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Sakalauskas, L. Multi-Label

Classification and Explanation

Methods for Students’ Learning Style

Prediction and Interpretation. Appl.

Sci. 2022, 12, 5396. https://doi.org/

10.3390/app12115396

Academic Editor: DaeEun Kim

Received: 22 April 2022

Accepted: 24 May 2022

Published: 26 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Multi-Label Classification and Explanation Methods for
Students’ Learning Style Prediction and Interpretation
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Featured Application: As students are usually characterized by more than one learning style,
multi-label classification methods may be applied for the diagnosis of a composite students’ learn-
ing style, based on each learner’s activities in the virtual learning environment. For data sets with
weakly correlated learning activities, Shapley values present the explanations for the predicted
student’s multi-label learning style. In this way, the model assists teachers in better understand-
ing the cognitive traits of the learners in terms of learning activities, enabling teachers to prepare
the relevant learning objects for the personalization of virtual learning environments.

Abstract: The current paper attempts to describe the methodology guiding researchers on how to
use a combination of machine learning methods and cognitive-behavioral approaches to realize
the automatic prediction of a learner’s preferences for the various types of learning objects and
learning activities that may be offered in an adaptive learning environment. Generative as well as
discriminative machine learning methods may be applied to the classification of students’ learning
styles, based on the student’s historical activities in the e-learning process. This paper focuses on
the discriminative models that try to learn which input activities of the student(s) will correlate
with a particular learning style, discriminating among the inputs. This paper also investigates
several interpretability approaches that may be applicable for the multi-label models trained on
non-correlated and partially correlated data. The investigated methods and approaches are combined
in a consistent procedure that can be used in practical learning personalization.

Keywords: multi-label classification; neural network; prediction; learning style; Shapley value; Felder
Silverman; supervised machine learning; discriminative models; problem transformation methods;
problem adaptation methods

1. Introduction

The personalization of the virtual learning environment (VLE) reflects the ways in
which learning processes may be controlled so that each environment is optimally attractive
to the learner. This includes personalized navigation, a personalized recommendation
engine, personal instructors, personalized learning paths, fragment sorting and content
adaptation as a means to customize learning objects for constrained environments, and stu-
dent knowledge diagnosis as a task in realizing personalized education, among others [1–9].
VLE constraints may be dictated by both personal preferences and the learning style of the
learner [10]. In general, “learning styles” refer to a range of theories that aim to account for
differences in individual learning methods. Many theories share the proposition that hu-
mans can be classified according to their “style” of learning but differ in how the proposed
styles should be defined, categorized, and assessed [11].

The learning style of the learner can be automatically determined by the learner’s
activities in a virtual learning environment [12]. Automatic identification of the learning
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style of the learner(s) employs user modeling, which may be divided into static or dynamic
modeling, via stereotypes and highly adaptive user models [13].

In our previous papers, we investigated the exemplar-based methods that are some-
times applied to automatic learning-style diagnostics [14,15]. For example, the Bayesian
case model (BCM) is a generative format that uses unsupervised learning methods and may
predict the proportions of learning-style clusters for each student. Probabilistic models,
in general, try to use the Bayes formula or mixture models in a multi-label scenario [16].
In addition, BCM offers explanations for each learning-style cluster, using prototypes and
important features. In unsupervised learning, only input data is provided to the model.
Conversely, in supervised learning, input data is provided to the model, along with the
output data. The goal of supervised learning is to train the model so that it can predict the
output when it is given new data. The supervised user (learner) model classifies students
into their particular classes according to their learning style (for example, visual, kinesthetic,
aural, social, solitary, verbal, or logical) and/or assigns multiple learning-style labels to
the learner. Multi-label classification allows the model to classify data sets with more than
one target variable [17]. When making predictions, a given input may belong to more than
one label.

The task of determining the learning style of a student (or a group of students) may
be treated as a multi-label classification task. Formally, multi-label classification is the
problem of finding a model that maps input x to binary vector y (assigning a value of 0 or 1
for each element (label) in y). In the case of students’ learning styles, prediction labels
might be taken from the widely adopted Felder–Silverman model [10], wherein learning
styles are a balance between pairs of extremes, such as Active/Reflective, Sensing/Intuitive,
Verbal/Visual, and Sequential/Global. Each student or a group of students may be assigned
a set of these labels by the model, and some of the labels are more typical for a particular
student (or group of students) than others. Therefore, for each label, the model should
predict the probability that the student (or group of students) is characterized by the
label(s). The model might be trained on the data set, manually labeled by experts, that
stores students’ activities in the VLE. The values of the data features primarily store the
number of times that a particular learning activity was selected by a student or for how
long it was used by the student in question.

Therefore, the aim of this research is to identify multi-label classification methods that
are suitable for students’ learning-style detection, as well as the interpretation methods that
can explain the classification results. These methods must be combined into a coherent and
logical methodology, providing the solution to learning-style identification. Later learning
style(s) may be used for personalization of the VLE.

Of the many papers on learning personalization, not a single author has addressed the
lack of experimental work in the area of automatic student learning-style prediction and the
personalization of learning environments. Trying to fill this gap, we conducted experiments
for determining students’ learning styles, using supervised machine learning methods.
Students’ learning-style identification is related to multi-learning problems—multiclass,
multi-label, or multi-output classification methods may be applied to solve them, depend-
ing on the specific need [18]. Multi-label classification is most likely to be used in practical
applications since a student is very rarely characterized by a single learning style—usually,
several dominant learning styles interact for each learner. Therefore, this paper describes
our experiments with multi-label classification solutions.

Another learning-style modeling aspect that requires consideration is interpretability.
Interpretability is about the extent to which a particular cause and effect can be observed
within a system. It is not enough to have the probability values of a student’s learning
style—teachers, students, and other stakeholders may want or need to understand the
reasoning behind the predictions and decisions made by the model. In this way, for example,
teachers could prepare learning objects of certain types (video, text, or audio) or develop
learning content that is appropriate to the group of students, who may be characterized
by a particular learning style. In this context, it is also important to understand the
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difference between interpretability and explainability. Explainability is the extent to which
the internal mechanics of a deep learning system can be explained in human terms. In turn,
interpretability is the capacity to consistently explain (interpret) model’s result without
trying to know the reasons behind the scenes. The model agnostic SHAP (Shapley additive
explanations) method is proposed to explain NN’s individual predictions for those cases
when the input data features are not correlated or weakly correlated.

When proposing multi-label classification methods for students’ learning-style detec-
tion, more sophisticated practical cases were also taken into account: classifier chains [19]
and other methods for correlating labels, asymmetric Shapley values for incorporating
causal knowledge into model explainability, etc.

Besides the above-mentioned points, the experimental work described in this paper
deals with the input data preprocessing techniques (data scaling, under/oversampling in
the case of imbalanced data sets, imputation strategies in the case of missing input data
values, etc.) and the methods used to prevent the model from overfitting (for example, the
dropout approach or regularization techniques).

This research and the pilot experimental results led to our creating a set of procedures
and methods for identifying a student’s learning style and personalizing the virtual learning
environment accordingly.

The rest of the paper is organized as follows: firstly, the existing categories of multi-
label approaches that may be applied in students’ learning-style classification are listed
and briefly outlined; secondly, the model agnostic SHAP method that we propose for
model interpretation is introduced. Then, the results of our experiments with multi-label
approaches are described in Section 3. After an exploratory analysis of the training data
set, we describe the experiments performed with the OneVsRest multi-label classifiers
that use various base estimators (the problem transformation approach); based on the
results of these experiments, the generalization quality of the classifiers is then compared,
using such performance metrics as the Hamming loss, precision, recall, and the F1 score.
Then, we move to algorithm adaptation methods and describe the experiment that was
performed with a neural network for multi-label student learning-style prediction. After
this, we present the results of our experimentation with Shapley values, which might
be used to explain the neural network model. Then, the procedure describing how to
select methods for multi-label students’ learning-style detection is proposed as the result
of these experiments. Finally, conclusions are drawn, and suggestions for future work are
mentioned in Section 5.

The main contribution of this article is a developed mechanism that can help other
researchers to select the appropriate machine learning methods for student learning-style
prediction and interpretation.

2. Methods
2.1. Systematic Review of the Literature

In the literature, not a single attempt was made to apply rule-based, statistical, and
machine-learning methods for automatic student learning-style prediction. The authors
of [20] mention existing Bayesian networks, the hidden Markov model, decision trees,
NB tree classification, reinforcement learning, and other algorithms, and describe their
experimentation with artificial neural networks, genetic algorithms, the ant colony system,
and particle swarm optimization algorithms, using the Felder–Silverman learning style
model to describe learning-style dimensions. Based on the results of these experiments,
the authors concluded that different approaches perform best in different learning-style
dimensions, but all the tested models outperformed the existing approaches.

Experiments with deep neural networks for learning-style prediction are presented
in one study [2]. The authors selected an optimal neural network of two hidden layers
for student learning-style prediction. For training the model, 100 samples were used. The
Felder–Silverman learning-style dimensions were predicted as well. The authors also
applied principal components analysis (PCA) to investigate “whether targets for each
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dimension might be explained by some descriptor (time and count)” [21]. The authors also
presented NN performance metrics, including a detection rate that was between 0.2 and 0.5,
depending on the dimension.

A comprehensive comparative study of multi-label classification (MLC) methods
is presented by the authors of [16]—they evaluate 26 methods with 42 benchmark data
sets, using 20 evaluation measures. The study includes both problem transformation
and algorithm adaptation methods. The former group of methods decomposes the MLC
problem into simpler problems that are addressed with standard machine-learning meth-
ods; the latter group of methods addresses the MLC problem in a holistic manner—it
trains a model for predicting all labels simultaneously [16]. The authors selected the
8 best-performing methods: RFDTBR, AdaBoost.MH, ECCJ48, TREMLC, PSt, and EBRJ48
in terms of problem transformation, with RFPCT and BPNN as the algorithm adaptation
methods [16]. The authors state that MLC methods have weaknesses as well as strengths,
depending on what metrics are used for the evaluation. RFPCT, RFDTBR, EBRJ48, Ad-
aBoost.MH and ECCJ48 were distinguished as the best-performing methods, considering
all 18 evaluation measures.

The authors of [1] developed a learning agent for classifying students’ learning styles
using an artificial neural network. Due to the lack of homogenous data, the data set was
generated by stimulating students’ learning behavior, based on the five inputs.

Despite the fact that a plethora of papers exists about multiclass and multilabel
classification (for example, [22–25]), not many experimental works applying problem
transformation approaches to multi-label classification for student learning-style prediction
have been published. For example, the authors of [26] present a summary of works in
the automatic detection of learning styles and do not mention problem transformation
approaches for multi-label classification at all. According to their research, decision tree,
random forest, k-nearest neighbor and other classifiers achieve 74–90% accuracy for various
learning style dimensions.

Many other student learning-style classification applications target mainly problem
adaptation rather than problem transformation approaches.

2.2. Supervised Learning Algorithms for Classification

Theoretically, four types of classification tasks exist:

• Binary classification;
• Multi-class classification;
• Multi-label classification;
• Imbalanced classification (this uses such techniques as: random oversampling/under-

sampling; SMOTE oversampling; examples of algorithms, such as cost-sensitive logis-
tic regression and cost-sensitive decision trees).

Generally, all types of classification tasks may need to be addressed when practically
classifying students’ learning styles. Moreover, there are various multi-class classification
strategies and methods that solve such tasks: one vs. rest; one vs. one; output code-based
strategy. Each of these may be applied to student learning-style diagnosis, depending on
the specific need. The existing categories of multi-label approaches that may be applied for
students’ learning style classification are listed in [27–32]: using problem transformation
methods (binary relevance, label powersets, and label ranking), using adaptation meth-
ods (decision trees and boosting, lazy learning, and SVM), and using ensemble methods
(classifier chains, random k-label sets, an ensemble of multi-label classifiers). Problem
transformation methods convert the problem into an easily solvable form (into subsets
of problems) or extend the existing algorithms to directly cope with multi-label or multi-
target data. Usually, they map the multi-label learning task into one or more single-label
learning tasks [28]. For example, the binary relevance approach requires the model to learn
n independent classifiers for the n class of variables, while the label power-set method
transforms each label combination into a class value and learns a multi-class classifier with
the new class value. Generally, these methods may not capture the dependence relation-
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ships among the class variables or learn the dependence relationships in an indirect way.
Besides, solving many single-label tasks may be resource-consuming and cumbersome.
Therefore, adaptation methods that adapt the algorithm to directly perform multi-label
classification are often preferred in supervised learning; an adaptation algorithm is trained
on input data that has been labeled for a particular output. In general, there are many
supervised learning algorithms for classification: linear classifiers (perceptron (single-layer
neural network), or an NN with no activation function), naive Bayes, logistic regression,
support vector machines (SVM), decision trees, k-nearest neighbor, random forest, deep
neural networks (with a non-linear activation function), XGBoost, etc.

2.3. Multilayer Feedforward Neural Network

Based on the conclusions drawn by the authors of [16], we chose BPNN—a supervised
learning technique for training a multi-layer feedforward neural network that predicts the
probabilities of a student-specific learning style. We can think of the NN as a classification
layer placed on top of the data. The gradient or steepest descent method is used to train
a BPNN by adjusting the weights. The purpose of updating the numerical weights is to
minimize the loss that quantifies the difference between the expected outcome and the
outcome produced by the NN model. As seen in this earlier paper [16], neural networks
are inherently designed to tackle multiple targets simultaneously. This is usually achieved
by allowing each of the output neurons to generate score estimates from 0 to 1 in the
output neurons [16]. Neural networks use deep learning methods that aim to discover the
underlying patterns of the observed data. The advantage of neural networks is that, in
general, they can provide good generalization quality when trained on a large set of data
samples that cover the areas of the input space of interest and have low variance (noise).

Theoretically, when selecting the NN model and its hyperparameters, we can use one
of two approaches: an intuitive one, based on the asymptotic performance of the model,
and a data-driven one, using a cross-validated parameter search. In accordance with the
conclusion made in [21], we applied intuitive model selection in our experimental work
and created a neural network [20] for probabilistic student learning-style prediction. The
authors of [21] tried to answer the question: “Does the tuning of MLC methods improve
their predictive performance?” and stated that “the optimization of the hyperparameters
can improve the predictive performance; however, the extent of the improvements does not
always justify the resource utilization” [21]. Experimental examples of the application of
an artificial neural network (ANN) and other methods for classification tasks are presented
in earlier works [2,20,33].

2.4. Model Interpretation and Shapley Additive Explanations Method (SHAP)

The authors of [34] define interpretability as the degree to which a human can un-
derstand the cause of a decision. One can describe a model as interpretable if he or she
can comprehend the entire model at once. Typically, the concept of global interpretation
of model-agnostic feature importance means that we measure a feature’s importance by
calculating the increase in the model’s prediction error after perturbating the feature’s
value. The permutation feature’s importance is defined as the decrease in a model’s score
when a single feature value is randomly shuffled.

If BCM were an inherently interpretable model that imposes some kind of interpretabil-
ity constraints and presents explanations, for the NN, we would need to search for model
agnostic methods that are also post hoc since they are decoupled from the black box [35].
We use the Shapley additive explanations (SHAP) method to explain how each input fea-
ture affects a prediction. The goal of SHAP is to explain the prediction of an instance by
computing the contribution of each feature to the prediction. As Molnar [34] explains, the
SHAP explanation method computes Shapley values using coalitional game theory. The
feature values of a data instance act as players in a coalition. Shapley values tell us how
to fairly distribute the “payout” (i.e., the prediction) among the features. A player can be
an individual feature value, e.g., for tabular data. A player can also be a group of feature
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values. The Shapley value of a feature value is its contribution to the payout, weighted
and summed over all possible feature value combinations. In other words, the Shapley
value is the average of all the marginal contributions to all possible coalitions. The Shapley
value of a feature value is not the difference in the predicted value after removing the
feature from the model training, as in permutation feature importance. Given the current
set of feature values, the estimated Shapley value is the contribution of a feature value
to the difference between the actual prediction and the mean prediction. SHAP feature
importance may offer an alternative to permutation feature importance, but they are not
the same: permutation feature importance is based on the decrease in model performance,
while SHAP is based on the magnitude of feature attributions [34].

Shapley values can be combined into global explanations. Using the SHAP method for
every instance, we can get a matrix of Shapley values (one row per data instance and one
column per feature). We can interpret the entire model by analyzing the Shapley values in
this matrix [34].

When applying SHAP, we often assume independence between the different input
features. It must be noted that Shapley values may be potentially misleading when pre-
dictors are highly correlated. As explained by Molnar [34], “to simulate that a feature
value is missing from a coalition, we marginalize the feature. This is achieved by sampling
values from the feature’s marginal distribution. This is fine, as long as the features are
independent, but when features are dependent, we might sample feature values that do
not make sense for the instance”. For cases with correlated input data features, several
options have been considered in the paper: discarding one of the two correlated features,
grouping using Shapley cohort refinement [36], using an extended-kernel SHAP [33], or
applying other interpretation methods—influential instances, adversarial examples, etc. In
cases of multi-collinearity, where several independent variables in a model are correlated,
we can perform hierarchical clustering on the features’ Spearman rank-order correlations,
pick a threshold, and keep a single feature from each cluster, or use the multi-collinearity
correction method presented in [37].

3. Results
3.1. Exploratory Data Analysis and the Preprocessing of Input Features

For our experiments, we used an artificially generated data set: after generating the
data set for a random multi-label classification problem, using the sklearn.datasets.make_
multilabel_classification package, we adapted the data set to the students’ learning-style
classification problem. This approach was applied due to the paucity of informative and
representative data available in the actual Moodle environment. Samples were expertly
labeled, manually, on the basis of the knowledge acquired in the course of our previous
research, the results of which were published in [15]. In that research, we investigated
the relationships between factors deduced from the students’ interactions with a virtual
learning environment, by means of tracking each student’s behavior and learning style.

During the exploratory data analysis, the main statistical characteristics of the set
of input features (activities of the student in the VLE) were identified—the results are
presented in Table 1.

Table 1. Statistical characteristics of the sets of input features.

Navigation
Deep

Navigation
Skip

Overview
Forum
Visit

Forum
Post

Video,
Pictures

Content
Text Stay

Feedback
No.

No. of
_Connections

or Links
Quiz

Revision
Question
Details

mean 7.3737 8.5858 8.2727 10.7272 4.6868 8.8585 5.3737 5.3333 8.0808 10.7373
std 5.7792 6.0170 6.1125 7.0230 3.7297 7.1070 4.6016 4.7787 5.7011 6.3576
min 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
25% 2.0000 3.0000 3.0000 4.0000 2.0000 2.0000 2.0000 2.0000 3.0000 4.0000
50% 6.0000 8. 0000 7.0000 9.0000 4.0000 70.000 4.0000 4.0000 6.0000 11.0000
75% 11.5000 14.5000 12.5000 18.0000 7.5000 17.0000 8.0000 7.5000 14.0000 16.0000
max 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000
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The mean (average) of a data set is found by adding all numbers in the data set and
then dividing by the number of values in the set. The standard deviation (“std” in the
Table 1.) is a statistic that measures the dispersion of a dataset relative to its mean and is
calculated as the square root of the variance. The minimum (“min” in the Table 1) is the
smallest value in the data set. Names of the input features are presented in the headings of
the table—they are explained further in the Section 3.2.

The correlation matrix, once computed, shows 2 pairs of input features that tend to be
strongly correlated (marked in dark red colour). The labels are not correlated (see Figure 1).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 21 
 

 
Figure 1. Correlation matrix. 

It is appropriate to note that, in general, depending on the data set available, it may 
be necessary to use input feature preprocessing techniques for cleaning up the data [38], 
feature scaling, imputing the missing values, for oversampling or under-sampling in the 
case of an imbalanced data set, encoding the categorical data, etc. 

3.2. Experimental Evaluation and Comparative Analysis of Multi-Label Classifiers 

In supervised machine learning, when choosing the best multi-label classification 
methods for student learning-style classification, it is necessary to consider problem 
transformation, algorithm adaptation, and ensemble methods. The computational 
complexity of the multi-label methods is presented in more detail in [16]. 

In order to evaluate and compare the capabilities of the various multi-label classifiers 
that use the problem transformation approach and the OneVsRest classification strategy, 
we trained the OneVsRest classifier using the following base estimators: Perceptron, 
MultinomialNB, SGDClassifier, LogisticRegression, LinearSVC, 
GradientBoostingClassifier, and PassiveAggressiveClassifier. The base estimators were 
fitted on random subsets of the dataset. During the experiment, the target variable was 
converted to a multi-label binarizer, then the OnevsRest classifiers were built on the 
above-mentioned estimators. Due to the fact that the data on students’ activities, stored in 
the real Moodle environment, are not informative enough and, because of that, the 

Figure 1. Correlation matrix.

It is appropriate to note that, in general, depending on the data set available, it may
be necessary to use input feature preprocessing techniques for cleaning up the data [38],
feature scaling, imputing the missing values, for oversampling or under-sampling in the
case of an imbalanced data set, encoding the categorical data, etc.

3.2. Experimental Evaluation and Comparative Analysis of Multi-Label Classifiers

In supervised machine learning, when choosing the best multi-label classification
methods for student learning-style classification, it is necessary to consider problem trans-
formation, algorithm adaptation, and ensemble methods. The computational complexity of
the multi-label methods is presented in more detail in [16].
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In order to evaluate and compare the capabilities of the various multi-label classifiers
that use the problem transformation approach and the OneVsRest classification strategy,
we trained the OneVsRest classifier using the following base estimators: Perceptron, Multi-
nomialNB, SGDClassifier, LogisticRegression, LinearSVC, GradientBoostingClassifier, and
PassiveAggressiveClassifier. The base estimators were fitted on random subsets of the
dataset. During the experiment, the target variable was converted to a multi-label bina-
rizer, then the OneVsRest classifiers were built on the above-mentioned estimators. Due
to the fact that the data on students’ activities, stored in the real Moodle environment,
are not informative enough and, because of that, the execution of the exploratory data
analysis and data engineering tasks requires a substantial investment of time resources,
we generated a synthetic data set and modified it to suit the classification of the students’
learning-style problem. Therefore, the experimental data were manually labeled, based on
expert knowledge. The data set consists of 99 data samples with 12 features:

• Navigation_deep—the depth of navigation (how much depth);
• Navigation_skip_overview—the number of times that the student skips through the overview;
• Forum_visit—the number of times that the student visited the forum;
• Forum_post—the number of times that the student posted to the forum;
• Video_pictures—the number of times that the student watched videos/pictures;
• Content_text_stay—how long the student stayed on the content/topic;
• Feedback_no—the number of times that the student submitted feedback;
• NO_connections_links—the working time of the user with the weblinks tools—following a

hyperlink to other learning material or web pages;
• Quiz_revision—the number of times that the student visited quiz revision pages;
• Ques_detail—the time spent on question details;
• Ques_facts—the time spent on questions of the type, “facts”;
• Ques_concepts—the time spent on questions of the type, “concepts”.

These features are informative and they characterize the corresponding learning styles.
They are factors that influence the determination of a student’s learning style. The actual
values of these factors may be deduced from the students’ interactions with the virtual
learning environment, by means of tracking student behavior in the environment.

The combination of 8 class labels (sensing, intuitive, visual, verbal, active, reflective,
sequential, and global) was expertly assigned for each sample. As a rough rule of thumb,
the model should be trained on at least an order of magnitude (ten times) more examples
than the trainable parameters. Simple models with large data sets may, generally, predict
better than complex models using small data sets.

The measuring tools provided by sklearn [39] were used to measure the OneVsRest-
Classifier’s generalization ability:

• Hamming loss—the fraction of labels that are incorrectly predicted, i.e., the fraction of
the wrong labels compared to the total number of labels; this measures how well the
classifier predicts each of the labels, averaged over samples, then over all labels;

• Precision—this measures the fraction of relevant instances among the retrieved instances;
• Recall—this measures the fraction of relevant instances that were retrieved;
• The F1 score measures a weighted average of precision and recall, where both have

the same impact on the score.

As the data set is small, each OneVsRestClassifier that uses another estimator as a
parameter was evaluated using the hold-out method: the data set was split up into a
“train” and “test” set. The training set is the data on which the model is trained, and
the test set is used to see how well that model performs on unseen data. The evaluation
results are presented in Figures 2–8, below. According to the results, MultinomialNB and
GradientBoostingClassifier should be preferred for the classification of learning styles as their
F1 scores are the highest and their Hamming losses are the lowest. As we know from the
theory, the Hamming loss is a better metric than accuracy for multi-label classification as,
in the latter case, a misclassification is no longer a definite wrong or right answer [40,41].
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Besides this, the Hamming loss is also used to measure the performance of imbalanced
data set approaches [42].
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Figure 7. Recall averages of the OneVsRestClassifier, which uses another estimator as a parameter.
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Due to the large number of multi-label classification methods, for our algorithm
adaptation methods, we relied on the evaluation results presented in [16]: RFPCT and
BPNN are the best-performing methods. In order to experimentally test the application
of neural networks for student learning-style detection, we constructed a fully connected
neural network of 4 layers using a sigmoid activation function in the output layer and a
relu activation function in the other layers. The sigmoid activation function was chosen
because it most often showed a return value in the range of 0 to 1, and our task was to
assign to each sample a set of probabilities for target labels corresponding to the student’s
learning style (intuitive, sensing, verbal, active, global, sequential, reflective, or visual).
The number of neurons in each layer was equal to the number of learning activities (this
was 12). The batch size was 30. The He_uniform variance scaling initializer was used to
set the initial random weights. The neural network was trained on the data of the same
training data set that was used for applying the OneVsRest strategy. The data set has no
missing values. The Binary_crossentropy loss function and adaptive moment estimation
(Adam) learning method (optimizer = tf.keras.optimizers.Adam (lr = 0.0001)) was used,
which computes adaptive learning rates for each parameter. With Adam, the learning rate
may at first increase in the early layers; thus, helping to improve the efficiency of the deep
neural network. The network converged after 30 epochs. In the NN, the correlation is
taken into account since the hidden layers are summing all the input signals together via
a fully connected layer. The neural network will learn about the co-occurrence of labels,
finding some deterministic rules for generating the best output. The predictions of the
model are presented in the form of “[0.991552591 0.599381804 0.772709548 0.0182502270
0.00593709946 0.112661839 0.981987536 0.987546802]” for every data sample, indicating the
probability values for each learning-style class. The model was evaluated on the validation
data set, using the repeated k-fold cross validator, which was repeated 5 times. The average
model accuracy obtained was quite small—2.66. The reasons for that may be the small
training data set, imperfect data labeling by the experts, insufficient feature engineering,
and/or the imbalance of data. Besides, a change in the number of hidden layers or neurons,
regularization, data normalization, and the application of principal component analysis
could potentially improve the accuracy. The confusion matrix for the validation data set of
the experimental NN is the following: [[68 0] [31 0]] [[57 0] [42 0]] [[9 89] [0 1]] [[0 69] [0 30]]
[[81 0] [18 0]] [[91 0] [8 0]] [[0 76] [0 23]] [[0 68] [0 31]]. Other multi-labeled classification
metrics were calculated for the model as well—the classification summary is presented
in Table 2.
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Table 2. NN model classification report.

Learning Style Precision Recall F1 Score Support

sensing 0.86 0.81 0.83 31
intuitive 0.84 0.88 0.86 42

visual 0.00 0.00 0.00 1
verbal 0.97 0.93 0.95 30
active 0.93 0.72 0.81 18

reflective 0.00 0.00 0.00 8
sequential 0.73 0.35 0.47 23

global 0.85 0.71 0.77 31
Micro avg. 0.86 0.72 0.79 184
Macro avg. 0.65 0.55 0.59 184

Weighted avg. 0.82 0.72 0.76 184
Samples avg. 0.71 0.64 0.66 184

The Hamming loss, i.e., the fraction of labels that are incorrectly predicted, is 0.5.
Considering the ensemble methods [28], it is worth mentioning the classifier chains

and other methods that are applicable for cases when the labels are correlated [43,44].
Classifier chains combine a number of binary classifiers into a single multi-label model that
is capable of exploiting the correlations among targets. The predictions of each model are
passed on to the subsequent models in the chain, to be used as features [18].

It is relevant for the teacher who prepares the learning objects and learning paths,
using the predictions of the multi-label classification model to know how each feature
affects the prediction of a data point. The method most suitable for this purpose in the
case when students’ activities (input features) are weakly correlated is SHAP. The goal of
SHAP is to explain the prediction of an instance by computing the contribution of each
feature to the prediction. The Shapley value of a feature value is its contribution to the
payout, weighted and summed over all possible feature value combinations. SHAP values
interpret the impact of having a certain value assigned to a given feature, in comparison
to the prediction we would make if that feature had some baseline value. In other words,
SHAP values show how much a given feature has changed our prediction (compared to if
we had made that prediction at some baseline value of that feature).

We applied the generic shap.KernelExplainer to explain the predicted results of the NN
model that was trained and used in the experiment. According to the SHAP documentation,
kernel SHAP is a method that uses a special weighted local linear regression to compute
the importance of each feature. The Deep Explainer may also be the best option for the
NN. We achieved a (n_samples, n_ f eatures) NumPy array, each element of which is the
Shapley value of that feature of the corresponding record (sample). The summary plot of
Shapley values is presented in Figure 9. Features with large, absolute Shapley values are
important. If we want to establish global importance, we average the absolute Shapley
values per feature across the data.

The SHAP summary plot combines feature importance with feature effects: each point
on the summary plot is a Shapley value for a feature and an instance. The color represents
the value of the feature, from low to high. SHAP also presents the possibility of visualizing
the feature’s importance for each target label. We drew summary plots for intuitive, sensing,
verbal, active, global, sequential, reflective, and visual learning styles. The example for
“sensing” the target is presented in Figure 10.
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Figure 10. SHAP summary plot for the “sensing” learning style.

In the plot for this particular target label, the high values of the feature (indicated by
the rose/purple combination) led us to prediction 1: low values of the feature (indicated by
blue) leads to the prediction, 0. Such a visualization would help teachers to quickly perform
the SHAP analysis and detect which features were most important, i.e., which contributed
the most to the prediction of the probability value of the corresponding learning style.

It must be stressed that, as when citing [45], “SHAP only tells you what the model is
doing within the context of the data on which it has been trained: it doesn’t necessarily
reveal the true relationship between variables and outcomes in the real world”. Therefore,
SHAP is not the best choice when wishing to engineer specific outcomes by manipulating
features (unless the experiment is being conducted within the causal framework), but
it may be useful for making a machine learning model more explainable by visualizing
its output. Explanations presenting the contribution of each activity in the VLE to the
prediction of the learning style of the student may enable teachers and other users to better
understand what led to the corresponding learning style of the learner and to adjust their
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activities accordingly, in order to adapt the virtual learning environment to the student’s
learning style.

The procedures, methods, and tools described in the paper should provide guidance
for teachers and other users in practically personalizing the virtual learning environment,
and attention must be drawn to that in practice; learning material is usually created for
a particular group of learners. We can use the stacked SHAP explanations and cluster
data, with the help of Shapley values, for that purpose (Figure 11). The goal of clustering
is to find groups of similar instances. Normally, clustering is based on features. SHAP
clustering works by clustering the Shapley values of each instance. This means that we
cluster instances according to explanation similarity. Such a force plot shows how features
explain the model output for multiple observations at the same time. The red SHAP values
in the plot increase the prediction, while the blue values decrease it.
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Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 21 
 

may be useful for making a machine learning model more explainable by visualizing its 
output. Explanations presenting the contribution of each activity in the VLE to the 
prediction of the learning style of the student may enable teachers and other users to better 
understand what led to the corresponding learning style of the learner and to adjust their 
activities accordingly, in order to adapt the virtual learning environment to the student’s 
learning style. 

The procedures, methods, and tools described in the paper should provide guidance 
for teachers and other users in practically personalizing the virtual learning environment, 
and attention must be drawn to that in practice; learning material is usually created for a 
particular group of learners. We can use the stacked SHAP explanations and cluster data, 
with the help of Shapley values, for that purpose (Figure 11). The goal of clustering is to 
find groups of similar instances. Normally, clustering is based on features. SHAP 
clustering works by clustering the Shapley values of each instance. This means that we 
cluster instances according to explanation similarity. Such a force plot shows how features 
explain the model output for multiple observations at the same time. The red SHAP values 
in the plot increase the prediction, while the blue values decrease it. 

 
Figure 11. Stacked SHAP values and cluster data. 

Force plots showing the contribution of each feature to the prediction of the 
corresponding label (Figure 12) are also informative; therefore, they are applicable for 
practical use by teachers. 

 
Figure 12. The SHAP force plot for the “sensing” learning style. 

4. Discussion and the Methodology Proposed 
4.1. Mechanisms to Select the Appropriate Machine Learning Methods for Student Learning-
Style Prediction and Interpretation 

Based on the findings from our literature-based research, and using the results of our 
experiments, we see that the different preprocessing, classification, or clustering and 
interpretation methods have to be applied depending on the peculiarities of the data set 

Figure 12. The SHAP force plot for the “sensing” learning style.

4. Discussion and the Methodology Proposed
4.1. Mechanisms to Select the Appropriate Machine Learning Methods for Student Learning-Style
Prediction and Interpretation

Based on the findings from our literature-based research, and using the results of
our experiments, we see that the different preprocessing, classification, or clustering and
interpretation methods have to be applied depending on the peculiarities of the data
set (imbalanced or not, sparse or not, having missing values or not, having correlated
features or not, having correlated labels or not, etc.) and the specifics of the multi-label
classification and model interpretation tasks that need to be performed. We identified from
our experiments that the MultinomialNB and GradientBoostingClassifier performed best when
applying the One-vs-all strategy. The authors of [46] state that “the binary relevance method,
specifically One-vs-all, yields the best result in the real data analysis, but has the drawback
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of neglecting correlation among labels. The label powerset considers correlations between
labels indirectly but has the drawback of not including all possible label combinations in the
model-fitting process, which leads to overfitting of the training set”. Based on the literature
review, we know that the ensemble of classifier chains (ECC) algorithm is very effective for
multi-labeled learning objects; therefore, it is proposed as the best classification algorithm
for data sets with correlated labels, followed by RAKEL, ML-kNN, and finally, EPS [47].
ML-kNN performs the worst, but it has the advantage of producing a ranking of the labels.
Based on the work in [48], “the ECC has the best performance in all measures, followed by
EPS and RAKEL. However, with respect to the Hamming loss, the RAKEL and ML-KNN
are the best-performing methods, followed by ECC. As for the label-based evaluation
measures, the best-performing methods are ECC and BR”. Empirical evidence published
by [49] shows that ML-kNN performs the best, followed by RAKEL, then followed by the
classifier chain and binary relevance. The authors of [50] emphasize that BR methods are
quite appropriate for a not very large number of labels and that they have strong limitations
regarding the use of label relationship information. They propose the BR+ approach, to
improve the multi-label classification performance in datasets that do not have a very
high label space dimensionality, trying to discover label dependency. The authors of [51]
experimentally prove that, for data sets with correlated labels, the LC and PS methods give
better prediction results than the BR method as the LC and PS consider label correlation
during the transformation from a multi-label to a single-label dataset. A comprehensive
comparison between various problem transformation methods is presented in [52]. It states
the merits and/or disadvantages of the classification methods as the ability to utilize the
available unlabeled data for classification, the ability to take label correlations into account,
and the speed and computational complexity of each problem transformation method.
Complexity comments on the multi-label classification algorithms are also presented by
the authors of [24].

Various model interpretation approaches may be chosen for explaining the predicted
students’ learning styles as well. Except for those cases when we have inherently inter-
pretable models (such as BCM) with imposed interpretability constraints, model-agnostic
explanation methods may be used for interpreting the model. These methods are consid-
ered post hoc since they are decoupled from the black box [35].

Systematizing the research results, we present the procedure that might be followed for
the selection of methods for multi-label students’ learning-style detection and interpretation
(Figure 13).

4.2. Threats to Validity

It is stated by Maheswari in [53] that the size of the data set may manifest issues
relating to generalization, data imbalance, and difficulty in reaching the global optimum. A
large dataset helps to avoid overfitting and generalizes better as it captures the inherent
data distribution more effectively [53]. The authors of this paper are aware of that issue
and know that this also applies to the experiments described in this article. In our opinion,
the small size of the data set is one of the reasons why the NN prediction accuracy obtained
is not high. In summary, larger data sets may influence the pattern learned; however,
this does not fundamentally change the applicability of the particular approaches and/or
methods for the learner’s learning-style prediction. As has already been stated in this paper,
tuning the hyper-parameters of the model (for a NN, the change in the number of hidden
layers or neurons), regularization, data normalization, and the application of principal
component analysis could also potentially improve the prediction accuracy.
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5. Conclusions

Multi-label classification methods may be applied for student learning-style prediction.
In cases where the data set is balanced and the labels are independent, one of the most
popular of the problem transformation strategies—the OneVsRest strategy—is appropriate
for the classification of students’ learning activities and student learning-style identification.
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The problem transformation approach is also suggested in cases when there is a relatively
small number of learning-style classes (OneVsRest learns n binary classifiers (n is the
number of classes in a dataset), one for each label from all instances of the original dataset).
Empirical research shows that the MultinomialNB or GradientBoostingClassifier should be
preferred as a base estimator as the fraction of labels that were incorrectly predicted by
the OneVsRestClassifier, which uses the MultinomialNB or GradientBoostingClassifier, is the
lowest, while the harmonic mean of precision and recall is the highest. One more advantage
of the OneVsRest approach is its interpretability: since each class is represented by one
and only one classifier, it is possible to gain knowledge about the class by inspecting its
corresponding classifier. When the labels are correlated [54], a chain of binary classifiers
should be constructed, wherein a classifier Ci uses the predictions of all the classifiers, Cj,
where j < i, or the label-powerset method is chosen. It must be noted that the chain of
binary classifiers does not utilize unlabeled data.

In order to avoid high resource consumption when applying the OneVsRest strategy,
problem adaptation methods may be used instead of problem transformation methods. By
experimenting with a neural network, we showed that the use of a series of NN algorithms
to recognize the underlying relationships in a set of labeled students’ learning activity data
and to predict the probabilities of student learning-style dimensions is appropriate and
applicable. The low performance accuracy of the constructed NN forces us to conclude that
the size of the data set may manifest issues relating to generalization.

When the student’s activities (the input features) are not strongly correlated, the SHAP
method is the best option in order to provide teachers with a better understanding of what
historical activities in the virtual learning environment were most favored by the student.
In the case of a strong correlation, other interpretation methods must be chosen.

We plan to experiment with interpretation methods that address the problem of
strongly correlated data features in the future. After that, we are going to explore the
application of ensemble methods using the two approaches: the averaging approach and
the combination of several weaker models to produce a powerful ensemble.
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Abbreviations

NN Neural network
BCM Bayesian case model
BPNN Backpropagation neural network
SHAP Shapley additive explanations
MLC Multi-label classification
SVM Support vector machines
ML-kNN Multi-label k-nearest neighbor
PS Pruned sets
EPS Ensembles of pruned sets
BR Binary relevance
RAKEL Random k-label sets
LP (LC) Label powerset (label combination)
NB Naïve Bayes
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