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Abstract: This study computationally investigates the heat transfer characteristics in a double-pipe
counter-flow heat-exchanger. A heated viscoelastic fluid occupies the inner core region, and the outer
annulus is filled with a colder Newtonian-Fluid-Based Nanofluid (NFBN). A mathematical model is
developed to study the conjugate heat transfer characteristics and heat exchange properties from the
hot viscoelastic fluid to the colder NFBN. The mathematical modelling and formulation of the given
problem comprises of a system of coupled nonlinear partial differential Equations (PDEs) governing
the flow, heat transfer, and stress characteristics. The viscoelastic stress behaviour of the core fluid is
modelled via the Giesekus constitutive equations. The mathematical complexity arising from the
coupled system of transient and nonlinear PDEs makes them analytically intractable, and hence, a
recourse to numerical and computational methodologies is unavoidable. A numerical methodology
based on the finite volume methods (FVM) is employed. The FVM algorithms are computationally
implemented on the OpenFOAM software platform. The dependence of the field variables, namely
the velocity, temperature, pressure, and polymeric stresses on the embedded flow parameters, are
explored in detail. In particular, the results illustrate that an increase in the nanoparticle volume-
fraction, in the NFBN, leads to enhanced heat-exchange characteristics from the hot core fluid to
the colder shell NFBN. Specifically, the results illustrate that the use of NFBN as the coolant fluid
leads to enhanced cooling of the hot core-fluid as compared to using an ordinary (nanoparticle free)
Newtonian coolant.

Keywords: double-pipe counter-flow heat-exchanger; Newtonian-Fluid-Based Nanofluid (NFBN);
non-isothermal viscoelastic fluid flow; Giesekus model; nanofluid variable-thermal-conductivity

1. Introduction

The development of efficient heat-transfer-fluids (HTF) continues to attract the at-
tention of scientists and engineers given the widespread applications. The development
and enhancement of efficient HTF has been widely investigated experimentally, theo-
retically, and computationally, see for example [1–14]. Such widespread investigations
have been conducted with a view to the important industrial applications of HTF, say, to
polymer processing, food and beverage processing, chemical processing, pharmaceutical
manufacture, etc.

The concept and development of nanofluids has largely arisen as a route to heat-
transfer-rate (HTR) enhancement and efficient performance of HTF. Nanofluids are a
dispersion of solid (metallic) nanometer-sized particles (nanoparticles) in a base-fluid. The
available literature, see for example [9,15–18], has shown that nanofluids exhibit higher ther-
mal conductivities as compared to the conventional (and corresponding) base-fluids. The
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literature specifically demonstrates that such higher thermal conductivities of nanofluids
lead to increases in heat-transfer-rates (HTR) as compared to the corresponding base-fluids.
Additionally, ongoing research has demonstrated that the attractive heat-transfer character-
istics of nanofluids can be further improved via various methods including increasing the
Brownian motion of the embedded nanoparticles suspended in the base-fluids [19–21], in-
creasing volume-fraction of the embedded nanoparticles [22–24], increasing the fluid layers
around the embedded nanoparticles [19,20], etc. The present research specifically explores
the effects, on HTR enhancement, of nanoparticle volume-fraction (i.e., concentration of
nanoparticles) in the nanofluid.

In comparative investigations on the thermal conductivities of nanofluids versus the
corresponding base-fluids, [25] reported that up to 30% increase in the thermal conductivity
can be observed in nanofluids generated from various nanoparticle/base-fluid combina-
tions, e.g., Al2O3-water, SiO2-water, and TiO2-water. Similar results were also reported
in [1] using CuO-water, Al2O3-water, and Co-oil nanofluids. The authors in [26] claimed
a 100% increase in thermal conductivity for a range of volume-fractions 0.5–10% of alu-
minium particles in a water base. The results of [27] showed that a Cu-ethylene glycol
nanofluid with a volume fraction of 0.3% produced a 40% increase in thermal conductiv-
ity. The investigation in [8] reported up to 78% rise in thermal conductivity for Cu-water
nanofluids at a 75% volume fraction of nanoparticles.

Akin to thermal conductivity enhancements investigations, studies have also been
conducted on the effect of nanofluids on convective heat-transfer. The authors in [28],
for example, investigated the performance of a nanofluid containing carbon nanotubes
and observed that the convective heat-transfer rate can be as much as 3.5 times higher
than that of the corresponding water base. Similarly, the authors in [29], using an Al2O3-
water nanofluid, reported a convective heat-transfer rate rise of 40%. The investigations
in [30,31], on the convective heat-transfer coefficient of deionised water with a dispersion
of Cu nanoparticles for both laminar and turbulent flows in a tube, demonstrated higher
convective heat-transfer coefficients for the nanofluids than for the deionised water base.

Even though nanofluids may physically never be truly homogeneous mixtures, the
mathematical modelling of nanofluids is nonetheless generally divided into the two
classes, namely single-phase (homogeneous) and two-phase (heterogeneous), see for exam-
ple [32–34]. In the single-phase model, which is adopted in the present work, the nanofluid
is treated as a homogeneous fluid mixture and the conventional fluid dynamical governing
equations are modified to incorporate the volume-fractions of the embedded nanoparticles,
see for example [32,33]. In the two-phase model, the base-fluid phase has its own fluid-
dynamical governing equations, and a concentration equation is required to account for
the effects of the suspended nanoparticles, see for example [34]. Empirical investigations
for the two-phase models have demonstrated that for nanofluids with low nanoparticle
volume fractions, the Lagrangian–Eulerian formulation is preferred, see for example [35], in
which this approach was employed in analysing the HTR effects of Cu and Al2O3 nanopar-
ticles under turbulent flow conditions. For the reverse scenario of nanofluids with high
nanoparticle volume fractions, the more suitable approach would be the Eulerian–Eulerian
formulation, see for example [36], who conducted numerical simulations for laminar forced
convection heat-transfer of Cu-water nanofluids in isothermally heated microchannels.

In addition to the above motivations and literature on HTF, with regards to industrial
heating and cooling applications, the present study is additionally spurred on by the inves-
tigations in [32,33]. The investigations in [32,33] specifically explored the non-isothermal
effects of various viscoelastic-fluid-based nanofluids. Additional motivation arises from
the works in [37,38], which investigated the heat exchanger dynamics using particle-free
viscoelastic and Newtonian fluids. The present investigation is aimed at the need to add to
the literature on the development, design, and performance of industrial heat exchangers
with a focus on the use and effects of nanofluids. The current work may also be extended to
heat-exchange problems involving phase change and boiling, in which case the important
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surface-tension effects would need to be accounted for, including the effects to the energy
conservation, see [39].

The present work employs finite volume computational methodologies implemented
on the open-source OpenFOAM software platform [38,40–42]. The OpenFOAM software
platform offers the flexibility and convenience to incorporate new computational fluid dy-
namics (CFD) models via modifications of already-existing solvers, see for example [43–47].
The additional purpose of this work is therefore the development of a solver, under the
OpenFOAM framework, for heat exchange investigations involving viscoelastic fluids and
Newtonian-Fluid-Based Nanofluids (NFBN).

The paper is structured as follows. In Section 2, the mathematical model formula-
tion is presented. The development of numerical algorithms is given in Section 3. In
Section 4, graphical computational results and discussion of results are presented. Finally,
the concluding remarks are given in Section 5.

2. Mathematical Model

Two hollow concentric cylindrical pipes are arranged in a double-pipe geometry with
an inner cylinder (the core) located inside an outer cylinder (the shell), see Figure 1. Both
cylinders are of equal length, L, in the longitudinal direction, i.e., the z-direction.

Figure 1. Schematics of the model problem.

The inner (core) cylinder has a radius Rc in the radial direction, i.e., the r-direction, and
is symmetrically surrounded by an outer cylinder (the shell) of radius Rs, with 0 < Rc < Rs.
The cylindrical coordinate system (r, θ, z) is adopted, with r in the radial direction, θ in the
angular direction, and z in the longitudinal direction.

Axi-symmetric conditions are assumed, and hence, all flow field variables will be
considered independent of θ. For example, the velocity field would therefore be of the form
V = (u(r, z), 0, w(r, z)), where u is the velocity component in the radial (r) direction and w
is the velocity component in the longitudinal (z) direction.

Laminar, incompressible, time-dependent, and non-isothermal conditions are addi-
tionally assumed. A heated/hot viscoelastic fluid occupies the inner core region and flows,
say in the positive z-direction. A colder NFBN fills the outer annulus and flows in the
opposite direction to the core fluid leading to the counter-flow arrangement.

2.1. Governing Equations for Core-Fluid

In dimensional terms, the governing mathematical equations for the viscoelastic core-
fluid are derived from the conservation of mass, momentum, and energy, respectively,
detailed in Equations (1)–(3):

∇∗ ·U∗c = 0, (1)
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ρ∗c

(
∂U∗c
∂t∗

+ U∗c · ∇∗U∗c
)
= −∇∗p∗c +∇∗ · σ∗c + F∗c , (2)

ρ∗c C∗pc

(
∂T∗c
∂t∗

+ T∗c · ∇∗T∗c
)
= Q∗Dc

−∇∗ ·Φqc + h∗c (T
∗
w − T∗c ). (3)

The asterisks ∗ in Equations (1)–(3) represent dimensional variables, the subscript ()c
denotes core-fluid, ∇∗ is the gradient operator, U∗c is the velocity field, ρ∗c the density, t∗

the time, p∗c the pressure field, σ∗c the total stress tensor, F∗c represents body forces, C∗pc is
the specific heat at constant pressure, T∗c is the temperature field of the core fluid, Q∗Dc

the
internal heat production, Φ∗qc the heat flux vector, T∗w is the connecting wall temperature,
and h∗c and h∗s are a convective heat-transfer parameters.

The total stress tensor is given by:

σ∗c = −pc
∗ I∗ + τ∗c + η∗c S∗c ,

where I is the identity tensor, τ∗c represents the polymer-stress tensor, and

S∗c =
[
∇∗U∗c + (∇∗U∗c )T

]
,

is the rate of deformation tensor. The internal heat production is expressed as:

Q∗Dc
= γτ∗ : S∗c + (1− γ)η∗solS

∗
c : S∗c ,

where η∗sol is the solvent viscosity and γ is a viscoelastic non-isothermal parameter; for the
full details, we refer the reader to [47–49]. The heat flux is mathematically expressed by
Fourier’s law:

Φ∗qc = −K∗c∇∗T∗c ,

where K∗c is the thermal conductivity. The Giesekus viscoelastic constitutive equations are
employed to model the polymeric stresses:

τ∗ + ε∗τ∗2 + λ∗
∇
τ∗ = η∗pS∗c ,

where ε∗ is the Giesekus nonlinear parameter, λ∗ is the relaxation time, η∗p is the polymer

viscosity, and
∇
τ∗ is the upper convected time derivative defined as:

∇
τ∗ =

∂τ∗

∂t∗
+ (U∗c · ∇∗)τ∗ − (∇∗U∗c )τ∗ − τ∗(∇∗U∗c )T .

The relaxation time and viscosity are assumed constant with the total viscosity
given by:

η∗c = η∗sol + η∗p.

2.2. Governing Equations for Shell-Fluid

A Newtonian-Fluid-Based Nanofluid (NFBN) is assumed for the shell-fluid flowing in
the outer annulus. The subscript ()s f , in the flow variables, is used to denote shell-fluid
and the subscript ()n f represents nanofluid. The governing equations for the shell-fluid
flow are otherwise similar to those for the core-fluid system, but without the polymer-stress
contributions. The equations, in a dimensional form, read:

∇∗ ·U∗s f = 0, (4)

(ρs f )
∗
n f

(
∂U∗s f

∂t∗
+ U∗s f · ∇

∗U∗s f

)
= −∇∗p∗s f +∇

∗ · σ∗s f , (5)
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(ρs f Cps f )
∗
n f

(
∂T∗s
∂t∗

+ T∗s f · ∇
∗T∗s f

)
= Q∗Ds f

−∇∗ ·Φqs f . (6)

where (ρs f )
∗
n f is the NFBN density, σ∗s f the total stress tensor, (ρs f C∗ps f

)∗n f the NFBN specific
heat capacity, Q∗Ds f

the internal heat production, and Φ∗qs f
the heat-flux vector. The total

stress tensor for the shell-fluid is defined as:

σ∗s f =
η∗sol√

(1− ϕ)5
S∗s f ,

where ϕ is the nanoparticle volume-fraction. The internal heat production is defined as:

Q∗Ds f
=

η∗sol√
(1− ϕ)5

S∗s f : ∇∗U∗s f .

The heat-flux vector follows Fourier’s law:

Φ∗qs f
= −K∗n f∇

∗T∗s f ,

where K∗n f is the nanofluid thermal conductivity, which is defined as:

K∗n f =
K∗s + (1− ℵ)K∗f + (1− ℵ)ϕ(K∗f − Ks)

K∗s + (1− ℵ)K∗f + ϕ(K∗f − K∗s )
(1 + αA2T∗s ),

where A2 is a thermal-conductivity parameter and ℵ is an empirical shape-factor. For
spherical-shaped nanoparticles, which are assumed in the present work, ℵ = 3, [50].

The nanofluid quantities, ()n f , are obtained from linear combinations of the volume-
fractions, ϕ, of the base-fluid contribution, () f , and the nanoparticle contribution, ()s. For
example:

ρ∗n f = ϕ(ρs f )
∗
s + (1− ϕ)(ρs f )

∗
f ,

(ρs f Cps f )
∗
n f = ϕ(ρs f Cps f )

∗
s + (1− ϕ)((ρs f Cps f )

∗
f .

2.3. Governing Equation for the Connecting Wall

The shell-fluid and core-fluid are separated by a connecting wall through which heat-
exchange occurs. The governing equation for the connecting wall temperature, T∗w, follows
the one-dimensional heat conduction equation:

∂T∗w
∂t∗

=
∂2T∗w
∂z∗2 + h∗c (T

∗
c − T∗w) + h∗s f (T

∗
s f − T∗w). (7)

3. Numerical Algorithms and Computational Methodologies

Equations (1)–(7) are solved numerically using Finite Volume Methods (FVM). The
FVM numerical algorithms are implemented on the OpenFOAM software platform. The
OpenFOAM computational solvers that are developed in the present work are adapted and
modified from both the viscoelasticFluidFoam and the rheoMultiRegionFoam solvers, which
pre-exist on OpenFOAM, see for example [41,42]. These two pre-existing solvers are well
adapted to viscoelastic flow simulations, and hence, they are well suited as starting points
for the development of the viscoelastic computations required in the present work.

The computational mesh for the double-pipe geometry, Figure 2, is created using the
OpenFOAM mesh generation functionality called blockMesh. In OpenFOAM language,
this mesh is implemented over a blockMeshDict file, in which the geometry is conveniently
defined and results are viewed using the Paraview software.
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Figure 2. Computational mesh for the double-pipe geometry.

Viscoelastic flow computations are prone to numerical difficulties which arise at high
Weissenberg, We, or alternatively at high Deborah, De, numbers, leading to the so-called
High-Weissenberg-Number-Problem (HWNP). The higher the Weissenberg (or Deborah)
number, the more pronounced would be the elastic effects, in which case the viscoelastic
fluid largely exhibits solid-like behaviour leading to the numerical instabilities for the fluid-
based computations. Both the Discrete-Elastic-Viscous-Stress-Splitting (DEVSS) [42,51] and
the Log-Conformation-Reformulation (LCR) techniques [52,53] are employed to mitigate
against numerical instabilities arising from the HWNP.

3.1. DEVSS Technique

In the Discrete-Elastic-Viscous-Stress-Splitting (DEVSS) method, employed in the
viscoelasticFluidFoam solver, an additional elliptic operator [54] is added on each side of
the momentum equations. The stabilising effects of the elliptic terms may be enhanced
by scaling them with the polymeric viscosity, ηp, [51,55]. Under the DEVSS technique, the
momentum equations take the form:

ρ

(
∂U
∂t

+ U · ∇U
)
−∇ · (ηs + ηp)∇U = −∇p−∇ · (ηp∇U) +∇ · τ + ρF. (8)

3.2. LCR Technique

The Log-Conformation-Reformulation (LCR) approach is implemented for numerical
stabilisation in the RheoMultiRegionFoam solver. In the LCR approach, the polymeric-stress
tensor, τ, is replaced with the logarithm of the conformation tensor, D, where:

τ =
ηp

λ
(D− I). (9)

The process to recast the viscoelastic-stress constitutive-equations in terms of the
logarithm of conformation tensor (log-conformation) requires that the stress tensor, τ, be
initially replaced (in the viscoelastic-stress constitutive-equations) by the conformation
tensor, D, via Equation (9). This initial process leads to the alternative constitutive equations
for the conformation tensor:

∂D
∂t

+ (U · ∇)D− (D · ∇UT +∇U · D) = − 1
λ

fR(D), (10)



Appl. Sci. 2022, 12, 5475 7 of 33

where fR(D) is a polynomial function in the conformation tensor [21]. Since D is positive
definite, it can be diagonalised that:

D = R ·Λ · RT , (11)

where R is an orthogonal matrix containing, as its columns, the eigenvectors of D, and Λ

is a diagonal matrix with corresponding eigenvalues of D. The second step in the LCR
technique is based on the realisation that it would be more efficient to solve constitutive
equation in terms of the logarithm of D (i.e., introduce and solve for, Θ = log D, in the
constitutive equations) rather than solving directly for D. In particular:

Θ = log D = R · log Λ · RT . (12)

Following [52,53], the velocity gradient, ∇U can be decomposed as:

∇U = Ω + B + N · D−1, (13)

where both Ω and N are anti-symmetric and B is a symmetric traceless tensor which
commutes with D. Equation (10), therefore, reduces to:

∂Θ

∂t
+ (U · ∇)Θ− (ΩΘ−ΘΩ)− 2B = R

[
1
λ
(Λ−1 − 1)

]
RT . (14)

In a two-dimensional flow, the eigen-decomposition of D can be expressed as:

D = R
[

λ1 0
0 λ2

]
RT , (15)

where λ1 and λ2 are eigenvalues of D, and also:

RT(∇U)R =

[
m11 0

0 m22

]
, B = R

[
m11 0

0 m22

]
RT , Ω = R

[
δ 0
0 −δ

]
RT , (16)

with:

δ =
(m12 + m21)

(λ2 − λ1)
.

3.3. Pressure Correction

Unlike for compressible flow, where empirical relations such as the ideal gas law allow
for a direct/explicit pressure-linked equation, the solution processes for pressure-linked
equations for incompressible fluid flow on the other hand are complicated by the reality
that there is no explicit pressure equation to solve. Numerical solutions for pressure-linked
equations of incompressible fluid flow have led to the development of various techniques
to overcome this difficulty. The current investigation employs the Pressure-Implicit-with-
Splitting-of-Operators (PISO) algorithm, see for example [56], to deal with this challenge.
The PISO algorithm can be summarised as follows.

1. Initialise the field variables: velocity U, pressure p, polymeric stresses τ, and temper-
ature T.

2. For the LCR approach, solve for the conformation tensor D and Θ = log D.
3. For the DEVSS approach, solve directly for the polymer stresses, τ.
4. Solve the momentum equations for the intermediate velocity field, U∗∗.
5. Using the intermediate velocity, U∗∗, estimate a new pressure field p∗∗. Subsequently,

perform a correction of the intermediate velocity field and obtain the new velocity
U∗∗∗, which must satisfy mass conservation.

6. The updated velocity U∗∗∗ is then used to compute the polymer-stresses τ∗∗ and tem-
perature T∗∗ via the stress constitutive equations and energy equations, respectively.
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7. Go to step 1 with the field variables U, p, τ, T, respectively, replaced with U∗∗∗, p∗∗,
τ∗∗, and T∗∗ and repeat the steps until the required accuracies are achieved or until
the required number of iterations is reached.

3.4. Core-Fluid Simulations
3.4.1. Initial and Boundary Conditions in Core Region

The initial conditions are assumed to be zero for all fluid variables except for core
temperature, which is initially set to 300 K. At the inlet regions of the pipe sections, the
velocities are kept at 2 m/s while pressure is assigned a zero gradient boundary condition.
The polymer-stresses are initially fixed at zero throughout the core region. At the outlet, a
zero gradient condition is assigned for all fluid variables except for pressure, which is set
to zero. The usual no-slip boundary conditions are imposed for velocity at the pipe walls.
A zero gradient condition is imposed for polymer-stresses at the pipe walls.

3.4.2. Discretisation Schemes for Core Region

Since the model problem is transient in nature, time discretisation is crucial and must
be implemented in a way that enhances numerical stability and convergence. The time
derivatives are, therefore, approximated via an implicit Euler scheme. A linear scheme
with Gaussian integration is applied on space derivative terms, i.e., the gradient terms.
A Gaussian first order upwind scheme is used for the discretisation of the convective
terms. The Laplacian terms are discretised via bounded, second-order Gaussian linear
corrected schemes.

The systems of linear equations generated by the above space-time discretisations
are solved via efficient and robust linear algebraic techniques. Specifically, a Bi-Conjugate
Gradient Stabilised (BiCGStab) solver is used for the discretised velocity, temperature,
and polymer-stress constitutive equations. For the discretised velocity and polymer-stress
constitutive equations, the BiCGStab solver is applied in conjunction with the Incomplete
LU with zero fill-in (ILUO) pre-conditioners. For the discretised temperature equation,
the BiCGStab solver is used in conjunction with the Diagonal Incomplete LU (DILU) pre-
conditioners. The pressure equation is solved with a Conjugate Gradient (CG) method
using a Cholesky pre-conditioner.

3.5. Coupled Simulations for Core-Fluid, Shell-Fluid, and Connecting Wall
3.5.1. Initial and Boundary Conditions for Coupled Simulations—Core-Fluid

As already mentioned for the core fluid system, the initial conditions for temperature
and velocity, at the core inlet, are 2 m/s and 300 K, respectively, while the polymer-stresses
are initialised as zero. Pressure is assigned a zero-gradient boundary condition. At the core
outlet, all fluid variables are assigned a zero-gradient boundary condition with an exception
of pressure, which is set to a value of zero. At the pipe walls, no-slip boundary conditions
are imposed on the velocity, linear extrapolation boundary conditions are applied to the
polymer-stresses, and a zero-gradient boundary condition is employed for the pressure. A
coupled temperature-boundary condition is applied at the interface of the core-fluid and
the connecting wall. In the OpenFOAM framework, such a boundary condition is built
into the rheoMultiRegionFoam solver to ensure continuity of the heat flux across domain
interfaces, see [41].

3.5.2. Initial and Boundary Conditions for Coupled Simulations—Shell-Fluid

The initial and inlet boundary conditions for the shell region, velocity, temperature,
and pressure, are similar to those for the core fluid. At the outlet, the velocity and tem-
perature are assigned zero-gradient boundary conditions while pressure is set to zero. At
the walls, no-slip boundary conditions are used for the velocity, while a zero-gradient
boundary condition is applied for the pressure. As with the core-fluid and the connecting
wall interface, a coupled temperature-boundary condition is employed at the interface of
the shell-fluid and the connecting wall.
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3.5.3. Initial and Boundary Conditions for Coupled Simulations—Connecting Wall

The coupled temperature-boundary condition is applied at the interfaces on either
side of the connecting wall, i.e., to both the connecting wall/core-fluid interface and the
connecting wall/shell-fluid interface.

3.5.4. Discretisation Schemes for Coupled Simulations—Core-Fluid

The time derivatives are discretised using the implicit Euler scheme. A second-
order bounded Gauss linear scheme is used in the discretisation of Laplacian terms. The
least squares scheme is applied on the space-gradient terms. The convective terms are
discretised via a Universally Bounded Interpolation scheme (Cubista). The solutions of
the systems of linear equations for temperature, velocity, and polymer-stresses employ
a Preconditioned Bi-Conjugate Gradient (PBiCG) solver in conjunction with a simplified
Diagonal Incomplete LU (DILU) pre-conditioner. The pressure equation is solved with
a Preconditioned Conjugate Gradient (PCG) solver using Diagonal Incomplete-Cholesky
(DIC) pre-conditioners.

3.5.5. Discretisation Schemes for Coupled Simulations—Shell-Fluid

The implicit Euler scheme is used to discretise time derivatives and a second-order
bounded Gauss linear scheme is utilised for space-gradient terms. The Laplacian terms
are treated via Gauss linear orthogonal schemes. For convective terms the Cubista and
Gauss linear schemes are employed. The solver for the discretised temperature and velocity
equations is the PBiCGStab solver with a DILU pre-conditioner. A Geometric-Algebra
Multi-Grid (GAMG) solver is used in conjunction with a DIC pre-conditioner for the
solution of the pressure equation.

3.5.6. Discretisation Schemes for Coupled Simulations—Connecting Wall

The space-gradient terms are discretised using the Gauss linear scheme, while Lapla-
cian terms employ the second-order bounded linear scheme. The time derivatives are
treated via the implicit Euler scheme. The temperature equation for the connecting wall is
solved using a PCG solver in conjunction with a DIC pre-conditioner.

4. Numerical Results and Discussion
4.1. Mesh Convergence

The mesh independence (or alternatively mesh convergence) in the present simula-
tions is illustrated in Figure 3. The mesh sizes in Figure 3 correspond to the number of
computational cells in Table 1.

Table 1. Mesh sizes corresponding to Figure 3.

mesh 1 120,000 cells

mesh 2 640,000 cells

mesh 3 800,000 cells

Given the huge computational costs incurred in running the simulations with such
high numbers of computational cells, it is prudent to balance the requirements of mesh con-
vergence, on the one hand, and computational costs, on the other. Figure 3 illustrates mesh
independence for the three vastly different mesh sizes. For these reasons, all subsequent
simulations in this work are conducted via mesh size 1, i.e., with 120,000 computational
cells. It should be remarked that similar mesh independence was observed with much
fewer than 120,000 computational cells.
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Figure 3. Illustration of mesh independence.

4.2. Dimensionless Parameters

As detailed in [38], it is desirable to report the results with respect to dimensionless
parameters. This allows the results to be translated more generally to pipes/geometries
of arbitrary size and also to general flow conditions. Results that are based on specific
geometric dimensions and specific flow conditions would otherwise be case-specific and
not easily generalisable. The relevant dimensionless parameters for the core region are,
respectively, the Reynolds number (Rec), the Prandtl number (Prc), the Deborah number
(De), the ratio of polymer to total viscosity (β), and the Giesekus nonlinear parameter (ε):

Rec =
ρ∗c U∗c0

L∗

η∗c
, Prc =

C∗pc η∗c
K∗c

, De =
λ∗U∗c0

L∗
, β =

η∗p
η∗c

, ε =
L∗

η∗c µ∗c U∗c0

α∗,

where U∗c0
is a reference flow velocity in the core region, say, the constant core-fluid velocity

at the inlet. The relevant dimensionless parameters for the shell region are, respectively, the
Reynolds and Prandtl numbers, as well as the ratio of nanoparticle to base-fluid thermal
conductivities:

Res =
ρ∗s U∗s0

L∗

η∗s
, Prs =

C∗ps η∗s
K∗f

, κ =
K∗s
K∗f

,

where U∗s0
is a reference flow velocity in the shell region, say, the constant shell-fluid velocity

at the inlet.
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Unless otherwise indicated, the subsequent simulations are carried using the following
parameter values:

core-fluid: Rec = 0.6, Prc = 0.8, De = 0.4, ε = 0.2, β = 0.5,

shell-fluid: Res = 90, Prs = 3,

thermal-conductivity: κ = 654.16, ℵ = 3, α = 0.2, A2 = 0.5, ϕ = 0.2.

The thermal conductivity ratio, κ, is calculated from the values, Ks = 401 Wm−1K−1

and K f = 0.613 W/(m·K). In the subsequent graphical results, if any of the above parame-
ters are varied, it is understood that the other parameters will be kept at the given values.

4.3. Numerical Validation

The absence of nanoparticles (κ = ℵ = A2 = ϕ = 0) reduces the present investigation
to that in [38]. Simulations with κ = ℵ = A2 = ϕ = 0 give the same results as in [38].

4.4. Response of Flow Variables to Variations in Nanoparticle Volume-Fraction

Figures 4–10 demonstrate the effects of varying the nanoparticle volume-fraction, ϕ,
on the flow variables, respectively, the velocity, temperature, pressure, diagonal polymer
stress components, and the normal stress differences. The first and second normal-stress
differences, N1 and N2, are, respectively, defined as:

N1 = τzz − τrr and N2 = τrr − τθθ = τrr,

where the final equality in the second normal stress difference, N2, results from axi-
symmetry assumptions, τθθ = 0. The first normal-stress difference remains non-negative,
N1 ≥ 0, as required.

Figure 4. Effects of nanoparticle volume-fraction, ϕ, on the core-fluid velocity.
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Figure 5. Effects of nanoparticle volume-fraction, ϕ, on the core-fluid pressure.

Figure 6. Effects of nanoparticle volume-fraction, ϕ, on the core-fluid temperature.
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Figure 7. Effects of nanoparticle volume-fraction, ϕ, on the diagonal stress component, τrr.

Figure 8. Effects of nanoparticle volume-fraction, ϕ, on the diagonal stress component, τzz.
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Figure 9. Effects of nanoparticle volume-fraction, ϕ, on the first normal stress difference, N1.

Figure 10. Effects of nanoparticle volume-fraction, ϕ, on the second normal stress difference, N2.
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The results illustrated in Figures 4–10 give the expected parabolic profiles. Of particu-
lar note are the important effects of the nanoparticles volume-fraction, ϕ, on the core-fluid
temperature, as shown in Figure 6. The core-fluid temperature decreases as ϕ increases.
This clearly indicates that increases in the nanoparticles volume-fraction, ϕ, increase the
heat-transfer-rates from the hot core-fluid to the colder shell-nanofluid. Specifically, in-
creases in the nanoparticles volume-fraction, ϕ, increase the thermal conductivity of the
shell-nanofluid, enhancing its coolant characteristics.

Figures 11–16 demonstrate the effects of varying the Prandtl number on the core-fluid
flow field variables.

Figure 11. Effects of Prandtl number, Pr, on the core-fluid velocity.
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Figure 12. Effects of Prandtl number, Pr, on the core-fluid temperature.

Figure 13. Effects of Prandtl number, Pr, on the diagonal stress component, τrr.
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Figure 14. Effects of Prandtl number, Pr, on the diagonal stress component, τzz.

Figure 15. Effects of Prandtl number, Pr, on the first normal stress difference, N1.
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Figure 16. Effects of Prandtl number, Pr, on the second normal stress difference, N2.

The results illustrated in Figures 11–16 similarly give the expected parabolic profiles.
Of particular note are the expected effects of the Prandtl number on the core-fluid tempera-
ture, as shown in Figure 12. The core-fluid temperature decreases as the Prandtl number
increases. This is a consequence of the fact that the Prandtl number acts to dampen the
strengths of the heat conduction and the heat sources.

Figures 17–22 demonstrate the effects of varying the Reynolds number on the core-
fluid flow field variables.

The results illustrated in Figures 11–16 again give the expected parabolic profiles.
Of particular note are the expected effects of the Reynolds number on the core-fluid
velocity, as shown in Figure 17. The core-fluid velocity increases as the Reynolds number
increases. This follows naturally from the observation that the Reynolds number is directly
proportional to the inlet velocity and is also inversely proportional to the fluid viscosity.
An increase in the inlet velocity and/or a decrease in the fluid viscosity would act to
increase the core-fluid Reynolds number. We also notice from Figure 18 that the core-fluid
temperature increases with an increasing Reynolds number.
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Figure 17. Effects of Reynolds number, Re, on the core-fluid velocity.

Figure 18. Effects of Reynolds number, Re, on the core-fluid temperature.
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Figure 19. Effects of Reynolds number, Re, on the diagonal stress component, τrr.

Figure 20. Effects of Reynolds number, Re, on the diagonal stress component, τzz.
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Figure 21. Effects of Reynolds number, Re, on the first normal stress difference, N1.

Figure 22. Effects of Reynolds number, Re, on the second normal stress difference, N2.
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Figures 23–28 demonstrate the effects of varying the Deborah number on the core-fluid
flow field variables.

As can be observed from Figures 25–28, an increase in the Deborah number increases
the elastic effects in the core-fluid. The results illustrated in, say, Figures 25 and 27, demon-
strate that the elastic effects are more pronounced closer to the inner pipe walls and away
from the pipe centerline.

Figure 23. Effects of Deborah number, De, on the core-fluid velocity.
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Figure 24. Effects of Deborah number, De, on the core-fluid temperature

Figure 25. Effects of Deborah number, De, on the diagonal stress component, τrr.
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Figure 26. Effects of Deborah number, De, on the diagonal stress component, τzz.

Figure 27. Effects of Deborah number, De, on the first normal stress difference, N1.
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Figure 28. Effects of Deborah number, De, on the second normal stress difference, N2.

4.5. Response of Flow Variables in the Longitudinal Direction

All the graphical results thus far are presented in the radial direction, across the inner
pipe diameter. For this reason, the results have been symmetric about the pipe centerline. It
is important to also illustrate the development of the solutions in the longitudinal direction
(i.e., the flow direction) in response to variations in flow parameters.

Figure 29 illustrates the behaviour of the core-fluid temperature in the longitudinal
direction, in response to variations in the nanoparticle volume-fraction, ϕ.

The results of Figure 29 show, as expected, that the core-fluid temperature decreases
from the initial high values at the inlet to lower values at the outlet. This is the hallmark of a
heat exchanger design and function—that a hot fluid is cooled as it flows and interacts with
a colder fluid in a connected channel even when the two connected channels containing
the hot and cold fluids, respectively, are separated by a solid wall.

Additionally, Figure 29 illustrates, as also shown in the corresponding Figure 6, that
the core fluid temperature decreases with increasing nanoparticle volume-fraction, ϕ. As
already explained under Figure 6, this clearly indicates that an increase in the nanoparti-
cles volume-fraction, ϕ, correspondingly increases the thermal conductivity of the shell-
nanofluid, and hence, also increases the heat-exchange characteristics from the hot core-
fluid to the colder shell-nanofluid.
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Figure 29. Effects of nanoparticles volume-fraction ϕ on the core-fluid temperature. Fluid moving
from inlet at z = 0 to outlet at z = 4, i.e., flow direction is from left to right (−→).

Figure 30 illustrates the behaviour of the shell-fluid temperature in the longitudinal
direction, in response to variations in the nanoparticle volume-fraction, ϕ.

The results of Figure 30 show, as expected, that the shell-fluid temperature will increase
from the initial low values at the inlet to higher values at the outlet. This is again the
hallmark of a heat exchanger design and function—that a coolant fluid is heated as it flows
and interacts with a hotter fluid in a connected channel even when the two connected
channels, respectively, containing the coolant and hot fluids, are separated by a solid wall.

Figure 31 illustrates the behaviour of the connecting wall temperature in the longi-
tudinal direction, in response to variations in the nanoparticle volume-fraction, ϕ. The
connecting wall temperature would roughly average the core-fluid and shell-fluid temper-
atures, and hence, the behaviour of the connecting wall temperature largely mirrors the
average behavior of the core-fluid and shell-fluid temperatures. Of specific note is that the
connecting wall temperature decreases with increasing nanoparticle volume-fraction, ϕ.

Figures 32 and 33, respectively, illustrate the behaviour of the core-fluid temperature
and the shell-fluid temperature, in the longitudinal direction, in response to variations in
the Prandtl number, Pr. The results are similarly explained as those in Figure 12.

Figures 34 and 35, respectively, illustrate the behaviour of the core-fluid temperature
and the shell-fluid temperature, in the longitudinal direction, in response to variations in
the Reynolds number, Re. The results are similarly explained as those in Figure 18.
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Figure 30. Effects of nanoparticles volume-fraction ϕ on shell-fluid temperature. Fluid moving from
inlet at z = 4 to outlet at z = 0, i.e., flow direction is from right to left (←−).

Figure 31. Effects of nanoparticles volume-fraction, ϕ, on the connecting wall temperature.



Appl. Sci. 2022, 12, 5475 28 of 33

Figure 32. Effects of Prandtl number, Pr, on core-fluid temperature. Fluid moving from inlet at z = 0
to outlet at z = 4, i.e., flow direction is from left to right (−→).

Figure 33. Effects of Prandtl number, Pr, on shell-fluid temperature. Fluid moving from inlet at z = 4
to outlet at z = 0, i.e., flow direction is from right to left (←−).
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Figure 34. Effects of Reynolds number, Re, on core-fluid temperature. Fluid moving from inlet at
z = 0 to outlet at z = 4, i.e., flow direction is from left to right (−→).

Figure 35. Effects of Reynolds number, Re, on the shell-fluid temperature. Fluid moving from inlet at
z = 4 to outlet at z = 0, i.e., flow direction is from right to left (←−).
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Figure 36 illustrates the behaviour of the core-fluid temperature, in the longitudinal
direction, in response to variations in the Reynolds number, Re. The results are similarly to
those in Figure 24 for the radial direction.

Figure 36. Effects of Deborah number, De, on the core-fluid temperature. Fluid moving from inlet at
z = 0 to outlet at z = 4, i.e., flow direction is from left to right (−→).

5. Concluding Remarks

This study computationally investigates the heat transfer characteristics in a double-
pipe counter-flow heat exchanger, with a heated/hot viscoelastic fluid occupying the inner
core region and a colder Newtonian-Fluid-Based Nanofluid (NFBN) flowing in the outer
shell region. The NFBN is modelled as a single-phase homogenous nanofluid in which
the fluid-dynamical and thermodynamical contributions of the embedded nanoparticles
are tracked via an appropriate nanoparticle volume-fraction function. A robust numerical
methodology based on the finite volume methods (FVM) is employed to solve the complex
coupled system of nonlinear PDEs. The FVM algorithms are computationally implemented
on the OpenFOAM software platform. The dependence of the field variables on the
embedded flow parameters, namely the velocity, temperature, pressure, and polymeric
stresses, is explored qualitatively and quantitatively. Specifically, the results illustrate
that an increase in the nanoparticle volume-fraction, in the NFBN, leads to enhanced heat
exchange characteristics from the hot core fluid to the colder shell NFBN. Significantly,
the results illustrate that the use of NFBN as the coolant fluid leads to better heat-transfer
characteristics as compared to using an ordinary/conventional (particle-free) Newtonian
coolant. The results also demonstrate that the efficacy of the NFBN as a coolant is enhanced
with increasing nanoparticle volume-fraction. The effects of the volume fraction parameter
and Prandtl number were observed to be insignificant on the velocity field, pressure
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field, and polymer-stress components. Similarly, the effects of the Deborah number were
observed to be insignificant on the velocity and temperature fields.
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Nomenclature

Notation
()∗ Dimensional quantity
()c Core-fluid quantity
()s f Shell-fluid quantity
()n f Nanofluid quantity
()s Solid (nanoparticle) contribution
() f Base-fluid contribution
()p Polymer contribution
()sol Solvent contribution
Variables
η Viscosity
λ Relaxation time
ρ Density
C Specific heat capacity
K Thermal-conductivity
p Pressure field
S Rate of deformation tensor
σ Total stress tensor
t Time
T Temperature field
τ Polymer stress tensor
U = (u, 0, v) Velocity field
x = (r, θ, z) Cylindrical coordinates
Parameters
ϕ Nanoparticle volume-fraction
ℵ Nanoparticle empirical shape factor
ε Giesekus non-linear parameter
α Thermal-conductivity parameter
A2 Thermal-conductivity parameter
β Polymer to total-viscosity ratio
κ Ratio of nanoparticles to base-fluid thermal conductivities
De Deborah-number
Pr Prandtl-number
Re Reynolds-number
Abbreviations
NFBN Newtonian-fluid-based nanofluid
HTF Heat-transfer-fluid
HTR Heat-transfer-rate
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