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Abstract: This paper presents a novel robust optimal predictive control approach for a class of
nonlinear continuous-time systems perturbed by unknown disturbances. First, a new error state
with a linear proportional-integral-differential (PID) structure considering current, accumulative,
and derivative tracking errors is defined. Second, prediction of the error state within the predictive
periods is expressed by the error state and its high-order derivatives according to the Taylor series
expansion. Last, the proposed control law as well as the main result of this paper are derived by
minimizing the prediction of the error state. Numerical validation for designing a missile autopilot
shows that, due to minimizing the accumulative tracking error included in the PID-structuralized
new error state, the proposed approach can generate smaller steady-state tracking errors than two
commonly applied continuous-time optimal predictive control approaches whether the disturbances
encountered by the missile are constant or time-varying.

Keywords: optimal predictive control; nonlinear continuous-time systems; PID; unknown disturbances;
steady-state tracking error

1. Introduction

Control design for nonlinear systems has always been a challenging task. Gener-
ally, the control approaches can be classified into linear and nonlinear catalogs. In the
linear approaches, by simplifying or even neglecting partial nonlinearities, the systems
are linearized around equilibrium points such that the classical and modern linear control
theories [1,2] are applicable. However, in order to give consideration of the nonlinearities
as much as possible to meet the increasing demand of high-quality control performances,
various nonlinear control approaches such as the feedback linearization [3], the sliding
mode control [4], the adaptive methodology [5], the finite time control [6], the backstepping
approach [7], and so forth have been proposed and applied.

As a promising and viable nonlinear control approach, the continuous-time optimal
predictive control (CTOPC) methodology [8] extends a novel prospect for the control de-
sign of the nonlinear systems. In the prototype CTOPC (PCTOPC), state of the dynamical
system or the prescribed reference is predicted by a linear combination of its high-order
derivatives by means of the Taylor series expansion. Then, the optimal predictive control
law is obtained by minimizing a quadratic receding horizon performance index (RHPI),
which is the function of the predictive response errors. The control law has the merit of
giving full consideration of all the system nonlinearities due to the complete inclusion of
the system dynamics, which makes the PCTOPC more attractive and have many successful
applications in various fields during the past decades such as the flight control [9,10], the
permanent magnet synchronous motor control [11], angle tracking control of a steer-by-wire
system [12], the DC-DC converter control [13–15], the photovoltaic inverter control [16,17],
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the wind energy system design [18,19], the water tank system design [20,21], the active sus-
pension system design [22], stabilization of an artificial gas-lift process [23], path following
system design of autonomous mobile vehicles [24,25], and solar power plant control [26].
Though the PCTOPC has drawn much attention in the aforementioned areas, its inadequacy
is also obvious. That is, the closed-loop system is susceptible to the unknown external
uncertainties since the PCTOPC only takes into account of the current tracking errors
between the prescribed reference and the system output, making poor robustness and large
steady-state tracking errors easy to occur. Thus far, only few previous works have been
dedicated to address such problems [9,19,21,23–26]. Therefore, targeting the inadequacy
and extending an alternative methodology to enhance the robustness of the PCTOPC are
meaningful and of engineering significance.

As one of the most widely used approaches around the world, the linear proportional-
integral-differential (PID), which not only has the merits of simple controller structure and
easy implementation procedures, but also has the strong capability on dealing with the
unknown disturbances, has many successful application examples in various fields [27–29].
In the PID, considering the terms of accumulative tracking errors can help the closed-loop
systems reduce stead-state errors. By assigning appropriate proportional, integral, and
differential gain coefficients, satisfactory system response time and input performance
can be acquired. Hence, the PID approach has been successfully applied to enhance the
system robustness for the existing approaches [30,31]. Due to those advantages, this paper
combines the PCTOPC with the linear PID approach for closed-loop system robustness
enhancement. Next, the proposed approach is named as PID-CTOPC.

To further highlight superiorities of the proposed approach, comparison with another
typical CTOPC approach [32,33], which considers both current and high-derivative tracking
errors proposed by Professor Lu, is also conducted. The main contributions of this paper
are twofold.

1. A closed-loop steady-state tracking error reduction approach is proposed in the field
of CTOPC. The accumulative tracking errors, which are integrated into a new error
state with PID structure, are considered in the proposed PID-CTOPC approach such
that tracking errors within the operation envelop of the closed-loop system can be
minimized compared with the PCTOPC and the Lu’s approach, which only consider
the current tracking errors.

2. Robustness of the closed-loop system is significantly enhanced. In the proposed
PID-CTOPC approach, current, accumulative, and derivative tracking errors are
minimized simultaneously such that reduction of input fluctuation, output overshoot,
and steady-state tracking error can also be derived in contrast with the PCTOPC and
the Lu’s approach in the presence of unknown disturbances.

2. Preliminaries

In this section, some useful preliminaries such as symbols, lemmas, and existing
optimal predictive approaches are introduced first.

Denote Z+ as the set of positive integers, Z = {0,Z+}, R as the set of real numbers,
Rp×q as the set of p× q real matrices, Rs as the set of column matrices with dimension s,
Om×n as the set of m× n zero matrices, s[j] as the jth derivative of s relative to time, s! as
the factorial of s ∈ Z.

This paper considers the following single-input–single-output (SISO) nonlinear affine
systems: 

·
xi(t) = xi+1(t), i = 1, . . . , n− 1
·
xn(t) = f (x(t)) + g(x(t)) · u(t)
y(t) = x1(t)

(1)

where, x(t) = [x1(t), . . . , xn(t)] ∈ Rn represents the state vector, n ≥ 2 represents the
system dimension. y(t) ∈ R and u(t) ∈ R represent output and input, respectively.
f (x(t)) ∈ R and g(x(t)) ∈ R are nonlinear mappings with g(x) 6= 0 for any x(t). In next,
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the variable ϑ(t) is denoted as ϑ while the prediction of ϑ within the predictive period
τ > 0 would be expressed by ϑ(t + τ), ϑ is a scalar or vector. The following assumptions
are imposed on system (1):

(A1) The zero dynamics are stable.
(A2) All the states xi, i = 1, . . . , n are available.
(A3) The system output y and the prescribed reference yd are sufficiently many times

continuously differentiable relative to time t.

Secondly, the PCTOPC approach is reviewed.
Differentiating both sides of the last state differential equation in Formula (1) σ times

relative to t yields:

y[n+1] = p1
(
u2, u; x

)
+ g(x) · ·u

y[n+2] = p2

(
u3, u2, u,

·
u; x
)
+ g(x) · ··u

...
y[n+σ] = pσ

(
uσ+1, . . . , u, u[σ−1], . . . ,

·
u; x
)
+ g(x) · u[σ]

(2)

where, σ ∈ Z+ is called control order. Details of the nonlinear terms pi, i = 1, . . . , σ can be
seen in [8].

By using the Taylor series expansion, predictions of y and yd within the predictive
period tC can be expressed by: {

y(t + τ) = Γc ·Yc
yd(t + τ) = Γc ·Ycd

(3)

where, 0 < τ ≤ tC, Γc =
[
1, τ, . . . , τn+σ

(r+σ)!

]
, Yc(t) =

[
y,
·
y, . . . , y[n+σ]

]T
, and Ycd(t) =[

yd,
·
yd, . . . , y[n+σ]

d

]T
.

By employing following RHPI:

JC =
1
2

∫ tC

0
[y(t + τ)− yd(t + τ)]

T
[y(t + τ)− yd(t + τ)]dτ (4)

the optimal predictive control law for the system (1) is summarized in following lemma.

Lemma 1 [8]. Consider the nonlinear affine system (1) satisfying (A1)~(A3). Then, for a given
control order σ ∈ Z+, the system output y and the prescribed reference yd are predicted by Formula
(3). The optimal predictive control law minimizing the RHPI (4) is given by:

u(t) = [g(x)]−1
[
y[n]d − f (x)− Kc Mr

]
(5)

where, Mr is given by:

Mr =
[

x1 − yd, x2 −
·
yd, . . . , xn − y[n−1]

d

]T
(6)

Kc ∈ R1×(σ+1)is the first row of matrix A−1
σ A1 . The matrices A1 and Aσ are given by: A =

∫ t1
0 ΓT

c Γcdτ =

[
Ar AT

1
A1 Aσ

]
∈ R(n+σ+1)×(n+σ+1)

Ar ∈ Rn×n, Aσ ∈ R(σ+1)×(σ+1)
(7)
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3. The PID-CTOPC Approach

This section presents main results of this paper. Firstly, a new error state with PID
structure is introduced, transforming the prescribed reference tracking problem into a
stabilization one for the system (1). Secondly, the robustified optimal predictive controller
is designed.

3.1. Stabilization Model

A new error state with PID structure is defined as follows:

s(t) = Kpe1 + Ki

∫ t

0
e1dt0 + Kd

·
e1 (8)

where, e1 = x1 − yd. Kp, Ki, and Kd are tuning parameters, representing proportional,
integral, and differential coefficients, respectively. In the above,

∫ t
0 e1dt0 represents the

accumulative error and
·
e1 represents the derivative error.

Differentiating (n− 1) times for the new state s(t) relative to t yields:

·
s = Kp

·
e1 + Kie1 + Kd

··
e1

...
s[n−2] = Kpe[n−2]

1 + Kie
[n−3]
1 + Kde[n−1]

1

s[n−1] = Kpe[n−1]
1 + Kie

[n−2]
1 + Kde[n]1

(9)

Then, by taking into account of Formula (1), s[n−1] can be written into the following
affine form:

s[n−1] = Kpe[n−1]
1 + Kie

[n−2]
1 + Kd

[
f (x)− y[n]d

]
︸ ︷︷ ︸

f (x)

+ Kd · g(x)︸ ︷︷ ︸
g(x)

· u

= f (x) + g(x) · u

(10)

Since the objectives of controlling system (1) are x1 → yd and xi → y[i−1]
d , i = 2, . . . , n,

hence, the new error state given by Formula (8) is expected to converge to zero, namely,
s→ 0 , which implies that the prescribed reference tracking problem of system (1) is
transformed into a stabilization one.

3.2. Controller Design

In Formula (10), differentiating ρ times for s[n−1] relative to t yields:

s[n] = φ1
(
u2, u; x

)
+ g(x) · ·u

s[n+1] = φ2

(
u3, u2, u,

·
u; x
)
+ g(x) · ··u

...
s[n−1+ρ] = φρ

(
uρ+1, . . . , u, u[ρ−1], . . . ,

·
u; x
)
+ g(x) · u[ρ]

(11)

where, φi

(
ui+1, . . . , u, u[i−1], . . . ,

·
u; x
)

, i = 1, . . . , ρ are nonlinear functions. ρ represents the
control order. Let: 

S =
[
HT

0 , HT]T

H0 =
[
s,
·
s, . . . , s[n−2]

]T

H =
[
s[n−1], s[n], . . . , s[n−1+ρ]

]T
(12)
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Then, prediction of s(t) within the predictive period tM can be written as:

s(t + τ) = ΓMS (13)

where, 0 < τ ≤ tM and ΓM =
[
1, τ, . . . , τn+ρ−1

(n+σ−1)!

]
∈ R1×(n+ρ).

The RHPI to be minimized is selected as:

JM =
1
2

∫ tM

0
sT(t + τ) · s(t + τ)dτ (14)

One of the main results as well as the PID-CTOPC approach for the system (1) is given
in Theorem 1.

Theorem 1. Consider the nonlinear affine system (1) satisfying (A1)~(A3). By introducing a new
PID-structuralized state variable shown in Formula (8), the prescribed reference tracking problem
of the system can be transformed into a stabilization one given by (9). Then, for a given control
orderρ ∈ Z+, the new state variable s(t) is predicted by Formula (13). The optimal predictive
control law minimizing the RHPI (14) is given by:

u(t) = −[g(x)]−1
[

f (x) + KM H0

]
(15)

KM ∈ R1×(n−1) is the first row of matrix B−1
ρ B1. The matrices B1 andBρ are given by: B =

∫ tM
0 ΓT

MΓMdτ =

[
Br BT

1
B1 Bρ

]
∈ R(n+ρ)×(n+ρ)

Br ∈ R(n−1)×(n−1), Bρ ∈ R(ρ+1)×(ρ+1)
(16)

Proof of Theorem 1. Denote u =
[
u,
·
u, . . . , u[ρ]

]T
, then the partial derivatives of H0 and H

with respect to u can be given by:

∂H0

∂u
= O(n−1)×(ρ+1),

∂H
∂u

=


g(x) 0 . . . 0
∗ g(x) . . . 0

∗ ∗ . . .
...

∗ ∗ ∗ g(x)

 ∈ R(ρ+1)×(ρ+1) (17)

where, ∂H/∂u is a lower triangular matrix with the diagonal elements all g(x), and the
symbol ‘*’ represents the non-zero elements. It is obvious that the matrix ∂H/∂u is full
rank.

By considering Formula (13), differentiating JM with respect to u yields:

∂JM
∂u

=

[(
∂H0

∂u

)T
,
(

∂H
∂u

)T
]
· B ·

[
H0
H

]
(18)

where, B =
∫ tM

0 ΓT
MΓMdτ. Partition the matrix B by following Formula (16). Then, accord-

ing to the necessary condition ∂JM
∂u = 0, the Formula (18) can be expanded as:(

∂H
∂u

)T(
B1H0 + Bρ H

)
= 0 (19)

Recall that ∂H/∂u is full rank, then formulation of H can be given by:

H = −B−1
ρ B1H0 (20)
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Denoting KM ∈ R1×(n−1) as the first row of matrix B−1
ρ B1 and taking the first row of

H yields:
f (x) + g(x) · u = −KM H0 (21)

Then, the PID-CTOPC law can be given by:

u(t) = −[g(x)]−1
[

f (x) + KM H0

]
(22)

Proof of the theorem is accomplished. �

Remark 1. Since the modified approach is an advanced version of the PCTOPC, hence, tuning
principles of the parameter tM and the control order ρ also follow the ones of the PCTOPC, which can
be referred to [8]. Meanwhile, tuning of Kp, Ki, and Kd also follow the principles of the conventional
PID controller, namely, (1) large Kp would accelerate the output response speed, which is beneficial
to reduce the steady-state tracking error while increases the overshoot; (2) small Ki would reduce
the overshoot while slow down the speed of eliminating the steady-state error; and (3) large Kd
would accelerate the system response speed and reduce the overshoot while weakening the system
robustness against disturbances.

3.3. Stability Analysis

In this subsection, stability of the closed-loop system under the derived optimal
predictive controller (15) is analyzed, which is given in Theorem 2.

Theorem 2. Consider a class of SISO nonlinear affine system (1) satisfying (A1)~(A3) with system
dimension n ≥ 2. For the derived optimal predictive controller (15), there must exist a predictive
period tM > 0, PID gainsKp, Ki, and Kd such that the closed-loop system is stable.

Proof of Theorem 2. In the derived controller (15), the gain matrix KM can be expanded as
KM = [K0, K1, . . . , Kn−1]. Then the expanded formulation of the term KM H0 can be given
by:

KM H0 = K0Ki
∫ t

0 e1dt0 +
(
K0Kp + K1Ki

)
e1

+
n−2
∑

j=1

(
KjKp + Kj+1Ki + Kj−1Kd

)
e[j]1 +

(
Kn−1Kp + Kn−2Kd

)
e[n−1]

1
(23)

Recall in system (1) that y[n] =
·
xn = f (x) + g(x) · u, then bringing controller (15) into

the formulation y[n] by considering Formula (23) yields:

0 = e[n]1 +
(Kn−1 + 1)Kp + Kn−2Kd

Kd
e[n−1]

1 +
Kn−2Kp + (Kn−1 + 1)Ki + Kn−3Kd

Kd
e[n−2]

1

+ 1
Kd

n−3
∑

j=1

(
KjKp + Kj+1Ki + Kj−1Kd

)
e[j]1 +

K0Kp + K1Ki
Kd

e1 + K0Ki
Kd

∫ t
0 e1dt0

(24)

Differentiating both sides of Formula (24) with respect to time yields:

0 = e[n+1]
1 +

(Kn−1 + 1)Kp + Kn−2Kd

Kd︸ ︷︷ ︸
βn

e[n]1 +
Kn−2Kp + (Kn−1 + 1)Ki + Kn−3Kd

Kd︸ ︷︷ ︸
βn−1

e[n−1]
1

+
n−2
∑

j=2

KjKp + Kj+1Ki + Kj−1Kd

Kd︸ ︷︷ ︸
β j

e[j]1 +
K0Kp + K1Ki

Kd︸ ︷︷ ︸
β1

·
e1 +

K0Ki
Kd︸ ︷︷ ︸
β0

e1

(25)
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Poles of the system (25) can be calculated according to the following characteristic
equation:

e[n+1]
1 + βne[n]1 + βn−1e[n−1]

1 +
n−2

∑
j=2

β je
[j]
1 + β1

·
e1 + β0e1 = 0 (26)

Notice that the parameters Kp, Ki, Kd, and Kj, j = 0, . . . , n− 1 are all constants such
that roots of the polynomial function (26) can be computed for different PID gains and
predictive periods. Thus, appropriate values of Kp, Ki, Kd, and Kj can make the system (25)
stable. Then, proof of this theorem is fulfilled. �

3.4. Connections and Comparisons between the PCTOPC and the PID-CTOPC

In this subsection, Figure 1 is applied to highlight both connections and differences be-
tween the PCTOPC and the proposed PID-CTOPC. Besides, flow chart for implementation
of the PID-CTOPC is also illustrated in the figure.
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4. Model Simulation Results

This section aims to demonstrate the effectiveness of the PID-CTOPC approach numer-
ically through designing autopilots for a missile under external disturbances. Comparison
with the PCTOPC and the Lu’s approach is carried out to highlight the superiorities of the
PID-CTOPC. Lu’s approach can enable the closed-loop system better robustness than the
one based upon the PCTOPC and has made many achievements [34–45]. Introduction of
Lu’s approach targeting system (1) is given in Appendix A.

Longitudinal dynamics of a missile flying at Mach 3 and an altitude of 6096 m (20,000 ft)
perturbed by disturbance is given by [19,40]:

·
α = 0.7P0S

mvs
MaCn cos α + q

·
q = 0.7P0Sdr

Iy
M2

aCm
·

δ1 = δ2
·

δ2 = −ω2
aδ1 − 2ξaωaδ2 + ω2

aδc + d(t)

(27)
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where, d(t) represents the unknown external disturbance. The force coefficient Cn and the
torque coefficient Cm are given by: Cn = anα3k3 + bnα|α|k2 + cn

(
2− Ma

3

)
αk + dnkδ1

Cm = amα3k3 + bmα|α|k2 + cm

(
−7 + 8Ma

3

)
αk + dmkδ1

(28)

where, α, q, δ1, and δ2 are system states. α and q represent the attack angle (rad) and the
pitch rate (rad/s), respectively. Differential equations of δ1 and δ2 describe the actuator
dynamics. δc represents the tail deflection (rad) as well as the control input, which ranges
from −30 degree to 30 degree. The attack angle α is taken as the system output, which
ranges from −20 degree to 20 degree. Values of the model parameters in Formulas (27)
and (28) can be seen in [19,46].

Two simplifications in [19] are adopted. Firstly, cos α ≈ 1. Secondly, since the control
surface mainly generates rotational torque, thus, its contribution in the force equation
Cn, namely, the term dnkδ1, is ignored. Hence, in the controller design, Cn = anα3k3 +

bnα|α|k2 + cn

(
2− Ma

3

)
αk is used to replace Cn. In addition, to write the missile dynamics

into the form in system, let x = [x1, x2, x3, x4]
T = [α, q, δ1, δ2]

T and denote: [ f1(x), f2(x), f3(x), f4(x)]T =
[

0.7P0S
mvs

MaCn + q, 0.7P0Sdr
Iy

M2
aCm, δ2,−ω2

aδ1 − 2ξaωaδ2

]T

[g1(x), g2(x), g3(x), g4(x)]T =
[
0, 0, 0, ω2

a
]T

(29)

Next, to design the controller, the unknown external disturbance d(t) is assumed to
be zero. Then, in the simulation, d(t) is considered. Differentiating the attack angle α four
times yields:

·
α = f1(x)
··
α = ∂ f1(x)

∂x1
f1(x) + f2(x)

α[3] =

[
∂2 f1(x)

∂x2
1

f1(x) +
(

∂ f1(x)
∂x1

)2
+ ∂ f2(x)

∂x1

]
f1(x) + ∂ f1(x)

∂x1
f2(x) + ∂ f2(x)

∂x3
f3(x)

α[4] = ρ1(x) · f1(x) + ρ2(x) · f2(x) + ∂ f1(x)
∂x1
· ∂ f2(x)

∂x3
f3(x) + ∂ f2(x)

∂x3
f4(x) + ∂ f2(x)

∂x3
g4(x) · u

(30)

where, the nonlinear terms ρ1(x) and ρ2(x) are given by:
ρ1(x) = ∂ f 3

1 (x)
∂x3

1
f 2
1 (x) + ∂ f 2

1 (x)
∂x2

1

[
4 f1(x) ∂ f1(x)

∂x1
+ f1(x) + f2(x)

]
+ 2 ∂ f1(x)

∂x1
· ∂ f2(x)

∂x1
+
[

∂ f1(x)
∂x1

]3

ρ2(x) = 2 f1(x) ∂ f 2
1 (x)
∂x2

1
+
[

∂ f1(x)
∂x1

]2
+ ∂ f2(x)

∂x1

(31)

It can be verified that m(x) 6= 0. Therefore, the system dimension is n = 4.

4.1. Case Study 1: Superioities Validation

In this subsection, two groups of simulations are carried out in MATLAB/Simulink
with the simulation time 10 s and the sampling interval 0.002 s. The prescribed reference
(unit: rad) is given by: αd(t) = 0.3 when t ≤ 2, αd(t) = −0.2 when 2 ≤ t ≤ 5, αd(t) = 0.2
when 5 ≤ t ≤ 8, and αd(t) = −0.1 when 8 ≤ t ≤ 10. Then, derivatives of αd(t) are given
by:

·
αd(t) =

··
αd(t) = α

[3]
d (t) = α

[4]
d (t) = 0. Reference values of the controller parameters are

given in Table 1.

Table 1. Values of controller parameters.

Approach Name Parameter Value

PID-CTOPC tM = 0.5, ρ = 2, Kp = 10, Ki = 0.1, Kd = 0.05
PCTOPC tC = 0.5, σ = 2

Lu’s tL = 0.08, Q1 = 100, Q2 = 0.2, Q3 = Q4 = 0
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Controller parameters of the three approaches are given based on the performance
index that the autopilot system has almost the same response time. In the first group of
simulation, the system is affected by constant disturbance d(t) = 5. Then, in the second
group, time-varying disturbance d(t) = 5 sin(πt) is added to the system. The two types of
disturbances are only used to show the superiorities of the modified approach, which may
have differences with the real scenarios.

4.2. Case Study 2: Control Parameter Selection Validation

In this subsection, since tuning principles of Kp, Ki, and Kd are the same with the
conventional PID controllers, which has been pointed out before, thus, influences on the
PID-CTOPC-based closed-loop performance from the control parameters tM and ρ are
mainly discussed. Values of ρ, Kp, Ki, and Kd are the same with the ones shown in Table 1.
In addition, to clearly show the influences, disturbances are not considered in next.

First, closed-loop performance based upon difference values of the predictive period,
namely, tM = 1, tM = 0.5, and tM = 0.3 is illustrated.

Second, closed-loop performance based upon difference values of the control order,
namely, ρ = 2, ρ = 3, and ρ = 4 is illustrated.

5. Discussion

Contrast results for Case study 1 are given by Figure 2:
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It can be seen from Figures 2–5 that, the PID-CTOPC approach is obviously superior to
the two representative predictive approaches under the constant and time-varying external
disturbances. For one thing, due to the consideration of the accumulative tracking error
in the new error state, the proposed PID-CTOPC approach-based closed-loop system has
smaller state-steady error than the one based on the PCTOPC and the Lu’s approach, as
shown in Figures 2 and 4. For another thing, using appropriate linear combination of
the current, accumulative, and derivative tracking errors and minimizing the three errors
simultaneously in the optimization problem are beneficial to reduce input fluctuations
for the proposed approach compared with the PCTOPC and Lu’s approach, which is also
illustrated in Figures 3 and 5.
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Figure 5. Group 2 with time-varying disturbance: Tail deflection δc.

It can be seen from Figures 6 and 7 that a large value of the predictive period corre-
sponds to fast system output response speed, while it would bring the closed-loop system
obvious negative effects in which fluctuation and surging of the system input become
serious in dealing with sudden changes. Thus, to derive satisfied control performance, one
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should balance the response speed and the input fluctuation by adjusting the value of the
predictive period.
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Figures 8 and 9 clearly illustrate that, though increasing the value of the control order
would lead to small response time of the closed-loop system, frequent fluctuation and
surging of the system input would occur when the sudden changes are encountered. Thus,
tuning the value of the control order is another way to weigh the response speed and the
input fluctuation for the closed-loop system.
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6. Conclusions

This paper improves the output performance for a class of high-order nonlinear
systems under unknown constant and time-varying external disturbances by modifying
the PCTOPC approach. The main conclusions are drawn as:

1. A new system error state with PID structure is presented such that the current,
the accumulative, and the derivative tracking errors are all considered and then
minimized in the optimization problem simultaneously.

2. Due to the minimization of the accumulative and derivative tracking errors in the
proposed optimal predictive controller, robustness of the closed-loop system against
the constant and the time-varying disturbances is significantly enhanced and the
system input fluctuations are also degraded compared with the system using the
controllers based upon the PCTOPC and the Lu’s approaches.

3. Though the proposed PID-CTOPC have achieved satisfactory control performance,
there are some further studies that can be expected in the future. First, the proposed
approach is expected to be validated experimentally. Second, the control parameters
are required to be adjusted adaptively by using tracking errors.
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Appendix A

In this appendix, one of the commonly applied CTOPC approaches proposed by
Professor Lu is introduced.

In system (1), by using the Taylor series expansion, predictions of the states xi(t),
i = 1, . . . , n within the predictive period tL can be given by:

x1(t + tL) ≈ x1(t) + tL · x2(t) + . . . + tn
L

n! [ f (x(t)) + g(x(t)) · u(t)]
x2(t + tL) ≈ x2(t) + tL · x3(t) + . . . + tn−1

L
(n−1)! [ f (x(t)) + g(x(t)) · u(t)]

...
xn(t + tL) ≈ xn(t) + tL · [ f (x(t)) + g(x(t)) · u(t)]

(A1)

Similarly, predictions of the prescribed references for all states within tL can also be
given by:

xd
1(t + tL) ≈ xd

1(t) + tL · xd
2(t) + . . . + tn

L
n!

·
xd

n(t) = yd(t) + tL ·
·
yd(t) + . . . + tn

L
n! y[n]d (t)

xd
2(t + tL) ≈ xd

2(t) + tL · xd
3(t) + . . . + tn−1

L
(n−1)!

·
xd

n(t) =
·
yd(t) + tL ·

··
yd(t) + . . . + tn−1

L
(n−1)! y

[n]
d (t)

...

xd
n(t + tL) ≈ xd

n(t) + tL ·
·

xd
n(t) = y[n−1]

d (t) + tL · y
[n]
d (t)

(A2)

Let ei(t) = xi(t)− xd
i (t), i = 1, . . . , n be the state tracking errors. Then, predictions of

ei(t) can be expressed by:

ei(t + tL) = xi(t + tL)− xd
i (t + tL) (A3)

Denote E(t + tL) = [e1(t + tL), . . . , en(t + tL)]
T . The RHPI to be minimized relative to

the input u(t) is selected as:

JL(u(t)) =
1
2

[
ET(t + tL) ·M · E(t + tL) + µ · u2(t)

]
(A4)

where, M ∈ Rn×n is a semi-definite diagonal weighting matrix with the diagonal elements
mi ≥ 0, i = 1, . . . , n. µ ∈ R is a positive number called penalty factor.

https://github.com/wgl1981/weiyi.git
https://github.com/wgl1981/weiyi.git
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Then, by using the necessary condition ∂JL(u(t))/∂u(t) = 0, the optimal predictive
control law is given by:

u(t) = − 1
Q

{
tn
L

n! g(x)m1

[
e1(t) + tLe2(t) +

t2
L

2! e3(t) + . . . + tn
L

n!

(
f (x)− y[n]d (t)

)]
+

tn−1
L

(n−1)! g(x)m2

[
e2(t) + tLe3(t) + . . . + tn−1

L
(n−1)!

(
f (x)− y[n]d (t)

)]
+ . . .

+tLg(x)mn

[
en(t) + tL

(
f (x)− y[n]d (t)

)]} (A5)

where, Q is given by:

Q = g2(x)

( tn
L

n!

)2
m1 +

(
tn−1
L

(n− 1)!

)2

m2 + . . . + t2
Lmn

+ µ (A6)
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