as y = ζP − ζM, using the above equations, the expression of the scanning
function that can be deduced from Figure 2b

h(θ) = y(θ)− L/tan2θ (A3)

gives the final Equation (4) in Table 1.

http://3om-group-optomechatronics.ro/
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Appendix B

From the construction in Figure 9a ˆI1CI2 = ˆI1CI′2 = 2ψ, and because ˆCI1 I2 = ˆCI1 I′2 =
π/2− ξ1 (as O, I1, and I2 were considered colinear), one has I1 I2 = I1 I′2. In a similar way,
in general, from ˆIj−1CIj = ˆI′j−1CI′j = 2ψ and ˆCIj−1 Ij = ˆIj−1CI′j = π/2− ξ j (because O, Ij-1,

and Ij were considered colinear), one has Ij−1 Ij = I′j−1 I′j , for j = 1, N.

The incidence (and reflection) angles are ε j, j = 1, N in each incidence point Ij, j = 1, N.
From Figure 9a they are equal to the angles marked in each point I′j , j = 1, N. Therefore,
with the notation ξ1 = ξ, one can write

ˆCI1O = π/2 + ξ ˆCI′2O = π/2 + ξ1 = π/2 + ξ − 2ψ
. . .

ˆCI′kO = π/2 + ξk = π/2 + ξ − 2ψ(k− 1)
ˆCI′k+1O = π/2− ξk+1 = π/2 + ξ − 2ψk

. . .
ˆCI′NO = π/2− ξN = π/2 + ξ − 2ψ(N − 1),

(A4)

where the “k” reflection considered above has the property that the beam starts to return
(towards the entrance of the two-mirrors device) at the “k + 1” reflection. Therefore, the
reflection angles in each point Ij, j = 1, N have the Equation (37).
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