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Abstract: The globalization of integrated circuit (IC) design and fabrication has given rise to severe
concerns with respect to modeling strategic interaction between malicious attackers and Hardware
Trojan (HT) defenders using game theory. The quantitative assessment of attacker actions has made
the game very challenging. In this paper, a novel rough set theory framework is proposed to analyze
HT threat. The problem is formulated as an attribute weight calculation and element assessment in
an information system without decision attributes. The proposed method introduces information
content in the rough set that allows calculation of the weight of both core attributes and non-core
attributes. For quantitative assessment, the HT threat is characterized by the closeness coefficient. In
order to allow HT defenders to use fast and effective countermeasures, a threat classification method
based on the k-means algorithm is proposed, and the Best Workspace Prediction (BWP) index is used
to determine the number of clusters. Statistical tests were performed on the benchmark circuits in
Trust-hub in order to demonstrate the effectiveness of the proposed technique for assessing HT threat.
Compared with k-means, equidistant division-based k-means, and k-means++, our method shows a
significant improvement in both cluster accuracy and running time.

Keywords: Hardware Trojan; rough set theory; quantitative assessment; k-means

1. Introduction

The past decade has witnessed a dramatic increase in the cognitive and organizational
complexity of integrated circuit (IC) fabrication and design, pushing the IC industry
towards vertical specialization. Various stages of IC fabrication and design are being
outsourced to offshore foundries and relocated across national boundaries. However, this
geographical dispersion of IC design activities can lead to malicious modifications in the IC
supply chain [1]. There are many opportunities for perpetrators and insiders to introduce
a malicious design into an IC, which can be extremely difficult to detect by conventional
testing and verification methods [2]. A Hardware Trojan (HT) is a malicious design that lies
inactive until it is activated by rare and unknown conditions [3]. After being activated, it
can cause catastrophic damage to electronic systems or leak confidential information stored
by the IC [4,5]. Defending against HTs and detecting them faces many challenges, ranging
from circuit design and testing to economic issues [6], and resource limitations prevent
testing all possible HT types within specific circuits [7].

This motivates the need for a mathematical framework to understand the strategic
interactions between the HT designer and the defender. Recently, a number of studies have
focused on modeling their strategic interactions using game theory in order to anticipate
the outcome of such interactions [8,9]. Here, we propose a game-theoretical framework
based on fuzzy theory to obtain the optimal strategy [10]. The aforementioned works have
highlighted the advantages of game theory for the development of better HT detection
strategies. The shortcoming of these works, however, is that the payoffs of actions must be
set artificially. These works do not take into account this subjectivity, which significantly
impacts the game results and affects the resulting optimal attack and defense strategies.
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For defenders, the works in [11,12] quantitatively analyze the security and vulnerabil-
ity of the IC. Saha et al. [11] have proposed a mathematical framework that considers com-
plex circuit-level dependencies and ranks HT insertion sites inside the IC. Guo et al. [12]
introduced QIF-Verilog as a new language-based framework to evaluate the trustworthiness
of an IC at the register transfer level (RTL). To an extent, these can help to quantitatively
assess the payoffs of the defense strategies. While interesting, most of these existing works
do not consider the payoffs of HT insertion strategies.

In order to fill this gap, we introduced the Rough Set Theory(RST) to quantitatively
assess the HT threat for the payoff of its insertion strategies. Over the past ten years, RST
has become a topic of great interest to researchers for quantitative analysis and has been
applied in many domains. The degree of correlation or difference among the indexes
has been applied to risk assessment [13] and safety evaluation [14]. Subsequently, other
evaluation methods have been integrated when determining the weights, such as the
information entropy method [15] and the fuzzy analytic hierarchy process [16]. Similar
to threat assessment of HTs, these evaluate the characteristics of objects according to the
objects’ related attributes. This similarity motivates the application of the RST to HT threat
assessment. Although interesting, the above works assume that the samples have decision
attributes for quantitative assessment using RST. However, for the HT threat, it is notable
that samples have no prior data. In RST, HT threats form an information system without
decision attributes. Considering this situation, it is both critical and challenging to assess
the threat quantitatively.

In this paper, we propose a modern approach for quantitative assessment of HT threat
based on RST. We introduce information content in the rough set for weight determination
of all the attributes. Our method achieves quantitative assessment based on the Technique
for Order Preference by Similarity to an Ideal Solution (TOPSIS). Owing to its excessive
comprehensiveness, using TOPSIS as continuous data is not conducive to defenders being
able to make fast and effective defense decisions. To this end, we exploited Equal Frequency
Division (EFD) and k-means in order to discretize the data of the HT threat. This can
effectively simplify the data to improve the decision-making efficiency of defenders. The
primary contributions of our work are summarized as follows.

1. We leverage RST and TOPSIS for the quantitative assessment of HT threat. Based on
the attributes of the relevant HTs in an existing HT library, Trust-hub, we measure HT
threat, adopting rough set theory for weight calculation and TOPSIS for quantitative
assessment. The closeness coefficient is used to characterize the threat.

2. In order to address the lack of decision attributes in the corresponding information
system, we introduce information content to calculate the weight of each attribute.
Based on the information content and the significance of the attribute, the weights of
both core and non-core attributes are obtained.

3. K-means is used to discretize threat data. Aiming at the unstable clustering results in
the preliminary work, we propose the EFD method to preprocess the data and obtain
the initial cluster center. Compared with other initial center optimization methods,
this is more efficient and accurate.

4. We use BWP to characterize the effectiveness of clustering in order to solve the
problem of the number of clusters being unavailable in advance. The number of
clusters with the largest BWP is taken as the optimal choice for HT threat grading.

The rest of this paper is arranged as follows: Section 2 describes the system model and
assessment formulation; the proposed discretization based on EFD and the determination
method of the number of clusters are shown in Section 3; Section 4 represents and discusses
the statistical testing results based on HT benchmarks from Trust-hub; finally, Section 5
concludes the paper.
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2. System Model and Assessment Formulation
2.1. Information System and Attributes

Rough Set Theory uses an Information System (IS) to represent knowledge, which is
usually expressed as follows:

IS = (U, A, V, f ) (1)

where U represents the universal set, a finite non-empty set with n elements, U = { x1,x2, . . . ,xn} ,
A expresses the attribute set (a non-empty finite set with m attributes), A = { a1,a2, . . . ,am} ,
V =

⋃
a∈A

, Va is a nonempty set of attribute values, and f : U × A → V expresses an

information function that maps an element in U to exactly one value in V, which means
∀a ∈ A, x ∈ U, f (x, a) ∈ Va.

For HT threat, we established an information system according to 94 independent HTs
and their characteristics on the Trust-hub website. Over the past few years, there have been
efforts to develop comprehensive HT taxonomies based on their implementation and effect
[2]. Shakya et al. [17] have further improved the taxonomies in earlier works by including
the physical characteristics of HTs. HT taxonomy can be broken down into Insertion Phase,
Abstraction Level, Activation Mechanism, Effect, Location, and Physical Characteristics. The
HTs on the Trust-hub website are classified based on these categories. Among them, the
classification results according to physical characteristics are not independent of each other.
For example, the HT coded B19-T200 belongs to both ‘Distribution’ and ‘Layout Same’. In this
case, rough sets cannot be applied to assign values to this attribute. Therefore, the information
system for HTs was established using the other five attributes.

It is worth noting that the value assigned to each HT class may be different depending
on the host IC and the relevant use case. The value should be determined according to the
specific IC and its application scenario. Here, we take a Field Programmable Gate Array
(FPGA) used as a communication system as an example to demonstrate our weightened
assessment and grading scheme. The values of each class of attributes are shown in Table 1.
Table 1 is ordered based on its first and second column according to the ‘Chip-level Trojan
Taxonomy’ catalogue from Trust-hub. This sorting can help to quickly find the value
corresponding to the HT Taxonomy.

Table 1. Selected Attributes Analysis for HT Threats.

Attribute Class Value

Insertion Phase Design 1
Fabrication 2

Abstraction Level

Register Transfer 1
Gate 2

Layout 3
Physical 4

Activation Mechanism

Always On 4
Time-Based 2

Physical-Condition-Based 1
User Input 3

Effect

Change Functionality 2
Degrade Performance 1
Information Leakage 3

Denial of Service 4

Location

Processor 6
Memory 5

I/O 4
Power Supply 2

Clock Grid 3
Others 1
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2.1.1. Insertion Phase

The Insertion Phase corresponds to the phase in the life cycle of the IC where an HT
may be inserted. According to the existing HT samples, this attribute contains two classes,
which are Design and Fabrication. In the phase of IC design, considering that the design
needs to be mapped to the physical circuit, developers are constrained by its function, logic,
timing, and physical conditions [18]. Considering this situation, they often use third-party
IP cores or standard units to economize design costs and reduce difficulty. IP cores and
standard units used without explicit authorization are easy to implant with an HT [19]. In
the fabrication phase, subtle changes in the mask reduce the IC performance or change its
function. Attackers often implant HTs into an IC by modifying its mask. At the end of each
phase, the IC designers and testers test and correct the IC. The fabrication phase follows
the design phase. In the fabrication phase, it is possible to detect an HT inserted during the
design phase. From this point of view, the threat of an HT being inserted in the fabrication
phase is higher than the threat during the design phase.

2.1.2. Abstraction Level

Developers use hardware description language to describe the designed IC at different
levels of abstraction [20]. Correspondingly, an HT can be designed with four levels of
abstraction, which are, in decreasing order, the Register Trans f er, the Gate, the Layout,
and the Physical level. At the register transfer level, each module of the IC is described
in terms of signals, registers, and Boolean functions. An adversary has full access to the
functionality as well as the implementation of the modules, and can easily change them at
this level. A design is represented as a list of gates and their interconnections at the gate
level. Here, an adversary can insert HTs as the relevant gates and their interconnections.
At the layout level, the impact of HTs on power consumption or delay characteristics can
be planned. HTs can be realized even by changing the parameters of the original circuit’s
transistors. All circuit components s well as their dimensions and locations are determined
at the physical level, which is the lowest level of abstraction. Attackers may insert HTs
by modifying the size of wires or the distance between circuit components. It can be seen
that as the abstraction level is reduced, attackers tend to implant HTs more specifically and
carefully. This makes such HTs more difficult to detect, and thus more threatening.

2.1.3. Activation Mechanism

Common activation mechanisms of existing HTs include Time-based, Physical-
Condition-based, and User Input − based, while other HTs are Always On. Always-on
HTs are activated as soon as their hosting designs are powered on. In the case of an FPGA,
they are usually inserted with the attack effect of degraded performance, which is difficult
to detect. In addition, they can carry out long-term attacks on ICs; thus, they pose the
greatest threat. HTs activated by user input perform specific functions based on specific
user input. They can achieve a precision strike and are highly threatening. Time-based HTs
have a long latency period and pose a low threat. HTs activated by physical conditions pose
the lowest threat, as the attacker must know the specific application of the IC in advance.
An FPGA, for example, can be used in aerospace or automobiles. In different application
scenarios, the physical conditions of the IC are quite different. Under extreme conditions,
the PhysicalCondition-Based HTs may not be triggered in the IC life cycle. For example, an
HT activated by the operating frequency of a high-speed communication system cannot be
triggered in a low-speed communication system.

2.1.4. Effect

The attack effects of HTs can be divided into Denial-o f -Service, In f ormation Leakage,
Function Change, and Degraded Per f ormance. After a Denial-of-service HT completes its
attack, the whole chip becomes unresponsive; the threat of this HT is the greatest. HTs
which leak core information of the IC are highly threatening. In a communication system,
Function Change HTs usually change communication content. They pose a low threat, as
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they only change specific functions of the chip; other functions can continue to operate
normally. Performance-degrading HTs do not change the function of the chip, and have
the lowest threat.

2.1.5. Location

The higher the integration of the insert location, the stronger concealment an HT has,
meaning that it is more threatening. The inserted locations of HTs on Trust-hub include
Processors, Memory, I/Os, Clock Grids, Power Supply and Other, in order of integration
degree from high to low. In an FPGA, the I/O comprises three drivers: the input buffer, the
output buffer, and the three-state control, which can support a variety of I/O standards. In
a communication system, there are only a few clock domains; thus, the integration of the
I/O is usually higher than that of the Clock Grid.

2.2. Weight Calculation and Quantitative Assessment

In the framework of RST, the quantitative assessment of HT threat can be transformed
into an attribute weight calculation of the information system. The existing attribute weight
calculation needs a decision attribute as a reference, while the weight of the core attribute
cannot be calculated in an information system lacking decision attributes. Thus, we use the
information content and significance of each attribute here in order to obtain the relevant
weights for both core and non-core attributes. As a linear superposition of all attribute
values and their significance cannot directly assess HT threat, in order to solve this problem
we propose a learning algorithm based on the weight of the attributes and the TOPSIS
method to measure the HT threat.

2.2.1. Core Attribute

In RST, for every set of attributes P ⊂ A an indiscernibility relation IND(P) can be
defined in the following way:

IND(P) = {(x, y) ∈ U ×U|∀a ∈ A, f (x, a) = f (y, a)} (2)

where IND(P) is the equivalence class in U and IND(P) =
⋂

a∈P
IND({a}). The equivalence

class IND(P) is called the elementary set in P because it represents the smallest discernible
groups of elements. For any element xi ∈ U, the equivalence class of x in relation to
IND(P) is represented as [xi]IND(P).

For an ai ∈ A, if IND(A) = IND(A−ai), the attribute ai is called superfluous.
Otherwise, the attribute ai is indispensable in A.

A subset B ⊂ A is called a reduct of IS if and only if IND(A) = IND(B) and B is
independent of A. The set of all reducts in IS is denoted by RED(IS) or RED(A).

The core of A is the set of all indispensable attributes of A, denoted by Core(A) =
⋂

RED(A).
If the set of attributes is dependent, it may be desirable to find all possible minimal

subsets of the attributes. This leads to the same number of elementary sets as the whole set
of attribute reducts and finding the set of all indispensable attributes as the core.

The concepts of core and reduct are two fundamental concepts in RST. The reduct is
the essential part of an IS which can discern all objects discernible by the original IS, while
the core is the common part of all reducts.

2.2.2. Information Content

The concept of information content in information theory [21] is introduced into the
information system. In an information system, S = (U, A, V, f ), P ⊆ A, and U/IND(P) =
{X1, X2, . . . , Xn}. The information content of P is as follows:

I(P) =
n

∑
i=1

|Xi|
|U|

(
1− |Xi|
|U|

)
= 1− 1

|U|2
n

∑
i=1
|Xi|2 (3)
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where |X| is the base of set X and |Xi|/|U| represents the probability of equivalence class Xi
in U. An equivalence class contains multiple elements, all of which constitute U. The sum of

the probabilities of all equivalence classes in U is 1,
n
∑

i=1

|xi |
|U| = 1, and Equation (3) holds.

2.2.3. Significance of Attribute

The significance of attributes enables us to evaluate attributes by assigning a real
number from the closed interval [0,1] that expresses the importance of an attribute in an
information system. The significance of an attribute a can be evaluated by measuring the
effect of removing the attribute a ∈ A from the attribute set A.

For any attribute a ∈ A, we define its significance, sigA−{a}(a), for A as follows:

sigA−{a}(a) = I(A)− I(A− {a}) (4)

In particular, when A = {a}, sig(a) represents sigφ(a):

sig(a) = sigφ(a) = I(A)− I(φ) = I({a}) (5)

where U/IND(φ) = {U} and I(φ) = 0.
The significance of a ∈ A is measured by the changes in information content caused

by the removal of a from A. If and only if sigA−{a}(a) > 0 is a ∈ A indispensable in A
while Core(A) = {∀a ∈ A|sigA−{a}(a) > 0}.

In an information system S = (U, A, V, f ) and C ⊆ A, for any attribute a ∈ (A− C)
we define its significance, sigC(a), as follows:

sigC(a) = sig(C∪{a})−{a}(a) = I(C ∪ {a})− I(C) (6)

The significance of a ∈ (A− C) is measured by the changes in information content
caused by the adjunction of a to C.

2.2.4. Weight of Attributes

The existing weighting methods directly assign the attribute significance as the weight
to the relevant non-core attribute. Additionally, the calculation of the core attribute weight
needs the support of the decision attribute. However, as an information system, HT
threats have only information attributes and no decision attributes; thus, the weight of core
attributes cannot be calculated by traditional methods. Therefore, we propose a weight
calculation method based on information content, which covers both core attributes and
non-core attributes, as shown below:

W(a) =
{

sigA−{a}(a) , if a ∈ C
sigC(a) · I(C) , if a /∈ C

(7)

2.2.5. Quantitative Assessment Algorithm Based on TOPSIS

The number of classes in each attribute is different, and the significance does not
have the evaluation function. In light of this situation, we propose a learning algorithm,
summarized in Algorithm 1, based on the attribute weight and the TOPSIS method for
quantitative assessment.
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Algorithm 1 Quantitative Assessment Algorithm.

Input: HT information system, IS = (U, A, V, f )
Output: Threat value of each element in the information system, CCi
Initialize Core(A) = Φ

Calculate the information content of the information system I(A) = 1− 1
|U|2

n
∑

i=1
|Xi|2

Calculate the significance of each attribute ai ∈ A, sigA−{ai}(ai) = I(A)− I(A− {ai})
For i = 1:m do

If sigA−{ai}(ai) 6= 0 then
Core(A) = Core(A) ∪ {ai}

End if
End for
Let C = Core(A)
Calculate the information content of the core, I(C)
Calculate the weight of each attribute, W(aj)

Calculate the standardized matrix, zij =
xij√
n
∑

i=1
x2

ij

Calculate the positive and negative ideal reference points,Z+, Z−

Calculate the distances to the positive and negative ideal reference points, D+
i , D−i

Calculate the closeness coefficient of each HT, CCi
Return CCi.

In RST, the information system can be concisely expressed in matrix format as follows:

X =


x11 x12 · · · x1m
x21 x22 · · · x2m

...
...

. . .
...

xn1 xn2 · · · xnm

 (8)

where X is the attribute matrix, Xij is the observed value of each element for i = 1, 2 · · · n,
and j = 1, 2 · · ·m.

In order to eliminate anomalies with different measurement units and scales, the initial
matrix should be standardized. The standardized matrix is expressed as follows:

Z =


z11 z12 · · · z1m
z21 z22 · · · z2m

...
...

. . .
...

zn1 zn2 · · · znm

, zij =
xij√
n
∑

i=1
x2

ij

(9)

The positive and negative ideal reference points can be outlined as follows:

Z+ =

 max{z11, z21, · · · , zn1},
max{z12, z22, · · · , zn2},
· · · , max{z1m, z2m, · · · , znm}


=
(
Z+

1 , Z+
2 , · · · , Z+

m
) (10)

Z− =

 min{z11, z21, · · · , zn1},
min{z12, z22, · · · , zn2},
· · · , min{z1m, z2m, · · · , znm}


=
(
Z−1 , Z−2 , · · · , Z−m

) (11)

The distances to the positive and negative ideal reference points are calculated using
the following formulas:
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D+
i =

√√√√ m

∑
j=1

wj

(
Z+

j − zij

)2
, D−i =

√√√√ m

∑
j=1

wj

(
Z−j − zij

)2
(12)

where wj is the weight of each attribute as determined by the proposed method and D+
i

and D−i are the distances to the positive and negative ideal reference points, respectively.
The closeness coefficient (CC) of each element can be calculated as follows:

CCi =
D−i

D+
i + D−i

(13)

After the CCs have been calculated, the HT threat can be determined. The higher the
value of the CC, the higher the HT threat is.

3. Assessment of Grade Division and Grade Quantity
3.1. EFD-Based K-Means for Grade Division

Continuous data are too detailed to describe HT threat, which is adverse to the
defender’s preparing fast and effective HT countermeasures. By discretizing the threat
data for HTs, these can be effectively simplified. This facilitates the presentation of the HT
threat in order to improve the decision-making efficiency of the defenders. The k-means
clustering algorithm is used here to discretize the threat data and realize the classification
of HT threat. In the preliminary experiment, there are two problems with using k-means to
classify the data on HT threat. One is that the clustering results are unstable, and the other
is that the number of clusters is uncertain.

HT threat data of different types varies greatly in shape and size. In order to minimize
the sum of squared errors, it is possible to segment the large clusters. In addition, when
using the sum of squared errors as the criterion function to measure the clustering effect,
the best clustering result corresponds to the extreme point of the criterion function. There
are many local minima in the criterion function, and each step of the k-means algorithm is
carried out in the direction of reducing the criterion function value. If an initial clustering
center is selected near a local minimum, the algorithm converges at this local minimum.
In the k-means algorithm, the initial clustering center is randomly selected from the data,
which may lead to a locally optimal solution rather than a globally optimal solution.
This means that the clustering results have great uncertainty. The selection of the initial
clustering center is thus an important factor affecting the clustering results.

In this study, EFD was used to preprocess the data and the intermediate objects of each
cluster in the result were selected as the initial clustering center for the k-means algorithm.
This improves the uncertainty of clustering results caused by the random selection of initial
clustering centers and modifies the cluster of objects to improve the accuracy of clustering.
The EFD-based method for initial clustering centers selection is as follows:

The original n objects are arranged from small to large and form a set,
S= {x1,x2, · · · ,xpi, · · · ,xn}.

pi=


[

i∗n
k

]
+
[
(i−1)∗n

k

]
2

 (14)

where i = 1, 2, · · · , k, [·] indicates rounding, k is the number of the clusters, and xpi is the
ith initial cluster center.

3.2. Determination of Grade Quantity Based on BWP

Due to the uncertain number of clusters, here, we use BWP to evaluate the clustering
results and determine the optimal number of clusters. In general, a good clustering result
should reflect the internal structure of the dataset as much as possible in order to ensure
that the objects within the same cluster are as similar as possible and the objects in various
clusters are as different as possible. From the perspective of distance measure, it is the
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optimal clustering result that minimizes the intra-cluster distance and maximizes the
inter-cluster distance. BWP is used to reflect the intra-cluster tightness and inter-cluster
separation of the clustering result [22].

Assume a dataset with n objects, S= {x1,x2, · · · ,xn}, and suppose that n objects are
divided into k clusters; we define the inter-cluster distance, b(j, i), of an object i in cluster j
as the minimum average distance between object i and the object of each other cluster. Its
calculation is as follows:

b(j, i) = min
1≤c≤k,c 6=j

(
1
nc

) nc

∑
p=1

∥∥∥xc
p − xj

i

∥∥∥2
(15)

where c and j are the relevant cluster numbers, nc represents the number of objects in cluster
C, xc

p represents the pth object in cluster C, and ‖·‖2 is the square of the Euclidean distance.
Similarly, we can define the intra-cluster distance, w(j, i), of an object i in cluster j

as the average distance from this object to other objects in cluster j. Its calculation is as
follows:

w(j, i) =

(
1

nj − 1

) nj

∑
p=1,p 6=i

∥∥∥xj
p − xj

i

∥∥∥2
(16)

The cluster effectiveness of object i in cluster j is defined as BWP(j, i). The effectiveness
of the clustering result is the sum of BWP(j, i), the calculation method for which is as
follows:

BWP = ∑ BWP(j, i) = ∑
b(j, i)− w(j, i)
b(j, i) + w(j, i)

(17)

Theoretically, the larger b(j, i) is, the higher the separation between clusters, and the
smaller w(j, i) is, the higher the tightness within the cluster. The clustering result with the
largest BWP is the most effective, and its number of clusters is defined as the number of
HT threat grades.

4. Case Study
4.1. Test Setup

The information system for HT threat was established based on 94 HTs and their
characteristics obtained from the Trust-hub website, which contained 96 HTs. Two HTs
were removed as there was no classification label for them. According to the above analysis,
the attributes of the information system are Insertion Phase, Abstraction Level, Activation
Mechanism, E f f ect, and Location. MATLAB was used to realize the k-means algorithm on
a computer with an Intel i7-7700 CPU and 8 GB RAM.

4.2. Quantitative Assessment Results

Using Algorithm 1, the weight of each attribute and whether it was a core attribute
was established as shown in Table 2. The core attributes in the HT threat information
system are Abstraction Level, Activation Mechanism, E f f ect, and Location. According to
Algorithm 1, the process of calculating the weight is as follows:

I(A) = I(C) = 1− 15× 12 + 6× 22 + 4× 32 + 2× 42 + 62 + 92 + 112 + 162

942 = 0.929 (18)

sigC(a1) = sig(C∪{a1})−{a1}(a1) = I(C ∪ {a1})− I(C) = 0 (19)

sigA−{a2}(a2) = 1− 522 + 262 + 162

942 = 0.588 (20)

sigA−{a3}(a3) = 1− 272 + 512 + 52 + 112

942 = 0.607 (21)
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sigA−{a4}(a4) = 1− 72 + 252 + 262 + 362

942 = 0.701 (22)

sigA−{a5}(a5) = 1− 292 + 22 + 62 + 42 + 12 + 522

942 = 0.592 (23)

In order to verify the weight calculation method based on RST, we compared the results
of the Entropy Weight Method (EWM) [23] with the results of the proposed method, as shown
in Table 2. It can be seen that the weights for the five attributes of the two methods are in
the same order, namely, E f f ect, Activation Mechanism, Location, Abstraction Level, and
Insertion Phase, ordered from highest to lowest. In terms of running time, RST requires
1.92 ms, while EWM requires 1.61 ms. In addition, the RST algorithm can be used for attribute
reduction in order to simplify calculation. The Insertion Phase is a non-core attribute and its
weight is zero, indicating that the Insertion Phase attribute is redundant. In the original data,
the difference in the Insertion Phase was the smallest. This means that the discrimination of
HT threat is small during the Insertion Phase. From the attributes shown in Table 1, the values
for the Insertion Phase are related to the Abstraction Level and Activation Mechanism.

Table 2. Weight Analysis and Core Attribute Judgment.

Category Insertion
Phase

Abstraction
Level

Activation
Mechanism Effect Location

Core Attribute No Yes Yes Yes Yes
Weight for RST 0 0.588 0.607 0.701 0.592

Weight for EWM 0.057 0.125 0.219 0.395 0.202

All the HTs inserted in the fabrication phase are described at the layout level as
well as being always activated, and vice versa. Therefore, there is a high positive cor-
relation between Insertion Phase and both Abstraction Level and Activation Mechanism.
The Insertion Phase attribute can be replaced by the attributes of Abstraction Level and
Activation Mechanism. In reality, for HTs inserted in the fabrication phase, their Abstraction
Level and Activation Mechanism are rather limited.

According to the results of the attribute weight analysis, the Abstraction Level, Activation
Mechanism, E f f ect, and Location are the core attributes, and are the most important in-
dices for assessing HT threat. Numerically, the weight of E f f ect is the largest and that of
Abstraction Level is the lowest. In fact, HT threats are mainly determined by their attack
effects. In comparison, the description language used has relatively low impact on the HT
threat.

Our overall threat analysis of the 94 HTs is shown in Figure 1. Among them, the threat
of multpyrmid-T200 is the greatest, with a CC of 1. This is because the multpyrmid-T200
HT is inserted during the Fabrication phase, is included in the layout design, is always
active, causes denial of service, and resides in the processor. It has the highest value on
all five attributes, serving as the positive ideal reference point in TOPSIS. On the contrary,
the threat of RS232-T200 is the lowest; with a CC of 0. It is inserted at the Design phase,
is included in the Register Transfer level, is activated by a Physical Condition, results
in Degraded Performance, and resides at a location, Other, that is not one of the five
specifically named in Table 1. It has the lowest value on all five attributes, serving as the
negative ideal reference point in TOPSIS.
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Figure 1. Threat-grading results for the 94 HTs found on Trust-hub.

4.3. Preliminary Experiment of Threat Discretization

The threat analysis results were clustered 10,000 times using the k-means algorithm.
The mode of the clustering result was selected as the reference. If the clustering result was
different from the mode of the clustering results, it was regarded as an error. The number
of errors in the 10,000 clustering results was used to characterize the stability and accuracy
of the clustering results. The higher the number of errors, the less stable and accurate the
clustering is. In [24], the rationality of the empirical rule k ≤

√
n is proved theoretically,

where k is the number of clusters and n is the number of samples. As the number of clusters
is undetermined, there are 94 instances of the information system for n = 94 and 2 ≤ k ≤ 9.
The results with 10,000 clusterings carried out by randomly selecting the initial cluster
center are shown in Figure 2.

Figure 2. Instability analysis of k-means clustering results for different values of k.

It can be concluded that when k = 3, the number of errors is the lowest. However,
the error is rather high, even for the best case, as the error proportion for k = 3 is nearly
37%. When k > 3, the proportion of errors is higher than 50%, up to 98%, and thus the
clustering results are unstable. In this case, the data on HT threats cannot be discretized by
the k-means algorithm directly, and further improvement is needed.

4.4. Clustering Results and Optimal Cluster Selection

We used the k-means++ algorithm [25], equidistant division (ED) [26], and EFD to select
the initial clustering center. The results of our analysis of 10,000 clusterings is shown in Table 3.
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The ‘running time’ in the table refers to the time spent executing the clustering algorithm
10,000 times with MATLAB, and was recorded using the ‘tic toc’ function.

Table 3. Comparison of the effects of four clustering methods on the number of errors and the running time.

Category
Number of Errors Running

Time (s)K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9

k-means 4986 3706 5840 6220 8197 9214 9497 9632 259.355

k-means++ 0 244 7546 8204 7976 7816 4971 6229 303.718

ED-based
k-means 0 446 2974 3842 5538 5134 4984 5211 283.319

EFD-based
k-means 0 0 0 0 0 0 0 0 245.997

It can be seen from the table that when k > 3, the error proportion of both the k-
means++ algorithm and the ED-based k-means is higher than 20%. Hence, when the
number of clusters is high, the traditional methods demonstrate poor stability in the
clustering of HT threat data. Using EFD to select the initial clustering center can reduce
the number of errors to zero. When 2 ≤ k ≤ 9, the number of errors is zero, and thus
the clustering results are highly stable. In terms of running time, EFD-based k-means has
the shortest time at of 245.99 s. Obviously, in the discretization of HT threat data, the
EFD-based method is much better than the other two clustering algorithms and has ideal
results with regards to both stability and operation time.

We used the BWP index to characterize the effectiveness of clustering and determine
the optimal number of clusters. For 2 ≤ k ≤ 9, the BWP indices of the EFD-based clustering
are as shown in Figure 3. When k = 9, the BWP index is the largest, which is much
higher than for the other cases. This indicates that the separation between clusters and
the tightness within clusters are the best. It is worth noting that, according to Figure 3,
when k ≥ 6 the BWP index increases with the increment of k. However, according to the
empirical rule in [24], k ≤ 9. The higher k is, the better the clustering effect; however, this
means that there is more detailed information on HT threats is, which is not conducive to
the defender being able to prepare fast and effective countermeasures. Therefore, when
discretizeing the HT threat we divided it into nine grades, as shown in Figure 1.

Figure 3. Cluster Validity Analysis of the proposed method with different values of k.

The improved k-means algorithm clearly classifies the threat from high to low, and the
separation degree of each level is rather high. The Effect of the five HTs with the highest
threat is denial of service, and their activation mechanism is Always On, which is consistent
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with the actual situation. The thirteen HTs posing the lowest threat level are all activated
by physical conditions. Thus, it can be seen that the E f f ect and Activation Mechanism are
the main factors affecting HT threat, which is consistent with the weight calculation results;
the correctness of the proposed method is thus verified.

5. Conclusions

This paper suggests a new scheme for the quantitative assessment of HT threat through
calculation of the weights of their attributes based on RST and TOPSIS. A novel attribute
weight calculation method that introduces the use of the information content and attribute
significance into the rough set theory is proposed. This method can calculate the weights
for both core and non-core attributes of the information system without the use of decision
attributes. TOPSIS is incorporated into the proposed method for the quantitative analysis
of HT threat, which is characterized by the closeness coefficient. A clustering method based
on the k-means algorithm and equal frequency division is proposed for the improvement
of clustering and prompt countermeasure deployment. In contrast to many other k-means
algorithm-based clustering methods, this method has the advantages of high accuracy and
short running time, as demonstrated in this paper by statistical testing using 94 benchmark
HT circuits found on Trust-hub. The BWP index was used to determine the number of clusters
and verify the effectiveness of clustering. This type of quantitative assessment is particularly
useful for calculating of the payoff of the attackers’ actions in HT-related game theory.
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