friried applied
e sciences

Article

Reconfigurable Smart Contracts for Renewable Energy
Exchange with Re-Use of Verification Rules

Tomasz Gorski

check for
updates

Citation: Gorski, T.

Reconfigurable Smart Contracts

for Renewable Energy Exchange with
Re-Use of Verification Rules. Appl.
Sci. 2022, 12, 5339. https://doi.org/
10.3390/app12115339

Academic Editors: Vassilios V.
Dimakopoulos and Spiridoula V.
Margariti

Received: 19 April 2022
Accepted: 23 May 2022
Published: 25 May 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Computer Science, Polish Naval Academy of the Heroes of Westerplatte (PNA), Smidowicza 69,
81-127 Gdynia, Poland; t.gorski@amw.gdynia.pl

Abstract: Smart contracts constitute the foundation for blockchain distributed applications.
These constructs enable transactions in trustless environments using consensus algorithms and
software-controlled verification rules. In the current state of the art, there is a shortage of works
on the adaptability of smart contracts, and the re-use of their source code is limited mainly to cloning.
The paper discusses the pattern of smart contract design and implementation with the overt decla-
ration of verification rules. The author introduces two advantages of the pattern: Firstly, run-time
reconfigurability of the list of smart contract verification rules to adjust for various transaction
types. Secondly, the re-use of verification rules between different configurations of the smart
contract, and among diverse smart contracts. The paper uses blockchain platform-independent
stereotypes from a dedicated Unified Modeling Language (UML) profile for designing smart con-
tracts and verification rules. The implementation of the pattern is developed in object-oriented
Java language. The pattern exploits polymorphism and controls inheritance by using sealed classes
with permission for specialization only for selected final ones. Thus, the pattern ensures two re-
cently highly desired properties in smart contract design and development: re-use and security.
Moreover, the declared verification rules list facilitates test automation and reduces test preparation
effort due to the re-use of test classes among smart contract configurations. The pattern usage is
illustrated in the example of renewable energy exchange within the prosumers community and amid
various communities.

Keywords: smart contract; verification rule; object-oriented programming; design pattern

1. Introduction

Blockchain is a game-changing technology for various business uses. This is well illus-
trated by Casino et al. [1], who in the literature review present the applications of the technol-
ogy in various fields. Smart contracts were defined by Xu et al. [2] as “programs deployed
as data in the blockchain ledger and executed in transactions on the blockchain.” It can be
indicated two primary types of blockchain frameworks: permissioned (also known as pri-
vate) and permissionless (also called public). In the first type, only directly involved nodes
realize a transaction, which preserves privacy and facilitates scalability. For those reasons,
permissioned blockchain frameworks are widely deployed in diverse industries [3]. The R3
Corda [4] and Hyperledger Fabric [5] environments are written in object-oriented Java
language [6], whereas the Ethereum-based Quorum environment [7] is written in Solidity
contract-oriented language [8]. The author examined the three most popular permissioned
blockchain frameworks, i.e., Hyperledger Fabric [9], R3 Corda [10], and Quorum [11].
Verification rules implementation of a smart contract is hardcoded in these blockchains. In
R3 Corda, the validation is done in the verify() method body of the smart contract’s class. In
Fabric, the implementation is a peculiar combination of flexibility and stiffness. The frame-
work uses logical operators: AND, OR, and NofMany. However, rules and logical operators are
embedded into a string. The complete logical expression is not available at the compile time.
It should be underlined that such an approach forces the evaluation of a full verification rules

Appl. Sci. 2022, 12,5339. https:/ /doi.org/10.3390/app12115339

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12115339
https://doi.org/10.3390/app12115339
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8393-1585
https://doi.org/10.3390/app12115339
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12115339?type=check_update&version=1

Appl. Sci. 2022,12, 5339

2 of 21

list. In Solidity, rules are examined in functions of smart contracts as preconditions. That leads
to redundancy in using the same rules in various functions. Therefore, the author sees the need
to propose a more flexible approach to designing smart contracts with the ability to publicly
define verification rules. Such an approach enables the reconfigurability of smart contracts
in response to various transaction types. What is more, it fosters the reuse of verification rules
among smart contracts.

Prosumers use the energy they produce themselves from renewable sources. The sur-
plus energy is fed into the power grid. In Poland, the current legal conditions do not allow
for the free sale of energy among prosumers. The power grid operator collects the surplus
of produced energy at significantly lower rates than those at which end consumers buy
energy. Prosumer communities emerge in order to use the produced energy as fully as pos-
sible. Individual prosumers mutually benefit from the generated electricity. Additionally, it
also becomes possible to exchange energy between various communities. For this purpose,
IT systems are needed that enable the unquestionable billing of the produced, transferred,
and used electricity. Such a system aims to measure the energy generated at the nodes
of the grid, the energy transferred between nodes, and to minimize the feed-in of energy
into the grid by managing its use within the same community and among various ones. A
lot of current research work is devoted to such issues. A thorough analysis was conducted
by Yapa et al. [12] on the usage of blockchain technology in modern energy sector areas: En-
ergy Internet and Smart Grid 2.0. They examined the manner smart contracts can facilitate
the transition to prosumer-oriented, distributed electricity grid management. The article
uses the example of energy exchange between renewable energy prosumers to illustrate
the reconfiguration of a smart contract.

The contribution comprises the following elements:

e Smart Contract Design Pattern (SCDP)—the pattern for design and development
of verification rules in smart contracts, which is blockchain platform independent.

¢ The UML profile—the new version of UML Profile for Smart Contracts that encom-
passes stereotypes for both smart contract’s abstraction levels: blockchain platform-
independent and blockchain platform-specific. The latter level as for now encompasses
stereotypes only for the R3 Corda permissioned distributed ledger.

e Pattern’s implementation—new, blockchain platform-independent implementation
in Java language v. 18 that encompasses the smart contract reconfigurability option.

¢ Testing method—defined rules for unit tests with the formula that specifies the number
of test cases, which hinges on the number of verification rules and the construction
of evaluation expression and applied logical operators. Automated tests for a smart
contract and verification rules were prepared in JUnit v. 5.7.0.

* Definitions of verification rule, evaluation expression, and smart contract configuration.

e llustrative example of the design of a smart contract—the example uses new modeling
means and design of the pattern.

The paper is structured as follows. Section 2 introduces the related research re-
sults and contribution of the paper. Section 3 presents the renewable energy example.
Section 4 introduces the redesigned UML Profile for Smart Contracts with new stereotypes
for generic smart contract description. In Section 5, the Smart Contract Design Pattern is
depicted. Section 6 presents the implementation of the pattern in Java that is blockchain
platform-independent for smart contract reconfigurability. Section 7 comprises a descrip-
tion of automated tests for the written code. Section 8 contains discussion and reveals
limitations. Section 9 section summarizes the work done and lists the scheduled tasks.

2. Related Work

The content of the section is divided into three main paragraphs. The first one con-
centrates on the research advances in employing blockchain technology in the renewable
energy sector, while the second paragraph discusses reusability issues. The last para-
graph introduces recent developments in smart contracts. The last paragraph summarizes
the contribution.

Appl. Sci. 2022,12, 5339

30f21

Information management in the exchange of various goods is crucial in many applications.
For example, Wu et al. [13] describe the challenges of data management in the supply chain
on the example of a blockchain-based food traceability system. Moreover, Jiang et al. [14] present
a blockchain-based platform for healthcare information exchange. In the energy sector, a lot
of work has been done in the area of peer-to-peer (P2P) electricity exchange between prosumers.
Both subjects were reviewed recently: blockchain technology applied to the energy sector
(Ante et al. [15], Guo et al. [16]), and a more detailed one on the use of smart contracts in such
systems (Kirli et al. [17]). Next, examples of research work on using blockchain for energy
exchange and trading are shown. Both papers by Wang et al. [18] and Park et al. [19], describe
platforms that allow for efficient electrical energy transactions between prosumers, whereas
Baggio et al. [20] emphasize the importance of blockchain technology for the construction
of future energy exchange systems. In addition, Chantrel et al. [21] describe participative
renewable energy communities. Another vital area of research is minimizing electricity costs.
Yahaya et al. [22] describe distributed energy market. They introduce a demurrage mechanism,
which allows prosumers to optimize their energy consumption. Moreover, Saxena et al. [23]
developed a local energy exchange system that enables participants to choose bidding strategies.
The system limits the maximum usage of the energy by the community. Jamil et al. [24] also
introduced an energy exchange solution. However, their approach has a predictive nature
and contains a day-ahead planning function. Privacy and security are immanent elements
of permissioned blockchain frameworks, whereas Son et al. [25] have described a peer-to-peer
energy commerce approach, which encrypts transactions. Nodes use smart contracts for peer
matching in a publicly verifiable fashion. Along with the increasing number of blockchain nodes
participating in the exchange of goods and recording information about transactions, more
attention should be paid to the performance of the proposed solutions. It is important to maintain
low volatility of the transaction execution time, which is called fairness. In recent work, Jiang
et al. [26] show the fairness-based transaction packing algorithm for permissioned blockchain.
The topic may be even more important for public blockchains. Therefore, reuse is needed,
because so many works concern a common subject. They use similar smart contracts that are
written independently. The matter of artifact reuse in the software design and development
process has been widely explored in research. Barros-Justo et al. [27] thoroughly examined
trends in that area. Various types of software process work products may undergo reuse.
The most commonly reused is the source code (Papamichail et al. [28], De Meester et al. [29]),
but also models (Ma et al. [30]) and test suites (Makady et al. [31]) are considered in research
studies. As far as blockchain is concerned, there is a lot to do. Currently, the subject is starting
to show up in publications. For example, Pierro et al. [32] discuss the source codes repository
of Ethereum smart contracts. Recently, Kondo et al. [33] discussed the reuse in blockchain
but the research is limited to cloning the whole smart contracts. The pattern can add an extra
degree of freedom to these types of repositories by having a clearly defined structure. Separately
implemented verification rules can be stored in the repository. The reusability level can be much
higher than for the whole smart contract.

Current research reveals software engineering state-of-the-art of smart contracts.
For example, Zou et al. [34] analyzed the drawbacks of developing smart contracts. Results
revealed support insufficiency of smart contracts development in existing tools. Fur-
ther work is also required in the security domain. Sdnchez-Gémez et al. [35] conducted
a review of the literature on smart contracts in the area of design and testing of such
software. They have pointed necessity for a development process and software quality
validation method. Hu et al. [36] responded to this need and proposed the concept of smart
contract engineering that combines software engineering, formal methods, and computa-
tional law, which recently showed up works on improving the design of smart contracts.
Hamdaqa et al. [37] analyzed three different blockchain platforms and proposed a gener-
alized iContractML modeling language for smart contracts and a dedicated framework.
Furthermore, Dwivedi et al. [38] have specified smart-legal-contract markup language
for the collaboration of decentralized autonomous organizations. The concept may find
its usage in cooperation among renewable energy prosumers communities. However,

Appl. Sci. 2022,12, 5339

4 0f 21

it is worth emphasizing that unified modeling language (UML) is the first bet of practi-
tioners for modeling software architecture. Ozkaya and Erata [39] surveyed a vast group
of professionals to reveal the usage of architectural views and UML diagrams. The results
prove that information (99% of surveyed specialists) and functional (96% of questioned
professionals) views are the most popular, whereas the UML class diagram is the most
proliferated among designers for data structure modeling (85% of inquired practitioners).
On the other hand, Jurgelaitis et al. [40] used the UML state machine diagram to generate
the Solidity source code of smart contracts.

The first version of the pattern was proposed for the R3 Corda blockchain platform [41].
For the purposes of modeling the pattern, UML stereotypes were identified, but also for the spe-
cific blockchain framework. In contrast, the current design of the pattern enables the modeling
of generic smart contracts independent of the blockchain platform. The actual pattern separates
abstract elements from concrete ones. In addition, it is worth emphasizing the innovative design
of the UML profile, which includes both semantic structures describing the elements of generic
smart contracts and those, characteristic of the blockchain framework. The visual paradigm
tool was used to model the profile, which is exposed to the community in the open GitHub
repository [42]. Both versions of the profile are accessible. To be specific, the current version
of the profile is stored in the UMLProfile4SC.upp file.

In addition, the generic implementation of the pattern introduces significant improve-
ments. The use of the abstract layer forced two changes in the SmartContract abstract class,
for which the new < AbstractSContract>> stereotype is used. Firstly, the implementation
of the checkSC() method is removed from that class and the method is marked as abstract.
Therefore, the implementation of the checkSC() method is forced on the class inheriting
from the SmartContract class. Such an approach allows for the various implementations
of the logical expression that checks the smart contract verification rules. Secondly, the re-
sponsibility of the instance creation of verification rules list object is also transferred onto
the concrete descendant class. Moreover, in the latest pattern design, the concrete smart
contract class stores the verification rules in an array-backed list. Initially, the array is
instantiated. During the creation, the array is populated with a specific set of verifica-
tion rules objects. No additional verification rule object can be added to the array later.
Based on that array, a list of verification rules is obtained using the Arrays.asList() method.
That allows controlling the number of rules stored in a collection. At the same time, it
provides the ability to call all the methods available in the List interface. In the SmartCon-
tract abstract class, the applied mechanism from the Java v.17 language is also applied,
which allows for the explicit specification of subclasses that can inherit from the ancestor
class. The sealed/permits keywords pair is used. For a class marked as sealed, the allowed
descendant classes must be explicitly provided, after the permits keyword. The approach
introduces control over classes of smart contracts that can be implemented within a specific
blockchain distributed application.

The source code of the blockchain platform-independent implementation of the pattern
is stored in the GitHub repository [43]. The repository also stores test classes developed
for test automation of the smart contract and its verification rules.

3. Renewable Energy Example

For the sake of clarity in further considerations, the author introduces the following
definition of the verification rule (Definition 1).

Definition 1. A verification rule is a single condition imposed on a smart contract. Smart contracts
may encompass many verification rules. All verification rules that constitute a smart contract must
be met for the transaction to be performed.

In the example, the following verification rules were used in further presented smart
contracts:

¢ TechnicalVR1—transaction can be executed within the same community;

Appl. Sci. 2022,12, 5339

50f21

. Technical VR2—transaction can be executed between different prosumers;

* BusinessVR1—quantity of energy to transfer must be greater than zero;

* BusinessVR2—source prosumer surplus of energy must be greater than or equal
to the quantity of energy to transfer;

* BusinessVR3—the sum of renewable energy generation and battery energy surplus is
smaller than the energy need;

* BusinessVR4—battery energy surplus is equal to zero;

¢ ExpandingVR1l—always return true;

¢ Technical VR1Extended—transaction can be executed between various communities;

* ExpandingVR1Extended—target prosumer need for energy must be greater than or
equal to the quantity of energy to transfer.

The example includes two use cases and their corresponding smart contracts, Exchange
Energy and Buy Energy from Grid. Figure 1 presents the UML Use case diagram that shows
both use cases.

<<IntegratedSystem> >
ProsumerSameCommunityDApp

ProsumerDApp Exchange Energy \

<<IntegratedSystem> >
ProsumerAnotherComunityDApp

X

<<IntegratedSystem>>
Energy Grid

Buy Energy form Grid

Figure 1. The UML use case diagram for renewable energy use cases/smart contracts.

Cooperating distributed applications are depicted as actors. They are external applica-
tions, so the dedicated <IntegratedSystem>> stereotype is applied [41].

The author introduces the following definition of the smart contract configuration
(Definition 2).

Definition 2. A smart contract configuration is an ordered list of verification rules.
Verification rules cannot be repeated on the list. All validation rules on the list must be met
in accordance with the evaluation expression for the transaction to be executed.

In the case of the Exchange Energy smart contract, we have two configurations of verification
rules because we can exchange energy within one community or between communities. More-
over, the author introduces the following definition of the evaluation expression (Definition 3).

Definition 3. An evaluation expression is a logical expression containing verification rules and
logical operators that return a single Boolean value.

The design of the pattern allows for the implementation of various evaluation expres-
sions of smart contract configurations. However, in one smart contract, there can be only
one implementation. In the example, each smart contract has a different implementation
of evaluation expression.

Appl. Sci. 2022,12, 5339 6 of 21

Table 1 contains a summary of configurations with specific verification rules.

Table 1. Configurations with verification rules classes.

Use Case/Smart

Contract Name Configuration Name Verification Rule Class

TechnicalVR1,

I . TechnicalVR2,

Exchange energy n(‘;ggg:;g;ty BusinessVR1,
BusinessVR2,
ExpandingVR1

TechnicalVR1 Extended,
Technical VR2,
Exchange energy Cross-community BusinessVR1,
BusinessVR2,

ExpandingVR1Extended

TechnicalVR2,
_ BusinessVR1,
Buy energy from Grid Standard BusinessVR3

BusinessVR4

It is important that smart contract configurations use verification rules that come
from the same set of rules. Figure 2 shows smart contract configurations that use a common
set of verification rules. Those reused are labeled.

Smart contract Verification rules

TechnicalVR1

Reused
L TechnicalVR2
In-community
configuration |
Reused
BusinessVR1
Reused
BusinessVR2 ?

ExchangeEnergyContract

_—

—

N

Cross-community /
configuration

ExpandingVR1

TechnicalVR1Extended

)§
)

ExpandingVR1Extended

Figure 2. Configurations of verification rules for the ExchangeEnergyContract.

Thus it becomes possible to reuse verification rules between smart contract configura-
tions. The percentage of reused verification rules R, for a smart contract can be expressed
as the following Equation (1).

rC (%
Ree = lé(”) x 100 1)

where:
C—number of configurations in a smart contract,
vlr-—number of re-used verification rules in i-th configuration of the smart contract,
v;,—number of verification rules in i-th configuration of the smart contract.

Appl. Sci. 2022,12, 5339 7 of 21

So, in the renewable energy example, for the first Exchange Energy smart contract
Rsc = 30%, while for the second Buy Energy From Grid smart contract Rsc = 50%. The given
example shows that the level of reuse can be high. Especially between smart contracts
in a specific business context. Reuse may be more likely to involve technical rules as well
as basic business ones. However, it seems reasonable that the verification rules should
be as simple as possible. Therefore, it is purposeful to construct them as simple, single
logical conditions. Such an approach will enable the easier reusability of verification rules
in various smart contracts within a distributed application or business domain.

4. UML Profile for Smart Contracts

Unified modeling language allows for the enrichment of its semantics through the use
of extension mechanisms [44]. There are three types of such elements: stereotypes, tagged
values, and constraints. At the design level, the author has used stereotypes as one
of the UML extensibility mechanisms. UML profiles the prepared new modeling constructs.
The author has proposed a set of stereotypes for designing smart contracts. The set can be
divided into two groups. The first one encompasses blockchain platform-independent (PI)
stereotypes. The second group consists of blockchain platform-specific (PS) stereotypes.
Platform-independent stereotypes are generic for modeling smart contracts in various
blockchain frameworks.

The profile defines the following set of generic stereotypes for smart contracts design:

* < AbstractSContract>>—used for marking an abstract, generic class of smart contract.
The class is a superclass for all types of concrete smart contracts;

* < AbstractVRule>>—used for marking an abstract, generic interface of verification
rule. The interface must be implemented by concrete verification rules;

* <SContract>—used for marking concrete smart contract classes. This means the agree-
ment that regulates the cooperation of blockchain nodes;

* KVRule»—used for marking concrete verification rules classes. This means a con-
crete condition that must be met in the smart contract.

The < VRule>> stereotype can mark various kinds of verification rules, e.g., technical
and business. The profile does not contain a hierarchy for verification rule types.

At the platform-specific level, the profile defines stereotypes for concrete blockchain
environments. Currently, the profile specifies stereotypes for the R3 Corda framework
smart contracts:

* < State>>—an object that is stored in blockchain nodes. Comprises the quantity
exchanged and references to both parties: producer and buyer.

¢ <Flow>>»>—the procedure of reconciliation transactions and cooperation among nodes.
Figure 3 presents the UML Profile diagram that shows declared generic stereotypes.

The < GenericSContractObject > stereotype is introduced only for the classification of those
stereotypes as generic ones.

<<Stereotype>>
GenericSContractObject (Class)

T T

<<Stereotype>> <<Stereotype>>
AbstractSContract (Class) AbstractVRule (Class)
<<Stereotype>> <<Stereotype>>
SContract (Class) VRule (Class)

Figure 3. The UML profile diagram with platform-independent stereotypes.

Appl. Sci. 2022,12, 5339

8 of 21

Figure 4 presents the UML profile diagram that shows declared stereotypes for the R3
Corda smart contracts.

<<Stereotype>>
R3CordaSContractObject (Class)

1 1

<<Stereotype>> <<Stereotype>>
State (Class) Flow (Class)

Figure 4. The UML profile diagram with platform-specific stereotypes for the R3 Corda.

Table 2 contains a summary of platform-independent and platform-specific stereotypes
in the profile with indicated UML classifiers, which are extended. The pattern layer,
in which the stereotype is used, is also specified.

Table 2. Stereotypes in the profile.

Name UML The Pattern Layer Type
< AbstractSContract>> Class Abstract Generic
< AbstractVRule>> Class, <Interface>> Abstract Generic
< SContract>> Class Concrete Generic
< VRule>> Class Concrete Generic
< State>> Class Concrete R3 Corda
< Flow> Class Concrete R3 Corda

The Visual Paradigm modeling tool was used to design the UML Profile for Smart
Contracts. All the above-mentioned stereotypes are included in the profile. The actual
version of the profile is available at the GitHub repository [42].

5. The Pattern Design

The pattern has two layers of abstraction. In Abstract one, there are contract-independent
elements. The very layer comprises SmartContract abstract class and VerificationRule interface.
While the concrete layer encompasses concrete smart contract class with verification rules classes.

Various object-oriented paradigms were employed in the definition of the pattern. In-
heritance provides the common abstract type for smart contracts. The usage of the interface
enforces the implementation of the same validation method in each of the verification rule
classes. The runRule() method is declared in the VerificationRule interface. The specific veri-
fication rule class must implement that method. The abstract class SmartContract declares
the list of rules and uses the definition of the interface. Both constructs fulfill certain roles
in the pattern and they are marked with appropriate stereotypes, < AbstractSContract>
for SmartContract class and < AbstractVRule>> for VerificationRule interface. The specific
ExchangeEnergyContract class implements checkSC() method. The method checks conditions
in verification rules objects in the list. Likewise here, both elements have a specific role
in the pattern and they are marked with appropriate stereotypes, <SContract>> for Ex-
changeEnergyContract and < VRule>> for a specific verification rule, e.g., Technical VR1 and
BusinessVR1.

There can be many verification rules in a specific smart contract. In particular, it is
advisable to create multiple business rules with simple test conditions. Thanks to this, it
is possible to design various methods of processing these conditions and the level of ver-
ification rules reuse between smart contracts is raised. An expanding rule is a special
kind of business rule that is envisaged as a future business enhancement or amendment
in the context of the specific smart contract. The design of the pattern puts emphasis
on the order of storing verification rules objects in a list. The full list of rules is evaluated

Appl. Sci. 2022,12, 5339

9o0f21

unless one of them is not met. In such a case, the verification is aborted and the transac-
tion is not executed. Such an approach may shorten the smart contract evaluation time.
Other manners of verification rules evaluation are also possible. It requires adjusting
the implementation of the checkSC() method in the smart contract concrete class.

Figure 5 depicts the pattern’s layers with generic constructs (interface and abstract
class) and concrete both smart contract and verification rules classes.

Smart Contract Design Pattern

Abstract layer

<<AbstractSContract>> <<Interface>>
SmartContract <<use>> <<AbstractVRule>>
#rulesList : List<VerificationRule> ~ |--------------- > VerificationRule
+checkSC(tr : Transaction) : boolean +runRule(tr : Transaction) : boolean
A A A A A A A
A ' ' ' ' ' ' '
L ' ' ' ' ' ' v

Concrete layer

<<SContract>>
geEnergyContract
+checkSC(tr : Transaction) : boolean

<<VRule>>
TechnicalVR1
0.1 4 runRule(tr : Transaction) : boolean

-

<<VRule>>
! TechnicalVR1Extended

0.1 +runRule(tr : Transaction) : boolean

<<VRule>>
TechnicalVR2

0.1 |+runRule(tr : Transaction) : boolean

<<VRule>>
BusinessVR1
+runRule(tr : Transaction) : boolean

0..

.

<<VRule>>
Busi VR2

+runRule(tr : Transaction) : boolean

0.1

<<VRule>>
ExpandingVR1
+runRule(tr : Transaction) : boolean

<<VRule>>

ExpandingVR1E ded

0.1 |trunRule(tr : Transaction) : boolean

Figure 5. The structure of the pattern in the UML class diagram.

6. The Pattern Implementation

The implementation of the pattern was done in the Java language. The author used
the Intelli] IDEA with the Open Java Development Kit applied in the 18 General-Availability
Release version [45]. The source code was placed in the pl.gdynia.amw.scdp package and
further split into two packages:

* Contracts—the package consists of the SmartContract abstract class and one the Ex-
changeEnergyContract class for concrete smart contract;
* Rules—the package encompasses the VerificationRule interface and subpackages:
- exchangeEnergy—contains concrete verification rules classes, i.e.: Technical VR1,
Technical VR2, BusinessVR1, BusinessVR2, and ExpandingVR1;
- crossCommunity—contains concrete extended verification rules classes for cross
community energy exchange, i.e., Technical VR1Extended; ExpandingVR1Extended.

In the VerificationRule interface, there is declared one abstract method, runRule() (Listing 1).

Listing 1: The source code of the VerificationRule interface.

package pl.gdynia.amw.scdp.rules;
import pl.gdynia.amw.scdp.Transaction;

public interface VerificationRule ({
boolean runRule(Transaction tr);

}

Appl. Sci. 2022,12, 5339

10 of 21

The SmartContract abstract class declares an instance variable rulesList with a list
of verification rules classes. The variable declaration uses the VerificationRule interface
as a reference data type. Such a declaration allows for the usage of the polymorphism
mechanism and storing in reference variable address of the list of concrete verification rules
classes. The class also declares the checkSC() abstract method devoted for inspecting the list
of verification rules. The class declaration includes the sealed keyword. Classes that can
extend the sealed class directly have to be listed after the permits reserved keyword. That
allows for control over what concrete classes of smart contracts can inherit from the smart
contract abstract class. In consequence, only explicitly specified classes are allowed to be
implemented.

In the presented example, the inheritance ability is granted only to two classes Ex-
changeEnergyContract and BuyEnergyFromGrid (Listing 2).

Listing 2: The source code of the SmartContract class.

package pl.gdynia.amw.scdp.contracts;

import pl.gdynia.amw.scdp.Transaction;

import pl.gdynia.amw.scdp.rules. VerificationRule;
import java.util.List;

public abstract sealed class SmartContract permits ExchangeEnergyContract,
BuyEnergyFromGrid {
// list of verification rules
protected List<VerificationRule> rulesList;
// verification of the smart contract
public abstract boolean checkSC(Transaction tr);

The pattern requires the implementation of each specific verification rule. It comes
down to implementing the runRule() method defined in the interface. Such a declaration
allows the use of the polymorphism mechanism. The method invocation on the interface
variable means indirectly executing its overridden implementation in a concrete verifica-
tion rule class. The method should be implemented as a pure one. A Java method can
be regarded as pure granting that fulfills two conditions. Firstly, solely the input param-
eters of that method may have an impact on the return value. Secondly, the execution
of the method must have no side effects. A pure method cannot change the value of any
outside variable. Moreover, the output should always be the same for the specific input.
The pattern assumes that technical verification rules are checked before business ones.

6.1. Energy Exchange in the Same Community

Appropriate verification rules must be implemented for each configuration. In the case
of energy exchange within the same community, the Technical VR1 verification rule checks
whether the transaction is made in the same community. Listing 3 depicts the source code
of Technical VR1 verification rule with pure implementation of the runRule() method.

Listing 3: The source code of the TechnicalVR1 verification rule class.

package pl.gdynia.amw.scdp.rules.exchangeEnergy;
import org.jetbrains.annotations.NotNull;

import pl.gdynia.amw.scdp.Transaction;

import pl.gdynia.amw.scdp.rules. VerificationRule;

public final class TechnicalVR1 implements VerificationRule {

@Override
public boolean runRule(@NotNull Transaction t){
if (t.getSourceCommunityID () == t.getTargetCommunityID()) {
System.out. println (*’TechnicalVR1 - the same community’’);
return true; }
else { System.out.println(’’TechnicalVR1 - different communities””);

return false; }

Appl. Sci. 2022,12, 5339 11 of 21

Moreover, in the case of the same prosumer, the transaction cannot be completed.
The prosumer cannot exchange the electricity with himself/herself. There must be two
different prosumers for the transaction to occur. The very rule is implemented in the Techni-
calVR2 verification rule. Listing 4 depicts the source code of Technical VR2 verification rule
with pure implementation of the runRule() method.

Listing 4: The source code of the Technical VR2 verification rule class.

package pl.gdynia.amw.scdp.rules.exchangeEnergy;
import org.jetbrains.annotations.NotNull;

import pl.gdynia.amw.scdp.Transaction;

import pl.gdynia.amw.scdp.rules. VerificationRule;

public final class TechnicalVR2 implements VerificationRule {

@Override
public boolean runRule(@NotNull Transaction t){
if (t.getSourcelD() != t.getTargetID()) {

System.out. println (‘“TechnicalVR2 - sourcelD != targetID ‘) ;
return true; }

else { System.out.println(’’TechnicalVR2 - sourcelD == targetID ‘) ;
return false; }

Listing 5 shows the source code of BusinessVR1 verification rule also with pure im-
plementation of the runRule() method. The rule ensures that the transaction can be made
as long as the amount of energy to be exchanged is greater than zero.

Listing 5: The source code of the BusinessVR1 verification rule.

package pl.gdynia.amw.scdp.rules.exchangeEnergy;
import org.jetbrains.annotations.NotNull;

import pl.gdynia.amw.scdp.Transaction;

import pl.gdynia.amw.scdp.rules. VerificationRule;

public final class BusinessVR1 implements VerificationRule {
@Override
public boolean runRule(@NotNull Transaction t){
if (t.getQuantity () > 0) {
System.out. println (*“BusinessVR1 - quantity > 0°7);
return true; }
else { System.out.println(‘’BusinessVR1 - quantity <= 0°°);
return false; }

In the same way, the BusinessVR2 verification rule is implemented. The rule ensures
that the transaction can be made as long as the prosumer transmitting energy has its excess
greater than or equal to the amount to be transferred (Listing 6).

Listing 6: The source code of the BusinessVR2 verification rule.

package pl.gdynia.amw.scdp.rules.exchangeEnergy;
import org.jetbrains.annotations.NotNull;

import pl.gdynia.amw.scdp.Transaction;

import pl.gdynia.amw.scdp.rules. VerificationRule;

public class BusinessVR2 implements VerificationRule ({
@Override
public boolean runRule(@NotNull Transaction t){
if (t.getSourceSurplus() >= t.getQuantity()) {
System.out. println (*“BusinessVR2 - sourceSurplus >= quantity * ‘) ;
return true; }
else { System.out.println (’’BusinessVR2 — sourceSurplus < quantity * ‘) ;
return false; }

Appl. Sci. 2022,12, 5339 12 of 21

Listing 7 presents the source code of the ExpandingVR1 verification rule class. The rule
always returns the true Boolean value and is stored for the reconfigurability option.

Listing 7: The source code of the ExpandingVR1 verification rule.

package pl.gdynia.amw.scdp.rules.exchangeEnergy;
import pl.gdynia.amw.scdp.Transaction;
import pl.gdynia.amw.scdp.rules. VerificationRule;

public final class ExpandingVR1 implements VerificationRule {
@Override
public boolean runRule(Transaction t){ return true; }

6.2. Cross-Community Energy Exchange

In the cross-community configuration, there are two new verification rules classes:
Technical VR1Extended and ExpandingVR1Extended. Three remaining verification rules are
reused. Listing 8 presents the source code of the TechnicalVR1Extended verification rule
class. In that configuration, communities must be different.

Listing 8: The source code of the Technical VR1Extended verification rule.

package pl.gdynia.amw.scdp.rules.exchangeEnergy .crossCommunity;
import org.jetbrains.annotations.NotNull;

import pl.gdynia.amw.scdp.Transaction;

import pl.gdynia.amw.scdp.rules. VerificationRule;

public final class TechnicalVR1Extended implements VerificationRule {

@Override
public boolean runRule(@NotNull Transaction t){
if (t.getSourceCommunityID () != t.getTargetCommunityID()) {

System.out. println (*“Technical VR1Extended - cross—-community exchange’’);
return true; }

else { System.out.println(’’TechnicalVR1Extended - the~same community”’);
return false; }

}

Listing 9 presents the source code of the ExpandingVR1Extended verification rule class.
This rule ensures that the prosumer in the target community is in need of all transmitted energy.

Listing 9: The source code of the ExpandingVR1Extended verification rule.

package pl.gdynia.amw.scdp.rules.exchangeEnergy.crossCommunity;
import org.jetbrains.annotations.NotNull;

import pl.gdynia.amw.scdp.Transaction;

import pl.gdynia.amw.scdp.rules. VerificationRule;

public final class ExpandingVR1Extended implements VerificationRule ({
@Override
public boolean runRule(@NotNull Transaction t){
if (t.getTargetNeed () >= t.getQuantity()) {
System.out. println (“‘ExpandingVR1Extended - targetNeed >= quantity *) ;
return true; }
else { System.out.println(’’ExpandingVR1Extended - targetNeed < quantity '’);
return false; }

}

6.3. Smart Contract Reconfigurability

The concrete ExchangeEnergyContract class is marked with the final keyword.
As a result, no class can further inherit from the class. At the same time, marking the ab-
stract class SmartContract with the sealed keyword secures the possibility of implementation

Appl. Sci. 2022,12, 5339

13 of 21

only to those classes that are listed in the declaration of that class after the permits key-
word. In the constructor of the smart contract class, objects of all required verification
rules, from the standard configuration, are instantiated and added to the array-backed list
of rules. The ExchangeEnergyContract class in the checkSC() method validates conditions
of specific verification rules in the list (Listing 10).

When checking transactions to be executed, the smart contract reconfigures itself
to the appropriate configuration of verification rules. The mechanism of polymorphism
was used, and the checkSC() method was overloaded. Depending on the transaction
object type, the smart contract invokes the appropriate method and, if necessary, changes
the verification rules on the list. Moreover, the current type of configuration is saved
in the contract. Thanks to this, the rules in the list are changed only when the type
of transaction being processed is changed.

Listing 10: The source code of the ExchangeEnergyContract class.

package pl.gdynia.amw.scdp.contracts;

import pl.gdynia.amw.scdp.Transaction;

import pl.gdynia.amw.scdp.TransactionCross;

import pl.gdynia.amw.scdp.rules. VerificationRule;

import pl.gdynia.amw.scdp.rules.exchangeEnergy .x;

import pl.gdynia.amw.scdp.rules.exchangeEnergy.crossCommunity .*;
import java.util.Arrays;

public final class ExchangeEnergyContract extends SmartContract {
private boolean standardConf;

public ExchangeEnergyContract() {
standardConf = true;
// populates array-backed list of~verification rules
rulesList = Arrays.asList(new TechnicalVR1(), new TechnicalVR2 (),
new BusinessVR1 (), new BusinessVR2 (), new ExpandingVR1());
}
private void populateRulesStandard () {
rulesList.set (0, new TechnicalVR1());
rulesList.set (4, new ExpandingVRI1());
}
private void populateRulesExtended () {
rulesList.set (0, new TechnicalVR1Extended ());
rulesList.set (4, new ExpandingVR1Extended());
}
@Override
public boolean checkSC(Transaction tr){
if (!standardConf) {
populateRulesStandard () ;
standardConf = true; }
return check(tr);
}
public boolean checkSC(TransactionCross tr){
if (standardConf) {
populateRulesExtended () ;
standardConf = false; }
return check(tr);
}
private boolean check(Transaction tr){
boolean correct = false;
for (VerificationRule vR : rulesList) {
correct = vR.runRule(tr);
if (!correct) break;
}

return correct;

The annotation @Override indicates a method that overrides a method declaration
in a supertype. The annotation is used to mark checkSC() method in ExchangeEnergyContract
class. The method iterates over the list of verification rules, where vR,, is the n-th rule

Appl. Sci. 2022,12, 5339

14 of 21

in the list. Its execution can be described using the Logical AND operator (&& in Java)
as the expression (2):
Ry AvRy A ... ANURy, 2)

Using the array-backed list ensures that the list of validation rules is of a fixed size.
That closes the possibility of adding more rules. However, extending rules are introduced into
the pattern. The mechanism may enable a controlled annexation of a smart contract. By default,
the runRule() method of the extending verification rule returns a true Boolean value.

6.4. Transaction Types

In the example, the pattern uses the Transaction class for the energy exchange between
prosumers (Listing 11). The class is prepared for prosumer in-community and cross-
community energy exchange.

Listing 11: The source code of the Transaction class.

package pl.gdynia.amw.scdp;

public sealed class Transaction permits TransactionCross |
private double quantity;
private double sourceSurplus;
private double targetNeed;
private double targetProduction;
private double targetBatteryEnergySurplus;
private int sourcelD;
private int targetlD;
private int sourceCommunitylD;
private int targetCommunitylD;

public Transaction(double quantity, double sSurplus, double tNeed, double
targetProduction, double targetBatteryEnergySurplus, int sID, int tID,
int sCID, int tCID) ({
this . quantity = quantity;
this.sourceSurplus = sSurplus;
this . targetNeed = tNeed;
this . targetProduction = targetProduction;
this.targetBatteryEnergySurplus = targetBatteryEnergySurplus;
this .sourcelD = sID;
this . targetID = tID;
this .sourceCommunitylD = sCID;
this . targetCommunityID = tCID;

J

public double getQuantity () { return quantity; }

public double getSourceSurplus() { return sourceSurplus; }

public double getTargetNeed () { return targetNeed; }

public int getSourcelD() { return sourcelD; }

public int getTargetID() { return targetID; }

public int getSourceCommunityID () { return sourceCommunityID; }

public int getTargetCommunityID () { return targetCommunitylD; }

public double getTargetProduction() { return targetProduction; }

public double getTargetBatteryEnergySurplus() { return
targetBatteryEnergySurplus; }

Listing 12 shows the TransactionCross class for cross-community energy exchange.

Listing 12: The source code of the TransactionCross class.

package pl.gdynia.amw.scdp;

public final class TransactionCross extends Transaction {
public TransactionCross(double quantity , double sSurplus, double tNeed,
double targetProduction, double targetBatteryEnergySurplus, int sID, int
tID, int sCID, int tCID) ({
super (quantity , sSurplus, tNeed, targetProduction,
targetBatteryEnergySurplus, sID, tID, sCID, tCID); } |

Appl. Sci. 2022,12, 5339

15 of 21

6.5. Buying Energy from Energy Grid

Another evaluation expression is implemented in the second BuyEnergyFromGrid smart
contract class. Similarly, like for the first smart contract class, the annotation @Override indi-
cates the checkSC() method that overrides the corresponding method declared in the parent
class. The execution of the method can be described using the Logical AND and Logical OR
operators by the following evaluation expression (3):

Ry AvRy A (UR3 V URy) (3)

The method checks the evaluation expression as one compound logical expression.
Like in the first smart contract, the method engages all verification rule classes.
Listing 13 shows the BuyEnergyFromGrid class.

Listing 13: The source code of the BuyEnergyFromGrid class.

package pl.gdynia.amw.scdp.contracts;

import pl.gdynia.amw.scdp.Transaction;

import pl.gdynia.amw.scdp.rules.exchangeEnergy .x;
import pl.gdynia.amw.scdp.rules.buyEnergyFromGrid . *;
import java.util.Arrays;

public final class BuyEnergyFromGrid extends SmartContract{
public BuyEnergyFromGrid () {
rulesList = Arrays.asList(
new TechnicalVR2(),
new BusinessVR1(),
new BusinessVR3 (),
new BusinessVR4());
}
@Override
public boolean checkSC(Transaction tr){
if (rulesList.get(0).runRule(tr)
&& rulesList.get(1).runRule(tr)
&& (rulesList.get(2).runRule(tr) | rulesList.get(3).runRule(tr)))
return true;
else
return false;

The source code of the smart contract design pattern implementation, for configurable
smart contracts, is available in the GitHub repository [43].

7. Tests

As far as the pattern implementation validation is concerned, there have been prepared
unit tests. The design of the pattern requires testing on two levels of detail: a separate veri-
fication rule and a complete smart contract. Dedicated test classes have been implemented.
At the verification rule level, each test class corresponds to and tests one verification rule
class, e.g., Technical VR1Test test class is for the Technical VR1 verification rule class. Each
of the test classes comprises two tests that verify the runRule() method, one positive (PASS)
and one negative (FAIL). At the smart contract level, one test class is written. The Ex-
changeEnergyContractTest class comprises four tests that verify the checkSC() method. Each
test checks the whole smart contract. One test is positive (PASS) and nine tests are negative
(FAIL). In each negative test one, a different verification rule returns the false Boolean
value. Test classes are stored in fests package within the pattern implementation project in
Intelli] IDEA.

Listing 14 depicts the Technical VR1Test class with two tests, which check the Techni-
calVR1 verification rule class.

Appl. Sci. 2022,12, 5339 16 of 21

Listing 14: The source code of the TechnicalVR1Test class.

package pl.gdynia.amw.scdp.rules.exchangeEnergy;
import org.junit.jupiter.api.Test;

import pl.gdynia.amw.scdp.Transaction;

import static org.junit.jupiter.api.Assertions.x;

class TechnicalVR1Test {
TechnicalVR1 technicalVR1 = new TechnicalVR1();
@Test
void runRulePositive () {
Transaction tr = new Transaction(100, 300, 400, 20, 10, 1001, 1002, 100,
100);
assertTrue (technicalVR1.runRule(tr)); }
@Test
void runRuleNegative () {
Transaction tr = new Transaction(100, 300, 400, 20, 10, 1001, 1002, 100,
200);
assertFalse (technicalVR1.runRule(tr)); }

Similarly, Listing 15 depicts the Technical VR1ExtendedTest class with two tests, which
checks the Technical VR1Extended verification rule class.

Listing 15: The source code of the Technical VR1ExtendedTest class.

package pl.gdynia.amw.scdp.rules.exchangeEnergy .crossCommunity ;
import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertTrue;
import pl.gdynia.amw.scdp.TransactionCross;

class TechnicalVR1ExtendedTest {
TechnicalVR1Extended technicalVR1Extended = new TechnicalVR1Extended () ;
@org.junit.jupiter.api.Test
void runRulePositive () {
TransactionCross tr = new TransactionCross (100, 300, 400, 20,10,1001,
1002, 100, 101);
assertTrue (technical VR1Extended .runRule(tr)); }
@org.junit.jupiter.api.Test
void runRuleNegative () {
TransactionCross tr = new TransactionCross (100, 300, 400, 20,10,1001,
1002, 100, 100);
assertFalse (technicalVR1Extended .runRule(tr)); }

Listing 16 depicts the ExchangeEnergyContractTest class with 11 tests, which check both
configurations of the ExchangeEnergyContract concrete smart contract class.

Listing 16: The source code of the ExchangeEnergyContractTest class.

package pl.gdynia.amw.scdp.contracts;

import static org.junit.jupiter.api.Assertions.x;
import org.junit.jupiter.api.Test;

import pl.gdynia.amw.scdp.Transaction;

import pl.gdynia.amw.scdp.TransactionCross;

class ExchangeEnergyContractTest {
ExchangeEnergyContract sC = new ExchangeEnergyContract();
// in-community SC configuration

@Test
void checkSCInPositive () {
System.out. println(‘‘—~—- checkSCInPositive ' “) ;
Transaction tr = new Transaction(100, 300, 400, 20, 10, 1001, 1002, 100,

100);
assertTrue (sC.checkSC(tr));
}
@Test
void checkSCInNegativeTVR1 () {
System.out. println(‘‘—~-- checkSCInNegativeTVR1" ‘) ;

Appl. Sci. 2022,12, 5339

17 of 21

Transaction tr = new Transaction(100, 300, 400, 20, 10, 1001, 1002, 100,
200);
assertFalse (sC.checkSC(tr));
}

@Test
void checkSCInNegativeTVR2 () {
System.out. println(’'—~-- checkSCInNegativeTVR2 " ‘) ;
Transaction tr = new Transaction(100, 300, 400, 20, 10, 1001, 1001, 100,
100);
assertFalse (sC.checkSC(tr));
}
@Test
void checkSCInNegativeBVR1 () {
System.out. println(’'~-- checkSCInNegativeBVR1 " ‘) ;
Transaction tr = new Transaction(0, 300, 400, 20, 10, 1001, 1002, 100,
100);
assertFalse (sC.checkSC(tr));
}
@Test
void checkSCInNegativeBVR2() {
System.out. println(’’~-~- checkSCInNegativeBVR2 ‘) ;
Transaction tr = new Transaction(100, 50, 400, 20, 10, 1001, 1002, 100,

100);
assertFalse (sC.checkSC(tr));
}
// extended - cross-community SC configuration
@Test
void checkSCCrossPositive () {
System.out. println(’'~-- checkSCCrossPositive **) ;
TransactionCross tr = new TransactionCross (100, 300, 400, 20, 10, 1001,
1002, 100, 200);
assertTrue (sC.checkSC(tr));
}
@Test
void checkSCCrossNegativeTVR1Extended () {
System.out. println(*‘—-- checkSCCrossNegativeTVR1Extended " *) ;
TransactionCross tr = new TransactionCross (100, 300, 400, 20, 10, 1001,
1002, 100, 100);
assertFalse (sC.checkSC(tr));
}
@Test
void checkSCCrossNegativeTVR2() {
System.out. println(‘~-- checkSCCrossNegativeTVR2 " *) ;
TransactionCross tr = new TransactionCross (100, 300, 400, 20, 10, 1001,
1001, 100, 200);
assertFalse (sC.checkSC(tr));
}
@Test
void checkSCCrossNegativeBVR1 () {
System.out. println(*"——- checkSCCrossNegativeBVR1 * *) ;
TransactionCross tr = new TransactionCross (0, 300, 400, 20, 10, 1001,
1002, 100, 200);
assertFalse (sC.checkSC(tr));
}
@Test
void checkSCCrossNegativeBVR2 () {
System.out. println(*"——- checkSCCrossNegativeBVR2 * *) ;
TransactionCross tr = new TransactionCross (100, 50, 400, 20, 10, 1001,
1002, 100, 200);
assertFalse (sC.checkSC(tr));
}
@Test
void checkSCCrossNegativeEVR1Extended () {
System.out. println(‘‘——- checkSCCrossNegativeEVR1Extended * *) ;
TransactionCross tr = new TransactionCross (100, 300, 20, 20, 10, 1001,
1002, 100, 200);
assertFalse (sC.checkSC(tr));

bl

Appl. Sci. 2022,12, 5339

18 of 21

Taking into account the way of constructing an evaluation expression consistent
with Equation (2), the number of test cases T for smart contracts can be expressed as the fol-
lowing Formula (4).

s G

T=2xV+)) (v;+1) 4)

i=1j=1
where:

S—number of smart contracts;

V—number of active verification rules;

C;/—number of configurations in i-th smart contract;

v;j—number of active verification rules in j-th configuration of i-th smart contract.

Test automation is prepared using the JUnit v.5.7. Automated tests can be executed
at various levels. Tests can be run for separate verification rules, the smart contract class,
and the whole package. An example of unit test execution results for the whole ExchangeEn-
ergyContractTest class are shown in Figure 6.

Run: pl.gdynia.amw.scdp in SmartContractDesignPattern
» ve iz T = Q¥ 12 &
v scdp (pl.gdynia.amw) 38ms

ExpandingVR1ExtendedTest

TechnicalVR2Test

TechnicalVR1Test

BusinessVR2Test

TechnicalVR1ExtendedTest

BusinessVR1Test

ExchangeEnergyContractTest
checkSCInNegativeBVR1()
checkSCInNegativeBVR2()
checkSCInNegativeTVR1()
checkSCInNegativeTVR2()
checkSCCrossNegativeT VR1Extended()
checkSCCrossNegativeBVR1()
checkSCCrossNegativeBVR2()
checkSCCrossNegativeTVR2()
checkSCCrossNegativeEVR1Extended()
checkSCInPositive()
checkSCCrossPositive()

=)

Y ¢

{ vV VvV vV Vv v v

Figure 6. Test results for the ExchangeEnergyContractTest class.

8. Discussion and Limitations

With the spread of blockchain technology applications, more and more smart contracts
will be written. There is already a need for methods of designing such solutions. The pro-
posed pattern meets these needs. Thanks to the use of a pattern in the design of smart
contracts, it is possible to independently program its individual components. In addition,
it provides the basis for a plain and comprehensive construction of tests. For example,
Pierro et al. [32] discuss the source codes repository of Ethereum smart contracts. A pattern
can add an extra degree of freedom to these types of repositories by having a clearly de-
fined structure. Separately implemented verification rules can be stored in the repository.
The reusability level can be much higher than for the whole smart contract.

The pattern implementation preserves the linear order-of-growth of verification rules
processing time. As a data structure for verification rules, a one-dimensional array-backed
list is used. In consequence, a single for loop suffices to process the list. The second
important performance factor is memory usage. The size of the collection for storing
verification rules is calculated. The concrete verification rule object requires 48 Bytes, which
encompasses the object itself and reference. An additional 24 Bytes must be included

Appl. Sci. 2022,12, 5339

19 of 21

References

for the list object. So, the ExchangeEnergyContract class needs 216 Bytes for storing the data
structure with 4 verification rules. Thus, the memory usage can be regarded as modest.
Full pattern performance validation is beyond the scope of this article. However, work is
planned to test the performance of various smart contract implementations in the three
blockchain platforms under consideration: R3 Corda, Fabric, and Quorum.

Pure methods were used in the implementation of the pattern, which increases the se-
curity of the source code. In addition, compact methods and single for loops were applied.
This resulted in short source code execution times. Such an effect is of particular importance
in distributed blockchain applications. For example, executing smart contracts in Ethereum
involves gas consumption as the real cost of the transaction. Research works are underway
to estimate the gas consumption of loops [46].

In the current implementation of the pattern, all rules are evaluated in a single method.
However, subsets of the full list of verification rules can be used in various smart contract
methods. Especially, the design of a smart contract in Solidity enables the most flexible
application of the pattern. The rules from the full list can be reused in many smart contract
functions. The pattern will eliminate the redundancy of rules in the current, standard
implementation of these functions in Solidity language. Evaluation expressions may reuse
verification rules and be constructed with the application of various operators.

The construction of the pattern allows for continuous delivery and deployment of se-
lected classes, e.g., verification rules. Moreover, using the Java reflection mechanism, it is
possible to update selected verification rules classes at run-time. That mechanism is under
development [47]. However, the first implementation shows promising results. As a result,
the new version of the verification rule class will be available in the working smart contract
without stopping the blockchain distributed application. It may have a positive impact
on the time reduction of version updates. Especially in fog and edge computing solutions,
it may be a desired property.

9. Conclusions

The paper introduces the pattern for the resilient design of smart contracts. The platform-
independent implementation of the pattern is written in Java language. The pattern elevates
the source code reusability and fosters testing. Reusing verification rules simplifies the ability
for smart contracts to update. Once updated, the verification rule source code is up-to-date in all
evaluation expressions that use the rule. The processing manner of the verification rules list may
shorten smart contract validation time. The inclusion of expanding rules gives the possibility
to amend the smart contract. The author showed the capability of the pattern to expand the smart
contract and, in the same way, adjust it to changing business needs. It should be emphasized that,
at the same time, the number of verification rules remains constant. The pattern may also make
it easier to design smart contracts of distributed applications for cooperating renewable energy
prosumer communities. The pattern also allows for reconfiguration of the verification rules
for a smart contract at run-time. The author plans to implement the pattern in Solidity language.
The employment of a list of verification rules has the potential to eliminate the redundancy
of their source code, in comparison to the standard smart contract implementation of Quorum.

Funding: This research received no external funding.

Conflicts of Interest: The author declare no conflict of interest.

1. Casino, F; Dasaklis, T.K.; Patsakis, C. A systematic literature review of blockchain-based applications: Current status, classification
and open issues. Telemat. Inform. 2019, 36, 55-81. [CrossRef]

2. Xu, X.; Weber, L; Staples, M. Architecture for Blockchain Applications; Springer: Cham, Switzerland, 2019; pp. 5-7. [CrossRef]

3. Polge, J.; Robert, J.; Le Traon, Y. Permissioned blockchain frameworks in the industry: A comparison. ICT Express 2021, 7, 229-233.

[CrossRef]

4. Neethirajan, S.; Kemp, B. Digital Livestock Farming. Sens. Bio-Sens. Res. 2021, 32, 100408. [CrossRef]
5. Lucas, A; Geneiatakis, D.; Soupionis, Y.; Nai-Fovino, I.; Kotsakis, E. Blockchain Technology Applied to Energy Demand Response
Service Tracking and Data Sharing. Energies 2021, 14, 1881. [CrossRef]

http://doi.org/10.1016/j.tele.2018.11.006
http://dx.doi.org/10.1007/978-3-030-03035-3
http://dx.doi.org/10.1016/j.icte.2020.09.002
http://dx.doi.org/10.1016/j.sbsr.2021.100408
http://dx.doi.org/10.3390/en14071881

Appl. Sci. 2022,12, 5339 20 of 21

o

10.
11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Java v.18 Documentation. Available online: https://docs.oracle.com/en/java/javase/18/ (accessed on 18 April 2022).

Sund, T.; Lo6of, C.; Nadjm-Tehrani, S.; Asplund, M. Blockchain-based event processing in supply chains—A case study at IKEA,
Robot.-Comput.-Integr. Manuf. 2020, 65, 101971. [CrossRef]

Solidity v.0.8.13 Documentation. Available online: https://docs.soliditylang.org/en/v0.8.13/ (accessed on 18 April 2022).
Hyperlegder Fabric. Available online: https://www.hyperledger.org/use/fabric (accessed on 15 April 2022).

Corda. Available online: https:/ /www.corda.net (accessed on 15 April 2022).

Quorum. Available online: https://consensys.net/quorum/ (accessed on 15 April 2022).

Yapa, C.; de Alwis, C.; Liyanage, M.; Ekanayake,]. Survey on blockchain for future smart grids: Technical aspects, applications,
integration challenges and future research. Energy Rep. 2021, 7, 6530-6564. [CrossRef]

Wu, H; Cao, J.; Yang, Y.; Tung, C.L,; Jiang, S.; Tang, B.; Liu, Y.; Wang, X.; Deng, Y. Data management in supply chain using
blockchain: Challenges and a case study. In Proceedings of the 2019 28th International Conference on Computer Communication
and Networks (ICCCN), Valencia, Spain, 29 July-1 August 2019; pp. 1-8. [CrossRef]

Jiang, S.; Cao, J.; Wu, H.; Yang, Y.; Ma, M.; He,]. BlocHIE: A BLOCkchain-Based Platform for Healthcare Information Exchange.
In Proceedings of the 2018 IEEE International Conference on Smart Computing (SMARTCOMP), Taormina, Sicily, Italy, 18-20
June 2018; pp. 49-56. [CrossRef]

Ante, L.; Steinmetz, F.; Fiedler, I. Blockchain and energy: A bibliometric analysis and review. Renew. Sustain. Energy Rev. 2021,
137, 110597. [CrossRef]

Guo, Y.; Wan, Z; Cheng, X. When Blockchain Meets Smart Grids: A Comprehensive Survey. High-Confid. Comput. 2022, 2, 100059.
[CrossRef]

Kirli, D.; Couraud, B.; Robu, V.; Salgado-Bravo, M.; Norbu, S.; Andoni, M.; Antonopoulos, I.; Negrete-Pincetic, M.; Flynn,
D.; Kiprakis, A. Smart contracts in energy systems: A systematic review of fundamental approaches and implementations.
Renew. Sustain. Energy Rev. 2022, 158, 112013. [CrossRef]

Wang, S.; Taha, A.F,; Wang, J.; Kvaternik, K.; Hahn, A. Energy Crowdsourcing and Peer-to-Peer Energy Trading in Blockchain-
Enabled Smart Grids. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 1612-1623. [CrossRef]

Park, L. W,; Lee, S.; Chang, H. A Sustainable Home Energy Prosumer-Chain Methodology with Energy Tags over the Blockchain.
Sustainability 2018, 10, 658. [CrossRef]

Baggio, A.; Grimaccia, F. Blockchain as Key Enabling Technology for Future Electric Energy Exchange: A Vision. IEEE Access
2020, 8, 205250-205271. [CrossRef]

Chantrel, S.P.M.; Surmann, A.; Erge, T.; Thomsen, J. Participative Renewable Energy Community—How Blockchain-Based
Governance Enables a German Interpretation of RED II. Electricity 2021, 2, 471-486. [CrossRef]

Yahaya, A. S.; Javaid, N.; Alzahrani, F. A.; Rehman, A.; Ullah, I; Shahid, A.; Shafiq, M. Blockchain Based Sustainable Local Energy
Trading Considering Home Energy Management and Demurrage Mechanism. Sustainability 2020, 12, 3385. [CrossRef]

Saxena, S.; Farag, H. E. Z.; Brookson, A.; Turesson, H.; Kim, H. A Permissioned Blockchain System to Reduce Peak Demand
in Residential Communities via Energy Trading: A Real-World Case Study. IEEE Access 2021, 9, 5517-5530. [CrossRef]

Jamil, F; Igbal, N.; Imran; Ahmad, S.; Kim, D. Peer-to-Peer Energy Trading Mechanism Based on Blockchain and Machine
Learning for Sustainable Electrical Power Supply in Smart Grid. IEEE Access 2021, 9, 39193-39217. [CrossRef]

Son, Y. B.; Im, J. H.; Kwon, H. Y.; Jeon, S. Y.; Lee, M. K. Privacy-Preserving Peer-to-Peer Energy Trading in Blockchain-Enabled
Smart Grids Using Functional Encryption. Energies 2020, 13, 1321. [CrossRef]

Jiang, S.; Cao, J.; Wu, H.; Yang, Y. Fairness-Based Packing of Industrial IoT Data in Permissioned Blockchains. IEEE Trans. Ind.
Inform. 2021, 17, 7639-7649. [CrossRef]

Barros-Justo, J.L.; Benitti, FB.V.; Matalonga, S. Trends in software reuse research: A tertiary study. Comput. Stand. Interfaces 2019,
66, 103352. [CrossRef]

Papamichail, M.D.; Diamantopoulos, T.; Symeonidis, A.L. Measuring the reusability of software components using static analysis
metrics and reuse rate information. J. Syst. Softw. 2019, 158, 110423. [CrossRef]

De Meester, B.; Seymoens, T.; Dimou, A.; Verborgh, R. Implementation-independent function reuse. Future Gener. Comput. Syst.
2020, 110, 946-959. [CrossRef]

Ma, Z.; Yuan, Z.; Yan, L. Two-level clustering of UML class diagrams based on semantics and structure. Inf. Softw. Technol. 2021,
130, 106456. [CrossRef]

Makady, S.; Walker, R.J. Debugging and maintaining pragmatically reused test suites. Inf. Softw. Technol. 2018, 102, 6-29.
[CrossRef]

Pierro, G.A.; Tonelli, R.; Marchesi, M. An Organized Repository of Ethereum Smart Contracts” Source Codes and Metrics. Future
Internet 2020, 12, 197. [CrossRef]

Kondo, M.; Oliva, G.A; Jiang, Z.M.; Hassan, A.E.; Mizuno, O. Code cloning in smart contracts: A case study on verified contracts
from the ethereum blockchain platform. Empirical Softw. Eng. 2020, 25, 4617-4675. [CrossRef]

Zou, W,; Lo, D.; Kochhar, PS.; Le, X.D.; Xia, X.; Feng, Y.; Chen, Z.; Xu, B. Smart Contract Development: Challenges and
Opportunities. IEEE Trans. Softw. Eng. 2021, 47, 2084-2106. [CrossRef]

Sénchez-Gémez, N.; Torres-Valderrama, J.; Garcia-Garcia, J.A.; Gutiérrez,].J.; Escalona, M.J. Model-Based Software Design and
Testing in Blockchain Smart Contracts: A Systematic Literature Review. IEEE Access 2020, 8, 164556-164569. [CrossRef]

Hu, K,; Zhu,].; Ding, Y.; Bai, X.; Huang, J. Smart Contract Engineering. Electronics 2020, 9, 2042. [CrossRef]

https://docs.oracle.com/en/java/javase/18/
http://dx.doi.org/10.1016/j.rcim.2020.101971
https://docs.soliditylang.org/en/v0.8.13/
https://www.hyperledger.org/use/fabric
https://www.corda.net
https://consensys.net/quorum/
http://dx.doi.org/10.1016/j.egyr.2021.09.112
http://dx.doi.org/10.1109/ICCCN.2019.8846964
http://dx.doi.org/10.1109/SMARTCOMP.2018.00073
http://dx.doi.org/10.1016/j.rser.2020.110597
http://dx.doi.org/10.1016/j.hcc.2022.100059
http://dx.doi.org/10.1016/j.rser.2021.112013
http://dx.doi.org/10.1109/TSMC.2019.2916565
http://dx.doi.org/10.3390/su10030658
http://dx.doi.org/10.1109/ACCESS.2020.3036994
http://dx.doi.org/10.3390/electricity2040028
http://dx.doi.org/10.3390/su12083385
http://dx.doi.org/10.1109/ACCESS.2020.3047885
http://dx.doi.org/10.1109/ACCESS.2021.3060457
http://dx.doi.org/10.3390/en13061321
http://dx.doi.org/10.1109/TII.2020.3046129
http://dx.doi.org/10.1016/j.csi.2019.04.011
http://dx.doi.org/10.1016/j.jss.2019.110423
http://dx.doi.org/10.1016/j.future.2019.10.006
http://dx.doi.org/10.1016/j.infsof.2020.106456
http://dx.doi.org/10.1016/j.infsof.2018.05.001
http://dx.doi.org/10.3390/fi12110197
http://dx.doi.org/10.1007/s10664-020-09852-5
http://dx.doi.org/10.1109/TSE.2019.2942301
http://dx.doi.org/10.1109/ACCESS.2020.3021502
http://dx.doi.org/10.3390/electronics9122042

Appl. Sci. 2022,12, 5339 21 of 21

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Hamdagqga, M.; Met, L. A. P; Qasse, I. iContractML 2.0: A domain-specific language for modeling and deploying smart contracts
onto multiple blockchain platforms. Inf. Softw. Technol. 2022, 144, 106762. [CrossRef]

Dwivedi, V.; Norta, A.; Wulf, A.; Leiding, B.; Saxena, S.; Udokwu, C. A Formal Specification Smart-Contract Language for Legally
Binding Decentralized Autonomous Organizations. IEEE Access 2021, 9, 76069-76082. [CrossRef]

Ozkaya, M; Erata, F. A survey on the practical use of UML for different software architecture viewpoints. Inf. Softw. Technol. 2020,
121, 106275. [CrossRef]

Jurgelaitis, M.; Ceponiené, L.; Butkiene, R. Solidity Code Generation From UML State Machines in Model-Driven Smart Contract
Development. IEEE Access 2022, 10, 33465-33481. [CrossRef]

Gorski, T. The 1+5 Architectural Views Model in Designing Blockchain and IT System Integration Solutions. Symmetry 2021, 13,
2000. [CrossRef]

UML Profile for Smart Contracts. Available online: https:/ /github.com/drGorski/UMLProfile4SmartContracts (accessed on 15
April 2022).

The SCDP Implementation in Java. Available online: https://github.com/drGorski/SmartContractDesignPattern (accessed on 15
April 2022).

Pender, T. Customizing UML using profiles. In UML Bible; Wiley Publishing, Inc.: Indianapolis, IN, USA, 2003; pp. 687-723.
Open]DK JDK 18 General-Availability Release. Available online: https:/ /jdkjava.net/18/ (accessed on 18 April 2022).

Li, C; Nie, S; Cao, Y,; Yu, Y.; Hu, Z. Trace-Based Dynamic Gas Estimation of Loops in Smart Contracts. IEEE Open J. Comput. Soc.
2020, 1, 295-306. [CrossRef]

Gorski, T. Towards Continuous Deployment for Blockchain. Appl. Sci. 2021, 11, 11745. [CrossRef]

http://dx.doi.org/10.1016/j.infsof.2021.106762
http://dx.doi.org/10.1109/ACCESS.2021.3081926
http://dx.doi.org/10.1016/j.infsof.2020.106275
http://dx.doi.org/10.1109/ACCESS.2022.3162227
http://dx.doi.org/10.3390/sym13112000
https://github.com/drGorski/UMLProfile4SmartContracts
https://github.com/drGorski/SmartContractDesignPattern
https://jdk.java.net/18/
http://dx.doi.org/10.1109/OJCS.2020.3039991
http://dx.doi.org/10.3390/app112411745

	Introduction
	Related Work
	Renewable Energy Example
	UML Profile for Smart Contracts
	The Pattern Design
	The Pattern Implementation
	Energy Exchange in the Same Community
	Cross-Community Energy Exchange
	Smart Contract Reconfigurability
	Transaction Types
	Buying Energy from Energy Grid

	Tests
	Discussion and Limitations
	Conclusions
	References

