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Abstract: Cell-penetrating peptides (CPPs) are short peptides that can carry cargo into cells. CPPs
are widely utilized due to their powerful loading capacity and transduction efficiency. Identifying
CPPs is the basis for studying their functions and mechanisms; however, experimental methods
to identify CPPs are expensive and time-consuming. Recently, CPP predictors based on machine
learning methods have become a research hotspot. Although considerable progress has been made,
some challenges remain unresolved. First, most predictors employ a variety of feature descriptors to
transform an original sequence into multiview data; however, extant methods ignore the relationships
between different views, limiting further performance improvement. Second, most machine learning
models are actually black boxes and cannot offer insightful advice. In this paper, a novel Hilbert–
Schmidt independence criterion (HSIC)-based multiview TSK fuzzy system is proposed. Compared
with other machine learning methods, TSK fuzzy systems have better interpretability, and the
introduction of multiview mechanisms provides comprehensive insight into the intrinsic laws of the
data. HSIC is utilized here to measure the independence and enhance the complementarity between
different views. Notably, the proposed method attained prediction accuracy results of 92.2% and
96.2% for the training and independent test sets, respectively. The empirical results show that our
promising approach features greater recognition performance than the state-of-the-art method.

Keywords: cell-penetrating peptides; machine learning; TSK fuzzy system; multiview learning; HSIC

1. Introduction

Traditional therapeutic drugs are greatly limited due to the complexity of the human
immune system and the selective penetration of the cell membrane. As such, many diseases
require treatment at the molecular level. We expect to deliver drugs directly to target cells
while minimizing the impact on cells and avoiding permanent damage. Cell-penetrating
peptides (CPPs) can be used to complete this task. CPPs are a class of short peptides
with a length between 5–50 amino acid residues [1] that can carry DNA, protein, and
other biomolecules into cells and will not cause irreparable damage to cells when the
concentration of CPPs is low. CPPs are widely utilized due to their powerful loading
capacity and transduction efficiency. Therefore, the correct identification of CPPs is of great
significance. Unfortunately, the traditional experimental approach is time-consuming and
costly to predict CPPs, and the prediction accuracy is not satisfactory.

In recent years, machine learning-based methods have been widely applied [2,3]
to predict CPPs. These methods have two main steps, namely, (1) selecting a suitable
feature extraction method to transform the original sequence into vector form. In this
process, to reduce information loss, a variety of descriptors are often adopted to convert
the sequence into multiview data. The second step is to (2) build a learning model and
utilize the features obtained in the above step as input to train the model. Such machine
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learning-based predictors have evolved rapidly in the past few years. CellPDD, proposed
by Gautam et al. [4], adopts several feature representation methods, such as the amino acid
composition, dipeptide composition, and binary spectroscopy. Diener et al. [5] improved
the prediction performance by utilizing the amino acid frequency and physicochemical
property features. Wei et al. constructed a high-quality dataset, CPP924, and presented
two effective predictors: SkipCPP-Pred [6] and CPPred-RF [7]. An adaptive skip dipeptide
composition descriptor and random forest algorithm were employed. The TargetCPP
proposed by Arif et al. [8] adopted split amino acid composition and composite protein
sequence representation, covering multiview information, and the gradient boost decision
tree algorithm was employed to improve the prediction performance. Fu et al. [9] built a
predictor named StackCPPred based on the residue pairwise energy matrix and employed
support vector machine recursive feature elimination and correlation bias reduction to
improve the identification ability. In addition to these predictors for CPPs, some methods
have been used to predict other therapeutic peptides. PEPred, proposed by Wei et al. [10],
and PPTPP, proposed by Zhang et al. [11], can be used to predict eight therapeutic peptides:
AAP, ABP, ACP, AIP, AVP, CPP, QSP, and SBP. ITP-Pred, proposed by Cai et al. [12], can
predict both CPP and QSP. These prediction methods improve the ability to discriminate
CPPs and lay the foundation for the wide application of CPPs.

A fuzzy system is a rule-based system that implements knowledge representation via
fuzzy logic and inference. The core of a fuzzy system is a knowledge base composed of
IF-THEN rules. In this paper, the Takagi–Sugeno–Kang (TSK) fuzzy system [13,14] was
adopted due to its excellent interpretability and data-driven learning ability [15–17].

In multiview learning, each view can benefit from knowledge from other views, which
is the complementarity principle. In addition, some studies [18] have noted that the inde-
pendence of different views can serve as a beneficial complement to multiview learning. In
this paper, the Hilbert–Schmidt independence criterion (HSIC) [19] is employed to measure
the independence of different views and realize the idea of the complementarity principle.

Although there are many methods available to predict CPPs, some critical questions
remain unanswered. These problems include the following: (1) many proposed predictors
adopt multiple feature descriptors, but they simply splice each feature vector and directly
input the hybrid feature into the prediction model. The disadvantage of doing so is that the
interaction from different views and the statistical characteristics of the data are ignored.
The predictive performance is also compromised as a result. (2) Most machine learning
models are actually black boxes; however, a fuzzy system with a knowledge base based on
fuzzy rules has good interpretability and can provide insightful suggestions to study the
underlying rules.

To solve the above problems, a CPP predictor based on a multiview TSK fuzzy system
is proposed, and the main workflow of the process is shown in Figure 1. First, two feature
descriptors were employed, namely, soft symmetric alignment and pseudo-amino acid
composition. Then, the correlation-based feature selection algorithm was adopted to
remove redundant features and noise. The resulting feature subset was input into the
multiview TSK fuzzy system. Finally, the multiview decision result was obtained.

The main contributions of this study are as follows: (1) We introduce a multiview TSK
fuzzy system based on HSIC. Compared with other machine learning methods, TSK fuzzy
systems have advantages in interpretability. The introduction of multiview mechanisms
allows for comprehensive insight into the intrinsic laws of the data. HSIC was utilized
to measure the independence and enhance the complementarity between different views.
(2) The proposed method is competitive or better than the state-of-the-art CPP predictors.
The empirical results show that our method has broad application prospects.
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2. Materials and Methods
2.1. Data Collection

In this paper, the CPP740 [7] dataset was adopted. CPP740 contains 370 CPPs and
the same amount of non-CPPs. In addition, we also employed an independent test set to
validate the performance of our method. The dataset contains 92 positive samples and the
same number of negative samples.

2.2. Feature Extraction
2.2.1. Pseudo-Amino Acid Composition

During the process of converting biological sequences into vectors, it is inevitable that
some information will be lost. To maximally retain the information of the original sequence,
a variety of feature representation methods have been proposed. Among them, the pseudo-
amino acid composition (Pse-AAC), proposed by Chou et al. [20], has been widely used
in various fields of bioinformatics. Pse-AAC incorporates contiguous local sequence-
order information and global sequence-order information into the feature vector. After
application of this method, the sequence is represented as a 50-dimensional feature vector.

2.2.2. Soft Symmetric Alignment

The soft symmetric alignment (SSA) feature was adopted by Lv et al. [21] to predict
anticancer peptides. It is a deep representation learning feature extraction method. It trains
a three-layer stacked BiLSTM encoder that converts the sequence into a matrix RL×121,
where L is the length of the peptide. Then, the similarity loss function is used to optimize
the model parameters through backpropagation, and the sequence is transformed into a
121-D feature vector.
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2.3. Feature Selection

To improve the computational efficiency, eliminate redundant features, avoid overfit-
ting problems and improve the generalization ability of the model, it is necessary to adopt a
suitable feature selection method. In this paper, we employed the correlation-based feature
selection algorithm (CFS) [22], which does not rank individual features but searches for
the optimal subset of features. A feature subset is considered valuable if its features are
highly correlated with the labels and its redundancy is low. The greedy algorithm was used
to search for feature subsets, and a subset containing 37 features was selected, including
15 SSA features and 22 Pse-AAC features.

2.4. TSK Fuzzy System

The TSK fuzzy system is a classic fuzzy model. Its input and output are nonfuzzy
values, and it is highly flexible and interpretable. Therefore, we chose the TSK fuzzy system
as the basic model. A fuzzy rule in TSK can be defined as follows:

Rk : IF x1 is Ak
1 ∧ x2is Ak

2 ∧ . . . ∧ xDis Ak
D,

THEN yk(x) = pk
0 + pk

1x1 + pk
2x2 . . . + pk

DxD, k = 1, 2, . . . , K
(1)

The above TSK fuzzy system consists of K rules, and the input vector x = [x1, x2, . . . , xD]
T.

Ak
d is a fuzzy set corresponding to the dth feature of the kth rule, yk is the output of the kth

rule, and pk
d is the parameter. The membership function of the fuzzy set Ak

d is commonly
represented by a Gaussian function:

µAk
d
(xd) = exp

−
(

xd − ck
d

)2

2σk
d

 (2)

where ck
d denotes the center and σk

d denotes the variance. In this paper, the fuzzy c-means
(FCM) algorithm is employed to calculate ck

d and σk
d .

ck
d =

∑N
i=1 uikxid

∑N
i=1 uik

(3)

σk
d =

h ∑N
i=1 uik

(
xid − ck

d

)2

∑N
i=1 uik

(4)

The output of the TSK fuzzy system is the combination of the results of each rule,
which can be expressed as:

y(x) =
∑K

k=1 µk(x)yk(x)

∑K
k=1 µk(x)

=
K

∑
k=1

µ̃k(x)yk(x) (5)

where

µk(x) =
D

∏
d=1

µAk
d
(xd) (6)

and

µ̃k(x) =
µk(x)

∑K
k=1 µk(x)

(7)

For the input vector x, let

xe =
(

1, xT
)T

(8)

~
x

k
= µ̃k(x)xe (9)
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xg =

(
(

~
x

1
)

T
,
(

~
x

k
)T

, . . . , (
~
x

k
)

T
)T

(10)

then
pk =

(
pk

0, pk
1, . . . , pk

D

)T
(11)

pg =

((
p1
)T

,
(

p2
)T

, . . . ,
(

pK
)T
)T

(12)

y(x) = pg
Txg (13)

According to the above transformation, the TSK fuzzy system is transformed into a
linear model. We employed the method of Deng et al. [23] to solve model coefficients. The
objective function is as follows:

min
pg

JTSK

(
pg,c

)
=

1
2

C

∑
c=1

pg,c
Tpg,c +

λpg

2

C

∑
c=1

N

∑
i=1
‖ yic − pg,c

Txgi ‖ 2 (14)

Taking the derivative of the objective function with respect to pg,c, the optimal solution
of pg,c can be obtained:

pg,c =

(
ID×D +

N

∑
i=1

xgixgi
T

)−1

·
(

λpg

N

∑
i=1

xgiyic

)
(15)

2.5. Multiview TSK Fuzzy System via HSIC

The complementarity principle is an important criterion in multiview learning. In our
data, each view corresponds to a group of features, so each view has unique information.
Therefore, making accurate predictions requires integrating information from each view. In
this paper, we apply the Hilbert–Schmidt independence criterion (HSIC) to realize the idea
of the complementarity principle. The HSIC is used to measure the independence between
different views. The independence of each view can reduce redundant information and
enhance complementarity. According to the method of Cao et al. [19], the empirical version
of HSIC is summarized as follows:

HSIC
(

Ev, Eh
)
= (n− 1)−2Tr

(
KvHKhH

)
(16)

where Ev is the prediction error in view v and Kv is the Gram matrix in view v. We set
Kv = Ev(Ev)T. hij = δij − 1/n centers the Gram matrix to have a zero mean in the feature
space. For notational convenience, we ignore the scaling factor (n− 1)−2. When all views
except view v are fixed, we minimize the following function:

V

∑
h=1;h 6=v

HSIC
(

Ev, Eh
)
= Tr

(
V

∑
h=1;h 6=v

HKvHKh

)
(17)

= Tr

(
V

∑
h=1;h 6=v

(Ev)THKhHEv

)
= Tr

(
(Ev)TGvEv

)
(18)

where

Gv =
V

∑
h=1;h 6=v

HKhH (19)
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With the HSIC, we obtain the following objective function:

min
Pv ,Ev

JTSK−HSIC(Pv, Ev) = Tr

(
1
2

V

∑
v=1

(Pv)TPv +
λv

P
2

V

∑
v=1

(Ev)TEv +
γ

2

V

∑
v=1

(Ev)TGvEv

)
(20)

s.t.Yvec = Xv
gPv + Ev for v = 1, 2, . . . , V (21)

where Xv
g is the matrix of the input data of view v through the transformation of Equation (10),

Yvec is the matrix obtained from the label vector through one-hot coding, Ev represents the
error matrix of view v, Yvec, Ev ∈ RN×C, and Pv is a matrix composed of the consequent
parameters of the TSK fuzzy system, Pv ∈ RK(Dv+1)×C. V is the number of all views, C is
the total number of classes, N is the total number of data samples, K is the total number
of rules, and D is the number of data dimensions. γ, λv

P are regularization parameters.
Their values can be obtained by cross validation. The Lagrange function of this problem is
defined as:

L(Pv, Ev) = JTSK−HSIC(Pv, Ev)− Tr(
V

∑
v=1

αvT
(

Xv
gPv + Ev − Yvec

)
) (22)

Let ∂L/∂Pv = 0, ∂L/∂Ev = 0 and ∂L/∂αv = 0:
∂L
∂Pv = 0→ Pv =

(
Xv

g

)T
αv

∂L
∂Ev = 0→ λv

PEv + γGvEv = αv

∂L
∂αv = 0→ Yvec = Xv

gPv + Ev

where v = 1, 2, . . . , V

(23)

solving these equations, the solution of Pv and Ev can be obtained

Ev = (λv
PXv

g

(
Xv

g

)T
+ γXv

g

(
Xv

g

)T
Gv + IN)

−1
Yvec (24)

Pv =
(

Xv
g

)T
(λv

PIN + γGv)Ev =
(

Xv
g

)T
(λv

PIN + γGv)(λv
PXv

g

(
Xv

g

)T
+ γXv

g

(
Xv

g

)T
Gv + IN)

−1
Yvec (25)

2.6. Parameter Setting

Selecting appropriate parameters for the model can improve the prediction per-
formance, enhance the generalization ability and avoid overfitting problems. In this
study, all parameters were determined for the training set through five-fold cross val-
idation. For the single view TSK fuzzy system, the number of fuzzy rules was taken
as the set {2, 4, 6, 8, 10}, the scaling parameter h in Equation (4) was taken as the set{

10−3, 10−2, 10−1, 100, 101, 102, 103}, and the regularization parameter λv
P was from the set{

2−10, 2−9, . . . , 29, 210}. For the multiview TSK fuzzy system, the regularization parameter
γ was taken as the set

{
2−10, 2−9, . . . , 29, 210}.

2.7. Performance Metrics

In this paper, we employed the accuracy (ACC), sensitivity (SN), specificity (SP) and
Matthew’s correlation coefficient (MCC) to evaluate the performance of our model. The
values of ACC, SN and SP are in the range [0, 1], but we want the prediction performance
of the proposed model to be higher than the random prediction results, so the acceptable
values are [0.5, 1]. Similarly, the range of values for MCC is [−1, 1], and the acceptable
values are [0, 1]. Their values are calculated as follows:

ACC =
TP + TN

TP + FP + TN + FN
(26)
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SN =
TP

TP + FN
(27)

SP =
TN

TN + FP
(28)

MCC =
TP× TN − FP× FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(29)

In these expressions, TP is the number of true positives, TN is the number of true
negatives, FP is the number of false positives, and FN is the number of false negatives.

3. Results

In this study, we employed two independent datasets, namely, CPP740 and CPP 184.
SSA and Pse-AAC describe data from different views. We compared the performance
differences between the single features and combined features. Then, the correlation-
based feature selection algorithm was employed to remove redundant features. The
resulting feature subset was input into the multiview TSK fuzzy system. Finally, cross and
independent tests were adopted to validate the empirical performance of the model. The
results prove that our method outperformed the state-of-the-art methods in the literature.

3.1. Performance Analysis from a Single View

For the CPP740 dataset, we input the SSA and Pse-AAC features into the classic single-
view TSK fuzzy system as shown in Equation (14). The results are shown in Table 1. The
AAC, SN, SP, MCC of the Pse-AAC feature were 91.1%, 90.5%, 91.6%, and 0.822, respectively,
which were better than the SSA feature for all indices. After mixing the two features and
taking the multiview approach, it can be seen that the obtained results were not as good as
those of a single view, and the ACC, SN, SP, MCC values were 90.1%, 89.2%, 90.8%, and
0.802, respectively. We believe that the outcome changes were not caused by multiview
techniques but were worsened by the addition of redundant information and irrelevant
features. Therefore, it is essential to employ an appropriate feature selection method.

Table 1. Performance of different features on the training set in five-fold cross validation.

Feature ACC (%) SN (%) SP (%) MCC

Pse-AAC 91.1 90.5 91.6 0.822
SSA 88.4 86.2 90.8 0.768

Pse-AAC+SSA 90.1 89.2 90.8 0.802

3.2. Performance Analysis after Feature Selection

In this study, the correlation-based feature selection algorithm was utilized because
of its excellent performance. We splice the 121-D SSA features with the 50-D Pse-AAC
features. The obtained 171-D hybrid features are employed as the input to the feature
selection algorithm. Then a 37-dimensional feature subset was obtained, which included
15 SSA features and 22 Pse-AAC features. Among the 121-D SSA features, only 15 features
were selected into the optimal feature subset, while 22 of 50-D Pse-AAC were selected.
Combined with the performance analysis of the single view, we believe that the Pse-AAC
descriptor provides more valuable information for predicting CPPs.

Table 2 shows the five-fold cross validation results after feature selection. It can be
observed that the average ACC is 92.2%, the average SN is 90.8%, the average SP is 93.5%,
and the average MCC is 0.844. These metrics indicate that there is improvement relative to
the prior feature selection, along with a reduction in feature dimensions. CFS improves the
computational efficiency as well as the prediction performance of the model.
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Table 2. Five-fold cross validation of the CPP740 dataset.

Fold Set ACC (%) SN (%) SP (%) MCC

1 90.5 88.2 93.1 0.812
2 90.5 90.8 90.3 0.811
3 92.6 88.2 96.3 0.852
4 94.0 93.4 94.4 0.878
5 93.2 93.2 93.2 0.865

Average 92.2 90.8 93.5 0.844

3.3. Comparative Analysis with Other Classifiers

Table 3 shows the five-fold cross validation results using MV-TSK-FS-HSIC and some
classic algorithms with the selected features of the CPP740 dataset. The classic methods
included XGBoost, naïve Bayes (NB), and random forest (RF). Among them, the results of
RF were the best, with an ACC of 90.4%, SN of 88.6%, SP of 92.2%, MCC of 0.809 and AUC
of 0.967. Figure 2 shows the receiver operating characteristic curves of different classifiers
for the CPP740 dataset. The AUC of the proposed method is 0.975, which is higher than
that of other classic algorithms. Unlike the multiview TSK fuzzy system, we directly input
the hybrid features into the classic models. This ignores the relationship between different
views and the statistical characteristics of data, so the performance is inferior to that of
MV-TSK-FS-HSIC.

Table 3. The performance of different classifiers for the CPP740 dataset after feature selection (five-
fold cross validation).

Method ACC (%) SN (%) SP (%) MCC

NB 90.1 85.4 94.9 0.806
XGBoost 90.3 90.0 90.5 0.805

RF 90.4 88.6 92.2 0.809
MV-TSK-FS-HSIC 92.2 90.8 93.5 0.844

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 11 
 

Table 2. Five-fold cross validation of the CPP740 dataset. 

Fold Set ACC (%) SN (%) SP (%) MCC 
1 90.5 88.2 93.1 0.812 
2 90.5 90.8 90.3 0.811 
3 92.6 88.2 96.3 0.852 
4 94.0 93.4 94.4 0.878 
5 93.2 93.2 93.2 0.865 

Average 92.2 90.8 93.5 0.844 

3.3. Comparative Analysis with Other Classifiers 
Table 3 shows the five-fold cross validation results using MV-TSK-FS-HSIC and some 

classic algorithms with the selected features of the CPP740 dataset. The classic methods 
included XGBoost, naïve Bayes (NB), and random forest (RF). Among them, the results of 
RF were the best, with an ACC of 90.4%, SN of 88.6%, SP of 92.2%, MCC of 0.809 and AUC 
of 0.967. Figure 2 shows the receiver operating characteristic curves of different classifiers 
for the CPP740 dataset. The AUC of the proposed method is 0.975, which is higher than 
that of other classic algorithms. Unlike the multiview TSK fuzzy system, we directly input 
the hybrid features into the classic models. This ignores the relationship between different 
views and the statistical characteristics of data, so the performance is inferior to that of 
MV-TSK-FS-HSIC. 

Table 3. The performance of different classifiers for the CPP740 dataset after feature selection (five-
fold cross validation). 

Method ACC (%) SN (%) SP (%) MCC 
NB 90.1 85.4 94.9 0.806 

XGBoost 90.3 90.0 90.5 0.805 
RF 90.4 88.6 92.2 0.809 

MV-TSK-FS-HSIC 92.2 90.8 93.5 0.844 

 
Figure 2. Receiver operating characteristic curves of different classifiers after feature selection over 
five-fold cross validation of the CPP740 dataset. 

Figure 2. Receiver operating characteristic curves of different classifiers after feature selection over
five-fold cross validation of the CPP740 dataset.



Appl. Sci. 2022, 12, 5383 9 of 11

3.4. Comparison Analysis for the CPP740 Dataset

As shown in Table 4, several extant methods, including PPTPP [11], ITP-PRED [12],
and PEPred [10] were compared with our method for the CPP740 dataset. The best results
of the previous methods were obtained by PEPred. The ACC, SN, SP, MCC and AUC were
91.2%, 90.3%, 92.2%, 0.824, and 0.972, respectively. Compared with PEPred, our method
increased the ACC, SN, SP, MCC, and AUC values by 0.01, 0.005, 0.013, 0.02, and 0.003,
respectively.

Table 4. Comparison of existing methods using the CPP740 dataset and five-fold cross validation.

Method ACC (%) SN (%) SP (%) MCC AUC

PPTPP 74.9 71.6 78.1 0.498 0.824
ITP-PRED 89.0 86.3 93.2 0.787 0.962

PEPred 91.2 90.3 92.2 0.824 0.972
MV-TSK-FS-HSIC 92.2 90.8 93.5 0.844 0.975

3.5. Comparison Analysis of an Independent Test Set

To verify the generalization ability of our model, we employed an independent test set
with 184 samples. The dataset contains 92 CPPs and the same number of non-CPPs, and
there was no overlap with the samples of the training set. The experimental results of the
five-fold cross validation are shown in Table 5. The ACC, SN, SP, MCC, and AUC of MV-
TSK-FS-HSIC values were 96.2%, 96.7%, 95.7%, 0.924, and 0.990, respectively. Compared
with ITP-PRED, our method improved the ACC, SN, MCC, and AUC values by 0.011, 0.039,
0.02, and 0.011, respectively. Only SP was inferior to ITP-PRED. The results prove that our
method is superior to the state-of-the-art predictors.

Table 5. Comparison of existing methods with an independent test set and five-fold cross validation.

Method ACC (%) SN (%) SP (%) MCC AUC

PEPred - - - - 0.952
PPTPP - - - - 0.967

ITP-PRED 95.1 92.8 97.8 0.904 0.989
MV-TSK-FS-HSIC 96.2 96.7 95.7 0.924 0.990

4. Discussion and Conclusions

In this study, a novel multiview TSK fuzzy system is proposed. First, SSA and Pse-AAC
descriptors were employed to convert the original sequence into multiview data. Second,
we utilized the correlation-based feature selection algorithm to obtain the optimal feature
subset. Finally, the resulting feature subset was input into the multiview TSK fuzzy system
based on the HSIC, and a multiview decision result was then obtained. We compared the
performance of the proposed model with several classical machine learning algorithms by
a five-fold cross-validation. The empirical results demonstrate that the proposed method
outperforms the classical methods in terms of ACC, SN, SP, and MCC metrics. We validated
the performance of the model using the CPP dataset, the AUC reached 0.975 and 0.990 and
the ACC achieved 92.2% and 96.2% on the training and test sets, respectively. The results
prove that our method is superior to the existing CPP predictors.

Through feature analysis, we found that Pse-AAC features played a more important
role than SSA features in identifying CPPs. We believe that this is because Pse-AAC
features contain physicochemical information that can distinguish CPPs from non-CPPs.
Also feature selection is necessary to alleviate the overfitting problem, remove redundant
features, reduce data dimension and lower computational cost. When the data matrix
X is converted to the input matrix Xg of the TSK fuzzy system, the dimension increases
dramatically, which can seriously deteriorate the computational efficiency of the model if
no feature selection is performed.
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Although the proposed model has been proven to be effective in experiments, there
is still room for improvement. In future research, we expect to introduce a novel multi-
view mechanism to investigate the relationships between different views and enhance the
interpretability of TSK fuzzy systems.
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