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Abstract: Movement monitoring in patients with Parkinson’s disease (PD) is critical for quantifying
disease progression and assessing how a subject responds to medication administration over time. In
this work, we propose a continuous monitoring system based on a single wearable sensor placed on
the lower back and an algorithm for gait parameters evaluation. In order to preliminarily validate the
proposed system, seven PD subjects took part in an experimental protocol in preparation for a larger
randomized controlled study. We validated the feasibility of our algorithm in a constrained environ-
ment through a laboratory scenario. Successively, it was tested in an unsupervised environment, such
as the home scenario, for a total of almost 12 h of daily living activity data. During all phases of the
experimental protocol, videos were shot to document the tasks. The obtained results showed a good
accuracy of the proposed algorithm. For all PD subjects in the laboratory scenario, the algorithm for
step identification reached a percentage error low of 2%, 99.13% of sensitivity and 100% of specificity.
In the home scenario the Bland–Altman plot showed a mean difference of −3.29 and −1 between the
algorithm and the video recording for walking bout detection and steps identification, respectively.

Keywords: gait analysis; home monitoring; inertial measurement system; Parkinson’s disease;
wearable sensor

1. Introduction

Parkinson’s disease (PD) is the second most common progressive neurodegenerative
disorder of the central nervous system after Alzheimer’s disease [1]. PD is characterized by
deterioration and successive death of the dopaminergic neurons located in the substantia
nigra of the basal ganglia in the midbrain [2]. Major PD signs can be divided into motor
symptoms and non-motor symptoms. Generally, they appear gradually and with the
worsening of the disease and contribute to a significant reduction of the patient’s quality
of life. Among the non-motor symptoms there are cognitive impairment, depression,
sleep disorders, and other behavioural and psychiatric problems. The most recognisable
symptoms of PD related to the motor degeneration are bradykinesia, postural instability,
rigidity, and tremor at rest [3].

Although PD is an irreversible disorder, adequate medical treatment can temporarily
improve the patient’s quality of life with Parkinson’s Disease. In fact, medications based on
Levodopa can give relief to patients by reducing for a period of time the effect of the motor
manifestations. In this period, also called the “on” state, the symptoms are well managed
by the patient. When the Levodopa starts to lose its effect, motor symptoms deteriorate,
and movement becomes more difficult (“off” state) [4]. The alternation throughout the day
between “on” and “off” states is known as motor fluctuations. An accurate reporting of
PD motor states and symptoms will enable doctors to personalize medication intakes and,
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therefore, improve the response to treatment. For these purposes, a widespread medical
method for a better overview of the patient’s motor symptoms over a long-lasting period
consists of a diary self-reported by the patient during his daily life at home.

Motion analysis provides objective information about human locomotion and it is
frequently used for treatment planning. Several methods have been successfully utilized
to extract objective gait parameters; among them, stereophotogrammetry, dynamometric
force platforms, treadmills, and electromyography are frequently adopted. Despite these
instruments ensuring the highest performances in terms of accuracy and reliability, they
are expensive, uncomfortable for patients, restricted to specialized laboratories and cannot
be applied in large populations [5]. Moreover, such equipment cannot be applied in home
environments which represent the most appropriate scenario for the monitoring of patient’s
activities of daily living (ADL) [6,7].

In [8], the authors showed that conventional measures in a laboratory environment
do not reflect the daily-living activities of PD patients. In fact, daily-living measures pro-
vide important information that is not captured in a conventional one-time laboratory
assessment of gait, balance or the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS).
With the advanced growth in technologies, the use of wearable sensors for an objective
long-term monitoring of PD patients in the home scenario can play an important role [9,10].
The wearable sensors are better suited to quantify gait in unsupervised and free-living
environments, such as in a home scenario, providing a more comprehensive overview
of the continuous walking monitoring. Several validation studies in controlled settings
exist, but only a few of them have examined the validity of wearable and associated algo-
rithms in uncontrolled environments [11]. Various works have focused on the detection of
tremor episodes in constrained and unsupervised environments [12–14], on the PD turning
analysis in patients suffering from freezing [15] and fall risk [16,17], and on the detection
of on/off states [18]. Other works have carried out a walking analysis in laboratory and
home scenarios, providing gait quantity (i.e., number of steps and number of walking
bouts) or gait quality (i.e., step length (m), step regularity, and the amplitude of dominant
frequency) [8,19–22]. Furthermore, in the literature, walking activity is not always correctly
detected during free living [8,20] and therefore it is necessary to develop reliable algorithms
able to correctly identify walks and distinguish them from non-walking activities. Con-
versely, other recent papers have analyzed walking only in clinical environments, obtaining
only time domain parameters [23–25]. Recent studies propose wearable sensor networks
that are able to monitor the level of activity and the motor fluctuations of a PD subject
during the day [26,27]. However, the use of a single inertial measurement unit able to
provide a complete analysis of quantity and quality gait in time and frequency domains
has not yet been studied.

In this work we propose a simple, non-invasive and low-cost system for home moni-
toring that does not involve changes in the common lives of the subjects, especially of the
PD patients. Starting from data acquired by a wearable sensor placed at the lower back, we
present an algorithm able to provide a complete gait analysis in terms of both qualitative
and quantitative parameters of walking in the time and frequency domains. The goal of this
study is to propose an algorithm to objectively assess various gait parameters, investigate
treatment effects, and quantify the disease state in PD. With this aim we validated the
proposed algorithm and tested it with PD subjects in an unsupervised environment.

2. Design of the Proposed System

The system proposed in this work consists of an inertial wearable sensor placed on
a subject’s lower back and an algorithm specifically developed for the estimation of gait
analysis parameters. The inertial wearable sensor used in this study is an NGIMU (Next
Generation Inertial Measurement Unit) from X-Io Technologies Limited (Bristol, UK). It is
a wireless, small and non-invasive MARG (Magnetic Angular Rate and Gravity) sensor
embedding a tri-axial accelerometer, a tri-axial gyroscope, and a tri-axial magnetometer. A
velcro band was positioned on the lower back of the subject and the sensor was placed on it,
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as shown in Figure 1. The NGIMU was positioned following specific orientations: the x-axis
of the NGIMU was used as the medial lateral (ML)-axis and pointed laterally, the y-axis
as the vertical-axis and pointed upward, and the z-axis as the anterior posterior (AP)-axis
and pointed forward. Starting from the data acquired by the inertial wearable sensor, an
algorithm for the home assessment of gait parameter was developed for monitoring the
PD subjects’ responses to medication administration over time. The block diagram of the
proposed algorithm is shown in Figure 2 and each step of it is described in the following.

Figure 1. The used inertial wearable sensor and its position on the subject’s lower back.

Figure 2. Block diagram of the proposed algorithm.

2.1. Pre-Processing

The raw tri-axial accelerometer data were pre-processed by linear de-trending and by a
second-order Butterworth band pass filter [21,28]. The cut-off frequency of the implemented
filter was from 0.5 to 5 Hz, which included the variability and consistency of the gait
pattern [29].

2.2. Extraction of the Activity Segments

The pre-processed signals were filtered to extract the activity segments. An activity
is defined as a movement of the wearable device associated with an ADL performed by
the subject. In order to identify the activity segments, accelerometer data were segmented
using a two-second sliding window with 50% overlap [30]. The sliding window was used
to segment time series for activity segments extraction. We selected a window size of two
seconds to ensure the capture of an activity and to exclude any type of pause performed
by the subject. To distinguish between periods of user activity and rest, a measure that



Appl. Sci. 2022, 12, 5486 4 of 13

includes the effect of signal variations in all three axes was required. To extract the activity
segments, the signal magnitude area (SMA) and the energy (EN) are defined by equations:

SMA =
N

∑
i=1

√
Ax(t)2 + Ay(t)2 + Az(t)2 (1)

EN =
N

∑
i=1

√
| f f t(Ax(t))|2 + | f f t(Ay(t))|2 + | f f t(Az(t))|2, (2)

where i is the current sliding window, N is the total number of sliding windows, Ax(t),
Ay(t), and Az(t) denote accelerations along x, y, and z axes in time domain, and fft is the
fast Fourier transform. If the SMA and EN values of the current sliding window exceed the
75% of the mean of the SMA and EN, respectively, for at least three consecutive windows,
activity is considered to have occurred. Conversely, values below the threshold mean the
user is in a resting state. Subsequently, only activity with a duration higher than 10 s was
used for further processing. Figure 3 shows the output of this step of the algorithm.

Figure 3. The superposition of the x–axis (red), y–axis (blue), and z–axis (green) components of
acceleration and the extracted activity segments (yellow) as a function of time.

2.3. Extraction of Walking Segments

To better focus on walking segments and so to remove activity windows that did
not include walks, the periodicity of the signal was analyzed. Rapid movements of the
wearable sensors, sitting and standing up and other kinds of activities were excluded from
further process. On the contrary, activities such as walks, walks while turning, walks while
ascending or descending stairs were considered.

The activity segments computed in the previous step were divided into consecutive
five-seconds windows and were analyzed in the frequency domain. The Power Spectral
Density (PSD) derived from anterior posterior acceleration reflects the variability and
regularity of the gait pattern. The extraction of walking segments were based on the
characteristics of the dominant peak of the main frequency in the PSD of the 0.5 to 3 Hz
band [29]. In detail, for each five-seconds sliding window, the local maxima were found. If
three or more of these maxima exceeded a threshold set at 75% of the absolute maxima,
the window was not considered for the walking extraction. If more than 60% of number of
sliding windows, in which the original activity segment was divided, were not recognized
as walking bouts, the entire activity segment was discarded. Moreover, the Attitude
and Heading Reference System (AHRS) was adopted to provide a unique measure of
body segment orientation on which the wearable sensor was positioned [31]. Therefore,
the quaternions and the raw data measured by the inertial wearable sensor were used
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to compute the acceleration rotated providing acceleration components in the Earth’s
reference system [32].

2.4. Extraction of Heel Strike and Toe Off

For Heel Strike (HS) and Toe Off (TO) extraction, previous studies have shown the cor-
respondence between the local minima and maxima of the Continuous Wavelet Transform
(CWT) with the HS and TO events in healthy adults and PD patients [28,33]. According to
such studies, the proposed algorithm is based on the CWT approach [21] for the HS and TO
extraction. The anterior posterior acceleration was integrated and differentiated by CWT,
using an estimated wavelet scale and Daubechies first-order (db1) wavelet. The estimated
scale parameter (a1) was computed as follows:

a1 =
CEN1

DF
Ts

, (3)

where CEN1 is the center frequency of the db1 wavelet, DF is the most dominant frequency
of the spectrum of the AP acceleration, Ts is the sampling period. The local minima of the
differentiated signal are the detected HS events. Subsequently, the first-order differentiated
signal is differentiated again by using CWT with estimated wavelet scale and Daubechies
second-order (db2) wavelet. The estimated scale parameter (a2) was computed as follows:

a2 =
CEN2

DF
Ts

, (4)

where the CEN2 is the center frequency of the db2 wavelet. The local maxima of the latter
signal are the detected TO events. Figure 4 shows an example of step detection from a
walking segment where HS and TO events are identified.

Figure 4. Temporal representation of first–order (CWT1, in red) and second–order (CWT2, in blue)
Continuous Wavelet Transform from AP acceleration. The first local minima indicate the HS events
(red circles), the second local maxima indicate the TO events (blue circles).
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2.5. Extraction of Parameters

Walking windows detected from the previous step were used for the extraction of
gait parameters related to the motion analysis. These parameters were extracted from
each walking window and could be divided into two main groups: metrics related to
the quantity of walking (show in Table 1) and metrics related to the quality of walking in
frequency and time domains (shown in Table 2).

Table 1. Gait parameters related to the quantity of walking.

Parameter Unit Axis

Total number of walks n AP
Total walking duration % AP
Total number of steps n AP

Median walking bout duration s AP
Median number of steps for bouts n AP

Cadence steps/minute AP

Table 2. Gait parameters related to the quality of walking, in frequency and time domains.

Parameters Units Axes

Frequency measures

Dominant frequency Hz V, AP, ML

Amplitude of
dominant frequency PSD V, AP, ML

Width of dominant frequency Hz V, AP, ML

Slope of dominant frequency PSD/Hz V, AP, ML

Harmonic ratio # V, AP, ML

Temporal measures

Step time s AP

Stride time s AP

Stance time s AP

Swing time s AP

Double support time s AP

Single support time s AP

Step time variability s AP

Stride time variability s AP

Stance time variability s AP

Double support
time variability s AP

Step regularity # V, AP, ML

Stride regularity # V, AP, ML

Step time asymmetry s V, AP, ML

Stride time asymmetry s V, AP, ML

Double support
time asymmetry s V, AP, ML

Parameters illustrated in Table 1 were directly considered for the final report on the
subject’s state of health. Instead, all frequency and temporal measures shown in Table 2
were computed as weighted means before inserting into the final report on the subject’s state
of health. They were extracted from each walking window and then averaged, assigning
weights proportional to the duration of the walking bout to which they belong. Therefore,
a longer bout is more significant than a shorter one and has a greater influence on the



Appl. Sci. 2022, 12, 5486 7 of 13

final values of the parameters calculated in that window. At the end of this operation, all
metrics were collected in the final report that represents a summary of the subjects’ gait
characteristics (in terms of quantity and quality of walking) related to motion analysis
for the entire recording. As shown in Figure 5, the final report illustrates all the extracted
parameters from the proposed algorithm and a histogram for the visualization of the patient
status with respect to his standard status condition.

Figure 5. Graphical User Interface of the final report on the PD subject’s health state, where
the extracted parameters (in the bottom) and the histograms of the patient status (on the right)
are illustrated.

3. Experimental Protocol

The proposed system was tested in an experimental protocol in order to evaluate its
performance. A total of seven volunteers PD subjects (aged over 70 years) took part in the
experimental protocol of this study. All the PD subjects gave their informed consent before
participating in the experimental protocol. In particular, the tests were carried out in both
home and laboratory scenarios, and each subject was recruited for both trials. While the
tasks of the laboratory scenario aimed to assess the developed algorithm performance in
gait parameters detection, the data acquired over 12 h during tasks of the home scenario
were used to test the proposed algorithm in a home environment. In each scenario, the tasks
were video recorded through a GoPro to verify the correct functioning of the proposed
algorithm. Subjects wore the camera attached to the lower abdomen through the velcro
band used for the sensor and it was directed at the participant’s feet. The tasks of the
laboratory scenario were performed in the private clinic “Villa dei Pini” (Civitanova Marche,
Italy) where, as shown in Figure 6, the subjects were invited to perform three different tasks
as follows:

• Timed Up and Go (TUG) task: subject started from sitting on a chair, then walked
straight on for some meters, completed a turn of 180° around an obstacle, moved
straight on for some meters again, and finally sat again on the chair. This activity was
performed twice;

• Stair task: subject started from sitting on a chair, then walked straight on for some
meters, ascended and descended the stairs four times, walked straight on for some
meters again, and finally sat again on the chair;
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• Free walking task: subject walked “freely” inside and outside the clinic for 15 min (so
experiencing several straight walks, turns, stair ascending and descending activities,
and pauses).

(a) (b) (c)

Figure 6. Laboratory trial: (a) Timed Up and Go (TUG) task; (b) Stair task; (c) Free walking task.

In the task of the home scenario the subjects were asked to switch on the device and
to wear it while performing their common ADLs during the day. At the same time, they
annotated these activities in a diary which could also include additional information about
problems with the device (improper device positioning or switching off due to the battery
discharging) and the description of subject’s health status during the day.

Statistical Analysis

In order to evaluate the performance of the proposed algorithm, a statistical analysis
of the tasks carried out in laboratory and home scenarios was performed. In the tasks
of the laboratory scenario the performance of the proposed algorithm was evaluated in
terms of absolute Percentage error, Sensitivity and Specificity. These metrics were computed
as follows:

Percentage error =
|NA − NV |

NV
∗ 100 (5)

Sensitivity =
TP

TP + FN
(6)

Speci f icity =
TN

FP + TN
, (7)

where NA is the value count estimated by the algorithm, NV is the total count number of
Step (S) or Bout (B) obtained by the video recording, TP is the True Positives, TN is the
True Negatives, FP is the False Positives, and FN is the False Negatives.

Subsequently, we tested the algorithm in the home scenario, during the daily living
activity in an unsupervised environment. In this scenario, Bland–Altman plots were
adopted to check for nonlinear distributions of error between the video recording and the
proposed algorithm. In particular, Bland–Altman plots were used to assess the agreement
between the measures obtained from algorithm and the videos, where the difference (D)
and the average (M) were computed as [34]:

D = NA − NV (8)
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M =
NA + NV

2
. (9)

4. Results

The evaluation of the proposed system was performed through a comparison in terms
of walking bout and step between the results obtained with the developed algorithm and
the video recording. Seven PD subjects were involved in the tasks of the experimental
protocol both in the laboratory scenario and in the home scenario.

In the laboratory scenario, the algorithm was validated through a comparison with
the video recordings in terms of percentage error, sensitivity and specificity. From each
walking bout the steps performed during the tasks carried out by the seven PD subjects
were extracted. The results obtained by the algorithm were compared with those extracted
from the recordings. Table 3 reported the results obtained for a subject during the task
of the laboratory scenario. In this case we have individuated nine walking bouts for this
PD subject and we compared the number of steps extracted by video with that obtained
through the algorithm. For each walking bout we computed the percentage error and the
sensitivity and specificity overall.

Taking into account all seven PD subjects, we obtained a high accuracy of the proposed
algorithm in terms of sensitivity and specificity, with values of 99.13% and 100%, respectively.

Table 3. Validation values for steps detection in each walking bout performed by a single subjects
during the laboratory trial.

Walking Duration of
Walking [s]

Number of
Steps from

Video Recording

Number of
Steps Extracted

from the
Algorithm

Algorithm’s
Percentage
Error [%]

Sensitivity [%] Specificity [%]

1 21.59 37 37 0

98.60 100

2 10.78 19 19 0

3 21.50 39 39 0

4 23.69 40 40 0

5 81.66 148 146 1.35

6 75.16 132 130 .52

7 193.10 346 340 1.73

8 39.96 68 67 1.47

9 185.46 310 305 1.61

To test and verify the algorithm outside a constrained environment, data on PD subjects
were acquired in a domestic context, through continuous monitoring over 12 h. The subjects
were equipped with the wearable device placed on their lower back and a GoPro for video
recording the daily living activity, for a long-term evaluation of the proposed algorithm.
The experimental results of the home scenario are shown in Figure 7. Bland–Altman
plots showed agreement between the algorithm and video for bout (Figure 7a) and step
(Figure 7b) count values. Figure 7 shows an average ± Limits of Agreement (1.96*SD) of
−3.29 ± 14.03 and −1 ± 24.74 for bout and step, respectively. Included in both plots is a
point incorrectly identified by the algorithm.
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(a) (b)

Figure 7. Bland–Altman plots for: (a) bout count; (b) step count. The difference (D) between the
algorithm and the video recording as the y–value, and the mean (M) between the two measurements
as the x–value. While solid line in each plot represents the mean count difference between the
algorithm and video, dashed lines represent 95% limits of agreement.

5. Discussion

Real life studies reflect how treatments/medications administered to PD subjects
during a clinical visit are effective. In order to provide continuous monitoring of the
motor activity of the PD subject during daily life, we propose a system based on a single
wearable device and an algorithm specifically developed for the estimation of gait analysis
parameters. The existing research is not able to provide a complete analysis of the quantity
and quality gait in time and frequency domains through a single inertial measurement
unit [20,22]. In fact, Del Din et al. [19] extracts some gait parameters related to the quality
of walking only in the time domain. The performance of the proposed system was tested in
an experimental protocol composed of tasks both in a laboratory scenario and in a home
scenario. In consideration of the results obtained from the laboratory scenario a comparison
with video recordings was performed to verify the correct functioning of the algorithm in
the extraction of walking windows, in the identification of steps, and in the computation
of parameters. Table 3 shows the performance of the algorithm in the identification of
steps for each walking bout of a single subject. The percentage error of the algorithm was
computed for each walking bout and revealed the good functioning of the algorithm. In
fact, the error was 0% in short and simple walking tasks, while it ranged between 1.35% and
1.73% in longer and more complex walking bouts. The error remained low, at 2%, for all
walking bouts. The sensitivity and specificity over all subjects was computed. We obtained
a high sensitivity (99.13%), a small number of false negatives (93 steps out of 10,675 steps),
and a high specificity (100%) with zero false positives. The proposed algorithm generated
mistakes for a subject that could not walk autonomously (needed crutches support). In
fact, a number of false negatives were obtained for the subject that required a medical
walker so the algorithm’s performance was lower. Although a small sample size group was
examined, it was inclusive of 12 h of data acquisition during a task in a home scenario. As
shown in Figure 7, the results of the laboratory scenario were also confirmed in the home
scenario. The visual examination of the agreement using the Bland–Altman plots showed
no systematic error in the measures. The distribution of the errors indicates that there are
no systematic differences between the values obtained using the proposed algorithm and
the video recordings, and the difference is within the 95% confidence interval.

6. Conclusions

The aim of this study is to propose a system for monitoring PD subjects during daily
life, in order to evaluate how responses to medication change over time and to allow
doctors to optimize medical therapy for each patient, improving his/her quality of life.
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This work presents a system composed of a single wearable sensor placed on the lower
back and an algorithm for real-time gait parameters monitoring in PD subjects. In order
to evaluate the performance of the proposed system, the developed algorithm was tested
in an experimental protocol in which PD subjects performed tasks in constrained and
unconstrained environments. In the laboratory scenario, several tasks in a constrained
environment were carried out by seven PD subjects and a comparison between the steps
detected by the algorithm and steps detected by video recording was performed. Consid-
ering every walking bout performed by each subject, we obtained a percentage error low
of 2% and high accuracy in terms of sensitivity and specificity, 99.13% and 100%, respec-
tively. Moreover, the proposed algorithm was tested in an unsupervised environment such
as the home scenario where the same seven PD subjects have carried out their common
ADLs during the day. In the home scenario, the results revealed high reliability, usability
and accordance with the video recordings and diaries. In fact, the algorithm successfully
detected walking bouts and their respective step counts during daily life. These results
confirm the accuracy in the use of a single wearable sensor placed on the lower back, and
the accuracy of the proposed algorithm for free-living gait analysis. In fact, the algorithm
presented in this work has achieved good results for successfully detecting the walking
bouts and the steps both in constrained and unsupervised environments. Although a small
group was examined in the experimental protocol, the preliminary results obtained in
this work allow us to verify the reliability of the parameters extracted from the proposed
algorithm. The analysis of these extracted parameters as a function of time allows us to
evaluate how the subject responds to the medication administered by the doctor and to
detect the on/off states. Therefore, this work is the beginning of a wide study to develop a
processing algorithm for the creation of a clinical and home tool for ADL monitoring in PD
subjects but is essential before proceeding with the identification of the subject’s on/off
states. In fact, future work will focus on tracking how motor symptoms and their responses
to medication change over time for on/off states identification.

Author Contributions: Conceptualization, P.P., L.P., A.B. and S.R.; methodology, P.P. and A.B.;
software, L.P. and S.R.; validation, P.P., L.P., A.B., O.B. and S.R.; formal analysis, A.B. and L.P.;
investigation, P.P. and L.P.; data curation, S.R., L.P. and M.P.; writing—original draft preparation, S.R.;
writing—review and editing, S.R., A.B., M.P. and O.B.; visualization, A.B., O.B. and L.P.; supervision,
P.P., M.P., O.B. and L.P.; project administration, P.P. and L.P.; funding acquisition, P.P. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Ethics review and approval were waived for this study
because the retrospective analysis of the recorded data was conducted using completely anonymous
data. The experimental study did not involve any invasive or medical procedures and introduced no
lifestyle changes. All subjects gave their informed consent prior to the collection and acquisition of
the data, which was carried out in compliance with the ethical principles of the Helsinki Declaration.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available from the corresponding
author upon reasonable request.

Acknowledgments: This work is supported by Marche Region in implementation of the financial
programme POR MARCHE FESR 2014–2020 , project “Miracle” (Marche Innovation and Research
fAcilities for Connected and sustainable Living Environments), CUP B28I19000330007.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2022, 12, 5486 12 of 13

References
1. Botros, A.; Schütz, N.; Camenzind, M.; Urwyler, P.; Bolliger, D.; Vanbellingen, T.; Kistler, R.; Bohlhalter, S.; Müri, R.M.;

Mosimann, U.P.; et al. Long-term home-monitoring sensor technology in patients with Parkinson’s disease—Acceptance and
adherence. Sensors 2019, 19, 5169. [CrossRef] [PubMed]

2. Schapira, A.H. Science, medicine, and the future-Parkinson’s disease. Br. Med. J. 1999, 318, 311–314. [CrossRef] [PubMed]
3. van Uem, J.M.; Marinus, J.; Canning, C.; van Lummel, R.; Dodel, R.; Liepelt-Scarfone, I.; Berg, D.; Morris, M.E.; Maetzler, W.

Health-related quality of life in patients with Parkinson’s disease—A systematic review based on the ICF model. Neurosci.
Biobehav. Rev. 2016, 61, 26–34. [CrossRef] [PubMed]

4. Pardoel, S.; Kofman, J.; Nantel, J.; Lemaire, E.D. Wearable-sensor-based detection and prediction of freezing of gait in Parkinson’s
disease: A review. Sensors 2019, 19, 5141. [CrossRef] [PubMed]

5. Mancini, M.; Bloem, B.R.; Horak, F.B.; Lewis, S.J.; Nieuwboer, A.; Nonnekes, J. Clinical and methodological challenges for
assessing freezing of gait: Future perspectives. Mov. Disord. 2019, 34, 783–790. [CrossRef] [PubMed]

6. Spinsante, S.; Gambi, E. Remote health monitoring for elderly through interactive television. Biomed. Eng. Online 2012, 11, 54.
[CrossRef]

7. Zanela, A.; Schirinzi, T.; Mercuri, N.B.; Stefani, A.; Romagnoli, C.; Annino, G.; Bonaiuto, V.; Cerroni, R. Using a Video Device and
a Deep Learning-Based Pose Estimator to Assess Gait Impairment in Neurodegenerative Related Disorders: A Pilot Study. Appl.
Sci. 2022, 12, 4642. [CrossRef]

8. Galperin, I.; Hillel, I.; Del Din, S.; Bekkers, E.M.; Nieuwboer, A.; Abbruzzese, G.; Avanzino, L.; Nieuwhof, F.; Bloem, B.R.;
Rochester, L.; et al. Associations between daily-living physical activity and laboratory-based assessments of motor severity in
patients with falls and Parkinson’s disease. Park. Relat. Disord. 2019, 62, 85–90. [CrossRef]

9. Channa, A.; Popescu, N.; Ciobanu, V. Wearable solutions for patients with parkinson’s disease and neurocognitive disorder: A
systematic review. Sensors 2020, 20, 2713. [CrossRef]

10. Albán-Cadena, A.C.; Villalba-Meneses, F.; Pila-Varela, K.O.; Moreno-Calvo, A.; Villalba-Meneses, C.P.; Almeida-Galárraga, D.A.
Wearable sensors in the diagnosis and study of Parkinson’s disease symptoms: A systematic review. J. Med. Eng. Technol. 2021,
45, 532–545. [CrossRef]

11. Sica, M.; Tedesco, S.; Crowe, C.; Kenny, L.; Moore, K.; Timmons, S.; Barton, J.; O’Flynn, B.; Komaris, D.S. Continuous home
monitoring of Parkinson’s disease using inertial sensors: A systematic review. PLoS ONE 2021, 16, e0246528. [CrossRef] [PubMed]

12. Battista, L.; Romaniello, A. A novel device for continuous monitoring of tremor and other motor symptoms. Neurol. Sci. 2018,
39, 1333–1343. [CrossRef] [PubMed]

13. Heijmans, M.; Habets, J.; Kuijf, M.; Kubben, P.; Herff, C. Evaluation of Parkinson’s disease at home: Predicting tremor from
wearable sensors. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 584–587.

14. McNames, J.; Shah, V.V.; Mancini, M.; Curtze, C.; El-Gohary, M.; Aboy, M.; Carlson-Kuhta, P.; Nutt, J.G.; Horak, F. A two-stage
tremor detection algorithm for wearable inertial sensors during normal daily activities. In Proceedings of the 2019 41st Annual
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019;
pp. 2535–2538.

15. Mancini, M.; Weiss, A.; Herman, T.; Hausdorff, J.M. Turn around freezing: Community-living turning behavior in people with
Parkinson’s disease. Front. Neurol. 2018, 9, 18. [CrossRef] [PubMed]

16. Del Din, S.; Galna, B.; Godfrey, A.; Bekkers, E.M.; Pelosin, E.; Nieuwhof, F.; Mirelman, A.; Hausdorff, J.M.; Rochester, L. Analysis
of free-living gait in older adults with and without Parkinson’s disease and with and without a history of falls: Identifying generic
and disease-specific characteristics. J. Gerontol. Ser. A 2019, 74, 500–506. [CrossRef] [PubMed]

17. Greene, B.R.; Premoli, I.; McManus, K.; McGrath, D.; Caulfield, B. Predicting Fall Counts Using Wearable Sensors: A Novel
Digital Biomarker for Parkinson’s Disease. Sensors 2021, 22, 54. [CrossRef]

18. Rodríguez-Molinero, A.; Pérez-López, C.; Samà, A.; de Mingo, E.; Rodríguez-Martín, D.; Hernández-Vara, J.; Bayés, À.; Moral, A.;
Álvarez, R.; Pérez-Martínez, D.A.; et al. A kinematic sensor and algorithm to detect motor fluctuations in Parkinson disease:
Validation study under real conditions of use. JMIR Rehabil. Assist. Technol. 2018, 5, e8335.

19. Del Din, S.; Godfrey, A.; Galna, B.; Lord, S.; Rochester, L. Free-living gait characteristics in ageing and Parkinson’s disease: impact
of environment and ambulatory bout length. J. Neuroeng. Rehabil. 2016, 13, 1–12. [CrossRef]

20. Hickey, A.; Del Din, S.; Rochester, L.; Godfrey, A. Detecting free-living steps and walking bouts: Validating an algorithm for
macro gait analysis. Physiol. Meas. 2016, 38, N1. [CrossRef]

21. Pham, M.H.; Elshehabi, M.; Haertner, L.; Del Din, S.; Srulijes, K.; Heger, T.; Synofzik, M.; Hobert, M.A.; Faber, G.S.; Hansen,
C.; et al. Validation of a step detection algorithm during straight walking and turning in patients with Parkinson’s disease and
older adults using an inertial measurement unit at the lower back. Front. Neurol. 2017, 8, 457. [CrossRef]

22. Peraza, L.R.; Kinnunen, K.M.; McNaney, R.; Craddock, I.J.; Whone, A.L.; Morgan, C.; Joules, R.; Wolz, R. An Automatic Gait
Analysis Pipeline for Wearable Sensors: A Pilot Study in Parkinson’s Disease. Sensors 2021, 21, 8286. [CrossRef]

23. Muthukrishnan, N.; Abbas, J.J.; Krishnamurthi, N. A wearable sensor system to measure step-based gait parameters for
parkinson’s disease rehabilitation. Sensors 2020, 20, 6417. [CrossRef] [PubMed]

http://doi.org/10.3390/s19235169
http://www.ncbi.nlm.nih.gov/pubmed/31779108
http://dx.doi.org/10.1136/bmj.318.7179.311
http://www.ncbi.nlm.nih.gov/pubmed/9924061
http://dx.doi.org/10.1016/j.neubiorev.2015.11.014
http://www.ncbi.nlm.nih.gov/pubmed/26645499
http://dx.doi.org/10.3390/s19235141
http://www.ncbi.nlm.nih.gov/pubmed/31771246
http://dx.doi.org/10.1002/mds.27709
http://www.ncbi.nlm.nih.gov/pubmed/31046191
http://dx.doi.org/10.1186/1475-925X-11-54
http://dx.doi.org/10.3390/app12094642
http://dx.doi.org/10.1016/j.parkreldis.2019.01.022
http://dx.doi.org/10.3390/s20092713
http://dx.doi.org/10.1080/03091902.2021.1922528
http://dx.doi.org/10.1371/journal.pone.0246528
http://www.ncbi.nlm.nih.gov/pubmed/33539481
http://dx.doi.org/10.1007/s10072-018-3414-2
http://www.ncbi.nlm.nih.gov/pubmed/29736737
http://dx.doi.org/10.3389/fneur.2018.00018
http://www.ncbi.nlm.nih.gov/pubmed/29434567
http://dx.doi.org/10.1093/gerona/glx254
http://www.ncbi.nlm.nih.gov/pubmed/29300849
http://dx.doi.org/10.3390/s22010054
http://dx.doi.org/10.1186/s12984-016-0154-5
http://dx.doi.org/10.1088/1361-6579/38/1/N1
http://dx.doi.org/10.3389/fneur.2017.00457
http://dx.doi.org/10.3390/s21248286
http://dx.doi.org/10.3390/s20226417
http://www.ncbi.nlm.nih.gov/pubmed/33182658


Appl. Sci. 2022, 12, 5486 13 of 13

24. Fischer, S.; Ullrich, M.; Küderle, A.; Gaßner, H.; Klucken, J.; Eskofier, B.M.; Kluge, F. Automatic clinical gait test detection from
inertial sensor data. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine &
Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 789–792.

25. Keloth, S.M.; Arjunan, S.P.; Kumar, D.K. Variance of the gait parameters and fraction of double-support interval for determining
the severity of Parkinson’s disease. Appl. Sci. 2020, 10, 577. [CrossRef]

26. Adams, J.L.; Dinesh, K.; Snyder, C.W.; Xiong, M.; Tarolli, C.G.; Sharma, S.; Dorsey, E.; Sharma, G. A real-world study of wearable
sensors in Parkinson’s disease. NPJ Parkinson’s Dis. 2021, 7, 1–8. [CrossRef]

27. Bendig, J.; Wolf, A.S.; Mark, T.; Frank, A.; Mathiebe, J.; Scheibe, M.; Müller, G.; Stahr, M.; Schmitt, J.; Reichmann, H.; et al.
Feasibility of a Multimodal Telemedical Intervention for Patients with Parkinson’s Disease—A Pilot Study. J. Clin. Med. 2022,
11, 1074. [CrossRef] [PubMed]

28. Del Din, S.; Godfrey, A.; Rochester, L. Validation of an accelerometer to quantify a comprehensive battery of gait characteristics in
healthy older adults and Parkinson’s disease: Toward clinical and at home use. IEEE J. Biomed. Health Inform. 2015, 20, 838–847.
[CrossRef]

29. Weiss, A.; Brozgol, M.; Dorfman, M.; Herman, T.; Shema, S.; Giladi, N.; Hausdorff, J.M. Does the evaluation of gait quality during
daily life provide insight into fall risk? A novel approach using 3-day accelerometer recordings. Neurorehabilit. Neural Repair 2013,
27, 742–752. [CrossRef]

30. Banos, O.; Galvez, J.M.; Damas, M.; Pomares, H.; Rojas, I. Window size impact in human activity recognition. Sensors 2014,
14, 6474–6499. [CrossRef]

31. Madgwick, S.O.; Harrison, A.J.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a gradient descent algorithm.
In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011;
pp. 1–7.

32. Pierleoni, P.; Belli, A.; Maurizi, L.; Palma, L.; Pernini, L.; Paniccia, M.; Valenti, S. A wearable fall detector for elderly people based
on AHRS and barometric sensor. IEEE Sens. J. 2016, 16, 6733–6744. [CrossRef]

33. McCamley, J.; Donati, M.; Grimpampi, E.; Mazza, C. An enhanced estimate of initial contact and final contact instants of time
using lower trunk inertial sensor data. Gait Posture 2012, 36, 316–318. [CrossRef]
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