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Abstract: The increasing number of daily notifications generated by smartphones and wearable
devices increases mental burdens, deteriorates productivity, and results in energy waste. These
phenomena are exacerbated by emerging use cases in which users are wearing and using an increas-
ing number of personal mobile devices, such as smartphones, smartwatches, AirPods, or tablets
because all the devices can generate redundant notifications simultaneously. Therefore, in addition
to distraction, redundant notifications triggered by multiple devices result in energy waste. Prior
work proposed a notification management system called PASS, which automatically manipulates the
occurrence of notifications based on personalized models. However, machine-learning-based models
work poorly against new incoming notifications because prior work has not investigated behavior
changes over time. To reduce the gap between modeling and real deployment when the model is to be
used long-term, we conducted a longitudinal study with data collection over long-term periods. We
collected an additional 11,258 notifications and analyzed 18,407 notifications, including the original
dataset. The total study spans two years. Through a statistical test, we identified time-invariant
features that can be fully used for training. To overcome the accuracy drop caused by newly occurring
data, we design windowing time-invariant online learning (WTOL). In the newly collected dataset,
WTOL improves the F-score of the original models based on batch learning from 44.3% to 69.0% by
combining online learning and windowing features depending on time sensitivity.

Keywords: notification; machine learning; smartphone; smartwatch

1. Introduction

Notifications are an essential function to inform users of urgent or useful information.
In spite of their usefulness, frequently sending notifications to users at inopportune mo-
ments could harm their engagement with the task at hand and productivity. Prior studies
have investigated the negative effects of notifications [1–3] and proposed a variety of in-
telligent notification systems that manage notification delivery at an opportune moment
when users can conveniently deal with new incoming messages [4–9]. To help a system
recognize when users can tolerate an incoming notification, interruptibility models were
proposed and trained with notification contents [4,5], breakpoints [6], or important usage
information [7]. Furthermore, Mehrotra et al. [8] and Pradhan et al. [9] proposed a smart
notification manager that directly manipulates notification occurrences based on machine-
learning models. In addition to studies on notifications by smartphones, recent studies
have analyzed and managed notifications triggered by smartwatches [10–12]. Meanwhile,
interruptibility research has been extended to multi-device environments [12–16]. In multi-
device environments, in addition to user distraction, energy waste caused by redundant
notifications increases. To suppress redundant notifications between smartphones and
smartwatches, PASS [17] proposed a matching-learning-based notification manager that
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automatically defers phone-preferable notification delivery and consecutively forwards
them when a watch-preferable notification occurs.

However, there is still a lack of longitudinal studies to understand user behavior
changes over time and to evaluate the quality of models. Most of the models were built
and evaluated using batch learning, which splits data into training and testing sets. batch-
learning-based models face a drop in accuracy when deployed in the wild for long-term
periods owing to a lack of updates on newly available data. The accuracy drop is mainly
caused by the existence of changing data, which is different from the situation when the
model was trained; the changes include changes in users’ context, personalized content in
a notification, social relationships, or breaking news. Over passing periods, such drastic
changes may lead to incorrect classification. Therefore, there is a need to retrain these
models. However, to the best of our knowledge, this has not been entirely investigated and
remains an open issue in notification management in multi-device environments.

In this paper, we focus on a longitudinal study to reduce energy consumption in multi-
device environments. Our study is the first to investigate the effects of user behavior change
over time in intelligent notification systems. From the longitudinal study, we aimed to
answer the following research questions: (i) How accurate are batch-learning-based models
for long-term periods? (ii) How can invariant features be distinguished over long-term
periods? (iii) How can the accuracy drop caused by user behavior change over long-term
periods be overcome? To answer these research questions, we reused the existing models
trained in PASS [17] that reduce redundant notifications in multi-device environments
and directly deployed the trained models to multiple users for multiple years. After an
average of 593 days from the end of the prior experiment [17], we collected an additional
11,258 notifications over 68 days on average from five users who participated in the original
experiment. Data collection spanned approximately two years.

With the new dataset, we performed the following experiments and discovered inter-
esting aspects that are related to the aforementioned research questions. First, as shown
in Table 1, batch-learning-based models show a drastic drop in accuracy when deployed
in the real world over long-term periods without any model update. Second, to discover
time-invariant features, we conducted a chi-square test for independence. A Chi-square
test compares two categorical variables in a contingency table to investigate whether they
are related. In our case, each categorical variable was generated using features based on
the raw data during each period of data collection. As a within-subject experiment, we
performed a chi-square test on each user’s features extracted from the new dataset. From
this test, we can identify the features that are time invariant: 7 features out of 50 (five users
× ten features) show low correlation (independence) between the two sets of data gathered
during each period. Third, we designed windowing and time-invariant feature-based
online learning (WTOL) to overcome the significant accuracy drop over time against a
long-term dataset. Considering the time-invariant features discovered by statistical tests,
WTOL partially uses the collected dataset to reduce the variation in features when the
model is trained. In other words, time-variant features should be partially used to perform
online learning because the data trend is different over time. Owing to adaptive windowing
according to the time sensitivity, WTOL outperforms batch-learning models and simple
online learning models by up to +24.7% and +14.3% in terms of the F-score, respectively.

The main contributions of our work are summarized as:

• To investigate users’ behavior changes over time and the effect of these changes on
the quality of models, we collected in the wild notifications from five users who
participated in the previous experiments. For 63 days, on average, 11,258 notifications
were gathered 593 days after the end of the original experiment. To our knowledge,
this is the first in the wild dataset in terms of multiple devices and long-term periods.

• We discovered time-invariant features among 50 features (five users × 10 features) by
conducting a chi-square test for independence.

• To the best of our knowledge, this study is the first to highlight the problem that the
accuracy of the trained model drastically drops when it is deployed in the real world;
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it also states the reasons. To compensate for the accuracy drop from batch learning,
we present a method based on online learning of windowing-time-invariant features.

Table 1. Results of accuracy drop against a new dataset collected over long-term periods.

Original Model New Dataset

Precision 80.2% 53.1% (∆−27.1%)
Recall 76.2% 41.7% (∆−34.5%)

F-Score 77.2% 44.3% (∆−32.9%)

2. Related Work

With a variety of sensors mounted on smartphones, several researchers have studied
intelligent notification systems [4–9,18,19]. Pielot et al. and Pejovic et al. unobtrusively
captured user contexts and system configurations regarding the preference of notifica-
tions [18,19]. To improve the performance of interruptibility models, Fischer et al. and
Mehrotra et al. employed notification content as a feature to build a machine-learning
model [4,5]. Fischer et al. [6] and Attelia [7] proposed a system to predict breakpoints in
which users can receive notifications with low interruptions. Furthermore, with the trained
models, an intelligent notification coordinator was proposed [8,9].

Several studies have investigated smartwatch notifications [10–12]. Visuri et al. [10]
performed a quantitative analysis using a large number of notifications (2.8 million) col-
lected from in the wild. Cecchinato et al. [11] conducted qualitative user interviews. Such
studies revealed that users are willing to optimize notification configurations based on
the sender, topic, or even location. In addition to a single personal device, interruptibility
works have been extended to multi-device environments [12–16]. These studies considered
the emerging situation in which many people carry multiple mobile devices daily. In this
emerging circumstance, PASS tackled the problem of reducing notification delivery to a
smartwatch from a smartphone to reduce user distraction. However, there is still a lack
of longitudinal studies that investigate user behavior changes over time and evaluate the
quality of models on an in the wild long-term dataset. Most existing studies experience
accuracy drops caused by extreme changes in a newly collected dataset.

Online learning has been used in the following domains to adapt to changing or new
behavior from new data: human activity recognition [20–22], speech recognition [20,21], and
intrusion detection [23]. However, previous studies did not consider multi-device environments.

There have been long-term studies on in the wild data analysis [24–26]. Jeong et al. [24]
conducted a longitudinal study on smartwatch wearing habits. Okoshi et al. [25] performed
an analysis on a large number of notifications from the production-level service, Yahoo
JAPAN. Aku et al. [26] conducted a study on the usage style transformation for the long-
term usage of smartwatches. However, prior studies did not consider adaptation to new
data or multi-device environments. Therefore, there is scope to study users’ behavioral
changes over long-term periods. To the best of our knowledge, our study is the first to
investigate the accuracy drop of prediction models induced by newly available data in
multi-device environments.

3. Dataset

To investigate users’ behavior changes over long-term periods, we collected additional
data from the same user group for 68 days, approximately 2 years after the previous
experiment was conducted [17]. As shown in Figure 1, we used the existing framework
consisting of an Android application, data server, and data analyzer for data collection and
analysis. We briefly recap the existing framework and describe the sensor data capture and
features extraction process.
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• Data Collection Application. We reused a data collection application called nCollector,
which determines the label of notifications and senses user contexts when a notifica-
tion appears. Specifically, the contexts sensed by nCollector are notification contents,
users’ physical activities, time, and phone status. Subsequently, the 10 features listed
in Table 2 were extracted from the sensed data. As listed in Table 2, the label of the
notification type is determined based on whether the application that triggered the notifica-
tion was launched at a certain time. Auto-labeling in Figure 1 provides an overview of
how the notification type is determined. Therefore, nCollector keeps track of whether
an application that triggers a notification is launched before or after this notification
is removed.
Two time variables (Tlaunched and Tremoved) are relevant to user decisions. Subsequently,
the elapsed time Telapsed was computed as |Tremoved − Tlaunched|. If Telapsed is less than or
equal to 10 s (Treaction), nCollector judges that a user has used the smartphone to handle
further interaction with the notification. We carefully defined a heuristic parameter
(Treaction) of 10 s because 25% of the response time for notifications is less than 10 s,
and the curve of the response time stabilizes at this point. Even though the quality
of modeling strongly depends on the accuracy of auto-labeling, we bring it into this
study as a practical method in a real-world scenario because an on-body sensor or
user interruption for questionnaire answering is not realistic.

• Data Collection Server. We reused the developed Data Collection Server using Java
Sever Pages (JSP) and a Bash Shell script on Ubuntu Linux. The labeled notification
and context were conveyed to the server. To avoid frequent data transmission and
vast data sizes, data are formatted by JSON, and its transmission occurs once at the
end of a day.

• Data Analyzer. We reused Data Analyzer on Windows 7 using several R packages:
JSON parer (jsonlite), parallel computing (doParallel), text handling (text-mining), and
machine learning (caret).

Data Collection Server

Data 
Collector

Data 
Analyzer

Users

User Data

Mobile Devices Data Collection 
Application

User

User

Mobile Devices

Data Collection 
Application

Sensed Raw Data

WIFI Clock GPS Bluetooth Biometric

Auto-labeling

Receive 𝑻𝒓𝒆𝒎𝒐𝒗𝒆𝒅 𝑻𝒍𝒂𝒖𝒏𝒄𝒉𝒆𝒅

𝒕
𝑻𝒆𝒍𝒂𝒑𝒔𝒆𝒅

𝑻𝒍𝒂𝒖𝒏𝒄𝒉𝒆𝒅

𝑻𝒆𝒍𝒂𝒑𝒔𝒆𝒅

Figure 1. Overall framework for data collection and analysis.
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Table 2. Collected notification label and context features.

Type Name Sensed Raw Data

Label Notification Type Whether the application that triggered the notification
was launched at a certain time

Feature Sender App Name Installed package name of mobile applications
Feature Title Title from the Notification bar
Feature Time of Day Millisecond time stamp
Feature Day of the Week Millisecond time stamp
Feature Recent Phone Usage Whether the time difference between the last screen ON

and Notification arrival time is in one minute or not
Feature Proximity Whether the user is proximate to the phone
Feature Priority Notification’s priority developer configured. The default

value is zero
Feature Physical Activity The user’s activity is provided by SensorManager
Feature Interactive Status True if the device is in an interactive state in which the

device is awake and ready to interact with the user
Feature Relative Seen Time Whether the time difference between the last screen ON

and Notification arrival time is equals to zero or not

We requested 11 users who participated in the previous experiment join the new
experiment. Of the 11 users, 5 agreed to take part in this experiment. Table 3 shows the
participant demographics for the additional experiments. Their ages differ from those
of the previous experiment because the new data collection started two years after the
original experiment.

Table 4 shows details of collected data across two periods. During 68 days on average,
we collected an additional 11,258 notifications. For analysis, we used 18,407 notifications,
including the previous dataset (7149 notifications on only 5 users). The whole period for
data collection lies across 2 years. Active days for data collection are more than 100 days on
average. All the data was collected from the multi-device environment where users use a
smartphone and a smartwatch.

Table 3. Participant demographics.

# of Users Age Occupation

5 (4 male and 1 female) 25, 26, 27, 31(2) Students(4), Office Workers(1)

Table 4. Summary of the collected dataset in two separate periods (first and second).

User
Date Day # of Notis. Label

First Second First Second First Second First Second

B 16.2.3–16.3.17 17.11.28–17.12.30
(622 days later)

35 33 1276 1232 992/354 252/980

C 16.1.22–16.3.6 17.09.11–17.12.31
(555 days later)

43 110 578 2700 220/358 265/2435

H 16.2.7–16.3.17 17.11.18–17.12.30
(612 days later)

26 43 275 988 79/196 443/545

I 16.2.3–16.3.6 17.09.08–17.12.30
(552 days later)

33 113 4196 4948 308/3888 3323/1625

J 16.2.3–16.3.6 17.11.20–17.12.30
(625 days later)

33 41 824 1390 42/782 262/1128

4. Features Analysis to Discover Long-Term Characteristic

We considered the following 10 features: (1) sender app name, (2) title, (3) time of
day, (4) day of the week, (5) recent phone usage, (6) proximity, (7) priority, (8) physical
activity, (9) phone status, and (10) relative seen time. Table 2 shows 10 features and the
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considered label. For the 10 features, we investigated features in which distribution was
changed as time goes on during multiple years. Therefore, we identify the features that are
time invariant. For the analysis, we conducted a chi-squared test of independence on the
10 features between the first and second periods. With such statistical tests, we discover
which variable is dependent on passing time.

The chi-square test of independence was used to analyze the contingency table formed
by the categorical variables. The test evaluates whether there is a significant association
between the categories of the two variables. In our study, the two categorical variables were
defined as the first and second periods, as listed in Table 4. As a within-subject experiment,
a chi-square test was applied to each user’s features.

The chi-square test provides a method for testing the association between the row
and column variables in a two-way table (contingency table). The null hypothesis H0
assumes no association between the two periods, as listed in Table 4. In other words,
none of the features varied according to the passing time. In contrast, the alternative
hypothesis Ha claims that some associations exist. This implies that the feature is sensitive
to changing time.

The chi-square test is based on a test statistic that measures the divergence of the
observed data from the values expected under the null hypothesis of no association. This
requires the calculation of the expected values based on the data. Once the expected values
were computed (we computed them using the R package), the chi-square test statistic was
computed as

X2 =
k

∑
i=1

(Oi − Ei)
2

Ei
, (1)

where k, Oi, Ei are the number of categories, observed frequency counts in each category,
and expected frequency counts in each category, respectively.

If the p-value is less than or equal to 0.05, the null hypothesis (H0) is rejected in favor
of the alternative hypothesis (Ha). However, if the p-value is greater than 0.05, then the
null hypothesis is accepted (H0). In our case, the high correlation features (p-value ≤ 0.05)
indicate that they were different over time. Table 5 shows the results of the chi-square test.
As a result, only 7 features were independent p-value > 0.05 among the possible 50 features
(5 users × 10 features). Specifically, out of 50 as calculated by 5 users × 10 features, Tables 6
and 7 represent the contingency tables of the time-invariant (p > 0.05) and time-variant
features (p ≤ 0.05), respectively. Consequently, we consider these seven features as time-
invariant features. We bring the insight modeling phase to mitigate the negative effects
caused by outdated datasets.

Table 5. Long-term feature analysis with chi-square test. * denotes the p-value < 0.05. The colored
cells indicate long-term features (time-invariant features).

User
Sender App

Name
Title

Time of
Day

Day of the
Week

Recent
Phone
Usage

Proximity Priority
Physical
Activity

Phone Status
Relative

Seen
Time

B 5.5× 10 ∗ 2.8× 10 ∗ 8.3× 10 ∗ 3.7× 10 ∗ 6.7× 10 ∗ 9.5× 10 ∗ 1.1× 102 ∗ 8.9× 10 ∗ 1.4 5.0× 10 ∗

C 9.1× 10−1 2.7× 10 ∗ 5.8× 10 ∗ 6.2× 10 ∗ 1.5 1.2× 103 ∗ 9.7× 102 ∗ 1.0× 102 ∗ 3.7× 10 ∗ 5.1× 10 ∗

H 8.2× 10 ∗ 2.3 4.6× 10 ∗ 3.0× 10 ∗ 1.7× 10 ∗ 3.5× 10 ∗ 4.5× 10 ∗ 6.7× 10 ∗ 3.6× 10 ∗ 5.5× 10−1

I 5.4× 10 ∗ 7.9 1.5× 102 ∗ 4.1× 10 ∗ 3.8× 102 ∗ 7.2× 102 ∗ 3.7× 103 ∗ 2.5× 102 ∗ 2.7× 102 ∗ 3.3× 102 ∗

J 2.6× 10 ∗ 1.9× 103 ∗ 1.1× 102 ∗ 3.1× 10 ∗ 1.3× 10 ∗ 2.4× 10−1 3.4× 10 ∗ 3.1× 102 ∗ 1.6× 10 ∗ 7.8× 10−2
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Table 6. Contingency table from Title in user H. This feature is considered as time-invariant because
p-value> 0.05.

Title First Period Second Period

Personal message A 25 53
Personal message B 29 99
Personal message C 7 23

Table 7. Contingency table from Title in user I. This feature is considered as time-variant because
p-value ≤ 0.05.

Title First Period Second Period

Personal message A 36 62
Personal message B 21 10

5. Building Prediction Models

For modeling, the naïve Bayes algorithm was used to train the notification usage pat-
terns of users. The naïve Bayes algorithm demands low computational resources compared
with neural networks and XGBoost [27]. With the naïve Bayes model, a notification can be
determined to be either phone-preferable or watch-preferable. The model takes 10 features
listed in Table 2 as inputs.

The naïve Bayes model is based on conditional probability. The conditional probability
P(NT |Fi) denotes the probability of notification N for type T on context feature Fi occurring.
A context feature Fi is a given condition that causes notification N. In Bayes’ theorem, the
probability of notification N for type T under a given context feature Fi is defined as

P(NT |Fi) =
P(Fi|NT)P(NT)

P(Fi)
, T ∈ {phone, watch) (2)

where P(NT |Fi) is the probability of a given context feature Fi occurring when notification
N arrives, and P(NT) is the probability of whether a notification type is phone-preferable.
P(Fi) is the probability of a given context feature occurring when a notification arrives. The
features Fi are summarized in Table 2.

To apply Bayes’ theorem to our classification problem, we finally used the naïve
Bayes algorithm, which assumes that all the aforementioned features in the dataset are
equally important and independent. The naïve Bayes algorithm can be summarized by the
following formula:

P(NT |F1, . . . , F10) =
1
Z

p(NT)
10

∏
i=1

p(Fi|NT) (3)

In the naïve Bayes rule, the probability of notification N for type T, given a context
feature provided by features F1 through F10, is equal to the product of the probabilities
of each piece of context feature conditioned on notification NT , the prior probability of
notification NT , and a scaling factor 1

Z , where Z is P(F1, . . . , F10). Finally, the naïve Bayes
classifier combines this model with the following decision rule.

ŷ = argmax
T∈{phone,watch}

p(NT)
10

∏
i=1

p(Fi|NT) (4)

This rule selects the hypothesis that is the most probable, called the maximum a
posteriori probability. Corresponding to this rule, the Bayes classifier assigns notification
type T to the prediction label ŷ.

Based on the naïve Bayes algorithm, we built three types of models: batch learning
(BL), plain online learning (PLO), and WTOL. Figure 2 shows how the working of the three
differs from each other. The details of each model are as follows:
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• Batch learning (BL). As shown in Figure 2a, the BL algorithm uses batches of collected
notifications and sensed data to train a personalized model. BL then predicts the label
of the test data using the relationship between the labels and sensed contexts. The
BL does not require additional computations after the models are built. However,
BL does not have the chance to update the models against new data. Therefore, the
models were trained using datasets collected for the first and second periods.

• Plain online learning (POL). As shown in Figure 2b, POL continuously updates the
models with new incoming data. The model was iteratively updated with the entire
dataset collected during the entire period from day 1 to today i. Therefore, an updated
model was built every day. In our study, the quality of the classifiers was evaluated
using a newly available dataset on day i + 1.

• Windowing and time-invariant features based online learning (WTOL). As shown
in Figure 2c, unlike POL, WTOL uses only the entire dataset for seven time-invariant
features as listed in Table 5. It partially takes time-variant features by windowing to
eliminate an outdated trend in the dataset because these features are different over
passing time. The evaluation method for the WTOL was the same as that for the POL.

Training
Dataset

Training Fixed Model
Predicted 

ValuePrediction

Evolved
Dataset

Training Evolved
Model

Predicted 
Value

Recent Data

Prediction

Continuous Data Collection

Evolved
Dataset

Windowing Evolved
Model

Predicted 
Value

Recent Data

Prediction

Continuous Data Collection

Training

(a)

Training
Dataset

Training Fixed Model
Predicted 

ValuePrediction

Evolved
Dataset

Training Evolved
Model

Predicted 
Value

Recent Data

Prediction

Continuous Data Collection

Evolved
Dataset

Windowing Evolved
Model

Predicted 
Value

Recent Data

Prediction

Continuous Data Collection

Training

(b)

Training
Dataset

Training Fixed Model
Predicted 

ValuePrediction

Evolved
Dataset

Training Evolved
Model

Predicted 
Value

Recent Data

Prediction

Continuous Data Collection

Evolved
Dataset

Windowing Evolved
Model

Predicted 
Value

Recent Data

Prediction

Continuous Data Collection

Training

(c)

Figure 2. Three training methods: (a) batch learning; (b) plain online learning; and (c) windowing
time-invariant online learning.

6. Evaluation

In this section, we show how accurately the proposed online learning-based classifiers
predict long-term periods compared to prior work based on batch-learning-based classifiers.
Online learning-based classifiers were periodically trained with new incoming data. We
evaluated three types of models using an in the wild long-term dataset. For the long-term
dataset collection, we recruited five participants from the same people who participated
in the data collection experiment. The collected number of notifications is 11,258 for
approximately two months.
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Unlike batch-learning validation, which is evaluated by splitting the training and
validation datasets, we used the collected dataset to verify the quality of classifiers based
on three types of models. We repeatedly built all classifiers with the dataset collected by the
end of each day and verified each classifier by new incoming notifications on the following
day (i.e., i + 1, where i is the current day). Specifically, on day i, a model was trained using
a dataset from days 1 to i, and it was tested to predict the device preference of notifications
appearing on day i + 1.

To demonstrate the effectiveness of the proposed method, we built three types of
models: BL, PLO, and WTOL. The details of how the models were trained and evaluated
are as follows. BL indicates that the models were not updated after they were built. POL
indicates that the models were continuously updated from the incoming data. This model
was built with a dataset from day 1 to day i. In addition, the quality of the classifiers
was evaluated using a newly available dataset on day i + 1. WTOL indicates that the
models were updated from partial ones out of the entire dataset except the time-invariant
seven features as listed in Table 5. The time-invariant features were determined using the
chi-square test.

For the evaluation, we used the following metrics: (1) Precision refers to the proportion
of predicted positives that are truly identified. To compute precision, the number of phone-
preferable notifications that were truly predicted was divided by the number of predicted
notifications. (2) Recall refers to the proportion of actual positives that are identified. To
measure recall, the number of phone-preferable notifications that were truly predicted was
divided by the number of actual phone-preferable notifications. (3) The F-score refers to
the mixture of precision and recall, which is computed as

2× precision× recall
precision + recall

(5)

Figure 3 represents the evaluation results across the second period, starting 593 days
after the end of the first experiment. Approximately two years after the end of the first data
collection, the BL models do not correctly predict new incoming notifications. As shown in
Table 1, the BL model achieved an F-score of 77.2%. However, on the first day after two
years, the F-score of the BL model drastically changed from 77.2% to 22.1%. The BL model
does not stabilize over the entire second period because BL does not adapt to changing or
new behavior from new incoming data.

Similar to BL, the F-scores of POL and WTOL decreased drastically on the first day
of the second period. In contrast to BL, POL recovered the F-score from 22.1% to 64.9%
after 10 days. However, the POL was simply retrained with the entire dataset without
considering the variation in the dataset. In this case, time-variant features hinder adaptation
to new patterns. Therefore, the F-score of the POL was saturated after a few days.

On day 10, WTOL showed an F-score of 75.6%. Moreover, the WTOL showed the best
prediction results in terms of precision, recall, and F-score. All improvements stemmed
from the combination of feature windowing and online learning. Windowing features
according to time sensitivity eliminate strong variations between the two periods.

In summary, as shown in Figure 4, WTOL outperformed BL and POL with a precision
of 70.7%, recall of 73.8%, and F-score of 69.0%. WTOL achieved the best result spanning
across all users. Specifically, in the case of user I, WTOL dramatically improved the
prediction result compared to BL and POL. User I shows the distinct changes in usage
patterns. Therefore, BL and POL suffer from an accuracy drop due to the change in user
behavior. WTOL is robust to severe usage changes thanks to time-invariant features and
online learning.
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Figure 3. The inference results over time: (a) precision; (b) recall; and (c) F-score.
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Figure 4. The inference results over time: (a) Precision (b) Recall, and (c) F-Score.

7. Conclusions

In this paper, we proposed an intelligent notification systems called WTOL to mitigate
energy consumption induced by redundant notifications between a smartphone and a
smartwatch. The proposed system not only works in multi-device environments but also
keeps the quality of models for long-term periods of time. With in the wild data collection
for a long period of two years, we verified that the combination of windowing depending
on time-variant and online learning effectively adapts to either changing or new behavior.
By doing that, WTOL is improved as more and more data become available over passing
time. WTOL outperformed BL and POL by up to an F-score of 24.7%. Therefore, thanks to
resilience to changing behavior, WTOL could predict device preferences of notifications
without severe accuracy drop over time.
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