
Citation: Wang, Y.; Xiao, S.

Affinity-Point Graph Convolutional

Network for 3D Point Cloud

Analysis. Appl. Sci. 2022, 12, 5328.

https://doi.org/10.3390/

app12115328

Academic Editors: Nikolaos

Doulamis, Nikos Grammalidis and

Kosmas Dimitropoulos

Received: 22 March 2022

Accepted: 19 May 2022

Published: 25 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Affinity-Point Graph Convolutional Network for 3D Point
Cloud Analysis
Yang Wang * and Shunping Xiao

College of Electronic Science, National University of Defense Technology, Changsha 410073, China;
spxiao@nudt.edu.cn
* Correspondence: wangyangs4@nudt.edu.cn

Abstract: Efficient learning of 3D shape representation from point cloud is one of the biggest re-
quirements in 3D computer vision. In recent years, convolutional neural networks have achieved
great success in 2D image representation learning. However, unlike images that have a Euclidean
structure, 3D point clouds are irregular since the neighbors of each node are inconsistent. Many
studies have tried to develop various convolutional graph neural networks to overcome this problem
and to achieve great results. Nevertheless, these studies simply took the centroid point and its
corresponding neighbors as the graph structure, thus ignoring the structural information. In this
paper, an Affinity-Point Graph Convolutional Network (AP-GCN) is proposed to learn the graph
structure for each reference point. In this method, the affinity between points is first defined using
the feature of each point feature. Then, a graph with affinity information is built. After that, the
edge-conditioned convolution is performed between the graph vertices and edges to obtain stronger
neighborhood information. Finally, the learned information is used for recognition and segmentation
tasks. Comprehensive experiments demonstrate that AP-GCN learned much more reasonable fea-
tures and achieved significant improvements in 3D computer vision tasks such as object classification
and segmentation.

Keywords: 3D point cloud analysis; deep learning; graph convolution network; 3D classification;
semantic segmentation

1. Introduction

With the developments of 3D acquisition equipment, 3D data have played an im-
portant role in practical applications. As the foundation of current point cloud analysis
algorithms, 3D shape representation learning is important for tackling 3D computer vision
tasks, including 3D reconstruction [1,2], shape synthesis and modeling [3,4], 3D object
classification and segmentation [5–7], as well as graphics applications such as virtual
avatars [8,9].

Since Convolutional Neural Networks (CNNs) have achieved great success in numer-
ous areas, recent research has attempted to extend it from the regular date domain (such as
image, voice signal, and video data) to unorganized 3D point clouds [6–13]. However, it is
challenging to apply CNN directly to 3D geometric data since they do not possess a regular
Euclidean structure. A regular receptive field is required for the standard convolution
kernels to extract features, since the convolution weights are fixed at a specific position of
the convolution area. To solve this problem, regularization methods rasterize the irregular
point clouds into probabilistic occupancy in 3D space [14–16] or project it into several 2D
images [12,13]. However, this kind of transformation always introduces loss of information
during the quantization procedure. Meanwhile, this kind of position-determined weight
results in isotropy of the convolution kernel to the features of neighboring points.

Inspired by the great success of graph neural networks (GNNs) in other fields, some
researchers tried to use it to handle 3D point cloud tasks [17–21]. They represented 3D

Appl. Sci. 2022, 12, 5328. https://doi.org/10.3390/app12115328 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12115328
https://doi.org/10.3390/app12115328
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12115328
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12115328?type=check_update&version=2

Appl. Sci. 2022, 12, 5328 2 of 10

point clouds as graphs, in which the number and orientation of each node’s neighbors
varied from one to another (node inconsistency). Then, an effective convolution operation
similar to the traditional operation was defined, which was defined on Euclidean structured
data for 3D shape representation learning. Many graph convolutional neural networks
have been developed to deal with irregular point cloud data and have achieved promising
results. However, they still obtain isotropic features, as they simply and roughly connect
the neighbor to form the graph structure.

To solve this problem, we designed a method that was motivated from the idea that
the feature can be used to shield partial convolution weights according to the characteristics
of the neighbors. Therefore, the actual receptive field of a point cloud convolution kernel
is no longer a regular three-dimensional box but a shape that dynamically adapts to the
structure of the object. In addition, as an important part of the graph, edges are used to
enrich the features obtained.

In summary, the contributions of this paper are as follows:
(1) Affinity-Point Graph Convolutional Network (AP-GCN) is proposed for 3D point

cloud analysis, which contains a graph neural network with a trainable neighbor structure.
The neighbor selection method is used to replace the common spherical neighborhood and
the k-NN (K-Nearest Neighbor) method.

(2) Edge-conditioned convolution is designed according to the characteristics of mes-
sage transmission on graph network.

(3) A comparative 3D object classification accuracy is achieved based on the Model-
Net40 classification benchmark [14] and the ShapeNet part benchmark [22].

2. Related Works

In this section, related studies are discussed within two main aspects: deep learning
on point clouds and convolution on graphs.

2.1. Deep Learning on Point Clouds

With the rapid development of deep learning, CNNs have been successfully used in
2D images and researchers have tried to explore its feature learning power for 3D point
clouds. However, the implementation of typical convolutions relies on a regular data
format that is not satisfied in point clouds. To solve this problem, various methods have
been proposed.

A straightforward extension is a voxel-based method that transforms the irregular
point clouds into regular volumetric distribution [14–16]. Voxels are similar to the pixels in
3D space instead of 2D images. Then, the typical 3D convolution operation can be applied
to extract its features. Wu et al. [14] transformed the point clouds into binary occupancy of
voxels, where 1 stands for the occupancy and 0 stands for empty. Maturana and Scherer [15]
proposed three different representations of voxels and introduced a network named VoxNet
for classification tasks. VoxNet can be trained by typical SGD algorithms. Though simple,
this kind of method induces a loss of information, excessive consumption of memory, and
a high computation cost.

Another solution is multi-view-based methods [12,13]. They used multiple 2D images
to represent 3D objects so that it can benefit from these well-developed recognition methods
in 2D images [23]. Su et al. [12] generated many projection images for 3D objects by placing
several virtual cameras arounds it. Traditional networks on images such as VGGNet were
utilized to extract features from each individual image. The extracted features were fused
subsequently to obtain the overall representation of the object. Yang et al. [13] introduced
a relation network to learn the relation among different views; then, the features from all
viewpoints were aggregated to produce a global feature. However, the determination of
the number of 2D images is still a problem, and these methods would lead to information
loss during the projection process.

Pioneered by PointNet [6], point-based methods directly consume point clouds rather
than transform them into an intermediate representation. An effective and simple archi-

Appl. Sci. 2022, 12, 5328 3 of 10

tecture was constructed in PointNet to directly learn from point sets. First, point features
wer computed individually from shared multi-layer perceptrons (MLPs). Then, all of the
features were aggregated as a global presentation of a point cloud. Furthermore, Point-
Net++ [7] was proposed to incorporate the local information since PointNet processes all
points at one time. Although these methods significantly improve the speed of the 3D
shape analysis, they still ignore structural information.

2.2. Convolution on Graphs

The graph-based methods [17–21] generalize the standard CNNs to adapt to the graph-
structural data by representing the point cloud as a graph according to their spatial neighbors.

Convolution on graphs includes spectral approaches and non-spectral approaches. The
spectral approaches define convolutions as spectral filtering, which is implemented as the
multiplication of signals on a graph with eigenvectors of the graph Laplacian matrix [24,25].
Defferrard et al. [24] proposed truncated Chebyshev polynomials to approximate the
spectral filtering. The learned feature maps are located within the K-hops neighbors
of each point. RGCNN [26] constructs a graph by connecting each point with all other
points in the point cloud, updating the graph Laplacian matrix in each layer. To make
features of adjacent vertices more similar, a graph-signal smoothness is added a priori into
the loss function. Wang et al. [27] proposed an end-to-end spectral convolution network
LocalSpecGCN to work on a local graph (which is constructed from the k nearest neighbors).
This method does not require any offline computation of the graph Laplacian matrix and
graph coarsening hierarchy. However, the spectral convolution still suffers from a high
computation cost, and it cannot be transferred to another graph since they have different
Laplacian matrices.

The key to the non-spectral methods is that they directly define the convolution on
graphs with local neighbors in spatial or manifold domains. Specifically, convolution is
usually implemented using MLP over spatial neighbors. Pooling produces a new coarsened
graph by aggregating information from each point’s neighbors. Simonovsky et al. [28]
considered each point as a vertex of the graph and connected each vertex to all its neighbors
using a directed edge. Then, Edge-Conditioned Convolution (ECC) was proposed using a
filter-generating network (e.g., MLP). Max pooling was adopted to aggregate neighborhood
information, and graph coarsening was implemented based on the VoxelGrid [29] algorithm.
Liu et al. [30] proposed a Dynamic Points Agglomeration Module (DPAM) based on
graph convolution to simplify the process of point agglomeration (sampling, grouping,
and pooling) into a simple step, which was implemented through multiplication of the
agglomeration matrix and points feature matrix. Duvenaud et al. designed a weight
matrix for each vertex and multiplied it to its neighbors, following a sum operation [31].
Niepert et al. [32] selected and sorted the neighbors of each vertex, so that 1D CNNs can
be used.

At present, most methods performed neighborhood feature extraction with a fixed
neighborhood structure and size (such as spherical shapes, squares, etc.). However, the
neighborhood structure of a target always suffers from multiple scales and has no fixed
shape. As a result, the traditional methods cannot effectively obtain complete information
from a fixed neighborhood. In view of this, a graph-based method is proposed to obtain
a much more reasonable neighborhood and its feature. Furthermore, a neighborhood
construction method is designed to aggregate neighbor information from both vertices
and edges in the built graph. This construction is useful for capturing neighbors with
stronger affinity to the neighborhood center. Additionally, based on the built graph and
neighborhood structure, a convolution operation is proposed to learn features for the
recognition task.

Appl. Sci. 2022, 12, 5328 4 of 10

3. Method

First, a novel neighbor selection method was proposed for structured feature learning
of 3D point cloud. After that, an end-to-end 3D point cloud classification and segmentation
framework was constructed.

3.1. Neighbor Selection Method

The most popular neighbor selection method is k-NN. The core idea of the k-NN
method is to traverse all points and then to select the neighbor according to the distance. A
spherical neighbor is divided by the azimuth angle, the pitch angle, and the radius. The
essence of these methods is to select a neighbor based on the Euclidean distance.

Considering a graph constructed from a given point cloud P = {p1, p2, . . . , pN} ∈ R3,
which is described as a mesh G = (V, E), where V = {v1, v2, . . . , vN} is a set of vertices and
E ⊆ |V| × |V| is a set of edges. N is the number of vertices (points). The neighbor set of ver-
tex pi is denoted as N(i) =

{
pi, pi,1, . . . , pi,|N(i)|

}
, where |N(i)| is the number of the neigh-

bors of pi. It is worth noticing that this set contains itself. Let h = {h1, h2, . . . , hN} be the set
of input vertex features and hi ∈ RF be the feature of pi, where F is the feature dimension.

The proposed method is designed to learn a function φ : R3 → R1 , which is used to
measure the affinity between neighbors and the center point. First, the distance between
neighbors is obtained as p∗ij = p∗i − pj, where p∗i ∈ P is the center point and pj ∈ P
represents its neighbor. Then, the specific values are used to evaluate the affinity between
the neighbor and its center, as follows:

α(i, j) = φ
(

p∗ij, wi

)
(1)

where wi ∈ R3 is a trainable weight vector of p∗i . α(i, j) representing the affinity of pj to p∗i .
In this paper, the operation φ : R3 → R1 is defined by multiplication, so that Equation (1)

can be written as follows:
α(i, j) = p∗ij•wT

i (2)

where α(i, j) is a constant.
In addition, in order to deal with a neighborhood with different scales, the affinity

value is normalized across all of the neighbors of vertex p∗i , as follows:

α′(i, j) =
exp(α(i, j))

∑l∈N(i) exp(α(i, l))
(3)

Thus, an affinity ranking for vertex p∗i can be obtained and the top k points is manually

selected. The chosen k neighbors is represented as N′(i) =
{

p∗i , p∗i,1, . . . , p∗i,k
}

. Additionally,

the edge direction information is represented using α′(i, j) and α′(j, i). If α′(i, j) > 0 and
α′(j, i) > 0, the points are doubly linked. In the other situation, the points are one-way
linked. Directed edges between a vertex and its neighbors are shown in Figure 1.

As shown in Figure 1, p∗i and p4 are doubly linked, which means that they have
a strong affinity for each other and information transmission between them goes two
ways. p∗i and p1 are one-way linked, which means that p∗i has a strong affinity to p1 and
information transmission between them is goes only one way. Obviously, the key to the
use of this graph is to learn information about both the vertices and the edges.

3.2. Convolution with Vertices and Edges

As defined above, both the edges and the vertices are important parts of a graph.
Moreover, edges contain rich structural information. Therefore, a convolution operation is
needed to capture local information from the vertices and structure information from the
edges. A general convolutional operation is formulated as follows:

h′ = σ
(

A
(
Γ
(
α′(i, j), α′(j, i), hj

)))
(4)

Appl. Sci. 2022, 12, 5328 5 of 10

where h′ is the final output feature. Γ
(
α′(i, j), α′(j, i), hj

)
is used to obtain local information

with vertex feature hj and structural information with affinity information α′(i, j) and α′(j, i).
α′(i, j) represents the information between vertices p∗i and pj, while α′(j, i) represents the
information between vertices p∗j and pi. In detail, Γ(•) is implemented with a shared
multi-layer perceptron (MLP). After the MLP layers, a feature fusion method A and a
nonlinear activator σ follow. To maintain permutation invariance of the point set, A is set
as a symmetric function (such as max pooling) and Γ(•) is shared over each neighbor.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 11

Figure 1. An example of a learned graph structure.

As shown in Figure 1, *
ip and 4p are doubly linked, which means that they have a

strong affinity for each other and information transmission between them goes two ways.
*
ip and 1p are one-way linked, which means that *

ip has a strong affinity to 1p and
information transmission between them is goes only one way. Obviously, the key to the
use of this graph is to learn information about both the vertices and the edges.

3.2. Convolution with Vertices and Edges
As defined above, both the edges and the vertices are important parts of a graph.

Moreover, edges contain rich structural information. Therefore, a convolution operation
is needed to capture local information from the vertices and structure information from
the edges. A general convolutional operation is formulated as follows:

() ()()()(), , , , jh A i j j i hσ α α′ ′ ′= Γ (4)

where h′ is the final output feature. () ()(), , , , ji j j i hα α′ ′Γ is used to obtain local

information with vertex feature jh and structural information with affinity information

(),i jα′ and (),j iα′ . (),i jα′ represents the information between vertices *
ip and jp ,

while (),j iα′ represents the information between vertices *
jp and ip . In detail, ()Γ • is

implemented with a shared multi-layer perceptron (MLP). After the MLP layers, a feature
fusion method A and a nonlinear activator σ follow. To maintain permutation
invariance of the point set, A is set as a symmetric function (such as max pooling) and
()Γ • is shared over each neighbor.

3.3. Graph Pyramid Construction on a Point Cloud
In this section, we explain how to construct a graph pyramid on point clouds

according to their neighbors. Many studies directly search for the spatial neighbors of all
points and link them as a graph. After that, a graph pyramid with different spatial scales
is constructed by alternately applying graph construction and coarsening techniques.

Graph construction on a point cloud. Given a point cloud P , which is a set of the
spatial coordinates of the points, a directed graph (),G V E= is constructed. Each vertex

iv is associated with a center point *
ip , and the edges are added between the point and

its lK neighbors { }* * *
,1 ,() , ,...,

li i i Ki p p pΝ ′ = . The direction from neighbor points to the

vertex represents the direction of information transmission. In our experiments, the lK
neighbors are learned from its features, which performs better than random sampling.

Figure 1. An example of a learned graph structure.

3.3. Graph Pyramid Construction on a Point Cloud

In this section, we explain how to construct a graph pyramid on point clouds according
to their neighbors. Many studies directly search for the spatial neighbors of all points and
link them as a graph. After that, a graph pyramid with different spatial scales is constructed
by alternately applying graph construction and coarsening techniques.

Graph construction on a point cloud. Given a point cloud P, which is a set of the
spatial coordinates of the points, a directed graph G = (V, E) is constructed. Each vertex
vi is associated with a center point p∗i , and the edges are added between the point and its

Kl neighbors N′(i) =
{

p∗i , p∗i,1, . . . , p∗i,Kl

}
. The direction from neighbor points to the vertex

represents the direction of information transmission. In our experiments, the Kl neighbors
are learned from its features, which performs better than random sampling.

Graph coarsening. To reduce the computation cost and memory consumption, the
input point cloud P is subsampled with a set of ratios using the furthest point sampling
algorithm. Then, a corresponding graph G can be constructed as described above.

Graph pooling. To aggregate the information from neighboring vertex to the centroid
vertex, graph pooling is a necessary procedure. For each local graph, the operation of graph
pooling is used to aggregate the vertex features. In this paper, the max pooling adopts a
pooling function. The specific definitions are as follows:

hl+1
i = pooling

{
hl

j : j ∈ Nl(i)
}

(5)

where Nl(i) is the neighbor set of the l-level vertex vi and hl
j is the corresponding feature of

the neighbors. hl+1
i is the output feature of the pooling operations.

The network architecture. The architecture of AP-GCN is shown in Figure 2. The
subsampled point cloud is directly used as the input, and the directed graph is constructed
using the proposed method. Then, the convolution operation is performed on the vertices
and edges. After each coarsening, the number of neighbors decreases. For the segmentation
task, the main structure is the same as the classification network. Different from the
classification network, feature interpolation is necessary to obtain the feature mapping

Appl. Sci. 2022, 12, 5328 6 of 10

to each point. As a result, the learned features are restored from the coarsest scale to the
original scale. At the same time, different-level features are fused with a skip connection.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 11

Graph coarsening. To reduce the computation cost and memory consumption, the
input point cloud P is subsampled with a set of ratios using the furthest point sampling
algorithm. Then, a corresponding graph G can be constructed as described above.

Graph pooling. To aggregate the information from neighboring vertex to the
centroid vertex, graph pooling is a necessary procedure. For each local graph, the
operation of graph pooling is used to aggregate the vertex features. In this paper, the max
pooling adopts a pooling function. The specific definitions are as follows:

(){ }1 :l l
i j lh pooling h j i+ = ∈Ν (5)

where ()l iΝ is the neighbor set of the l-level vertex iv and l
jh is the corresponding

feature of the neighbors. 1l
ih + is the output feature of the pooling operations.

The network architecture. The architecture of AP-GCN is shown in Figure 2. The
subsampled point cloud is directly used as the input, and the directed graph is constructed
using the proposed method. Then, the convolution operation is performed on the vertices
and edges. After each coarsening, the number of neighbors decreases. For the
segmentation task, the main structure is the same as the classification network. Different
from the classification network, feature interpolation is necessary to obtain the feature
mapping to each point. As a result, the learned features are restored from the coarsest
scale to the original scale. At the same time, different-level features are fused with a skip
connection.

The proposed network is generally consistent with the common recognition and
segmentation architecture. The main difference lies in the construction of the graph
structure and convolution operation. Our graphs are constructed by calculating the
affinity between points, and the convolution operation captures both vertex and edge
features.

Figure 2. The architecture of AP-GCN.

4. Experiments
In this section, the proposed AP-GCN is evaluated based on the ModelNet40

classification benchmark and the ShapeNet part benchmark [14] to verify its effectiveness
in classification and segmentation tasks, respectively. All of the experiments are run on a
GTX 1070 GPU with CUDA 11.3 and CuDNN 7.6.5.

Figure 2. The architecture of AP-GCN.

The proposed network is generally consistent with the common recognition and seg-
mentation architecture. The main difference lies in the construction of the graph structure
and convolution operation. Our graphs are constructed by calculating the affinity between
points, and the convolution operation captures both vertex and edge features.

4. Experiments

In this section, the proposed AP-GCN is evaluated based on the ModelNet40 classi-
fication benchmark and the ShapeNet part benchmark [14] to verify its effectiveness in
classification and segmentation tasks, respectively. All of the experiments are run on a GTX
1070 GPU with CUDA 11.3 and CuDNN 7.6.5.

4.1. Classification on the ModelNet40 Dataset

The ModelNet40 classification benchmark consists of 9843 train shapes and 2468 test
shapes in 40 categories. Here, the point cloud data provided by [6] are used for classification,
1024 points are uniformly sampled from each shape, and all sampled points are normalized
to a unit sphere. Similar to [33], during training, a random anisotropic scaling with a range
of [−0.66, 1.5] and a translation with a range of [−0.2, 0.2] were used for data augmentation.

The Adam optimizer with a momentum value of 0.9 was used for training. A dropout
rate of 50% was set at each fully connected layer. Furthermore, the initial learning rate was
set to 0.001, and the decay rate was set to 0.7 in all experiments During training, an early
stop strategy was introduced based on the validation accuracy. The update was stopped
when the accuracy did not improve after 10 epochs or the number of training epochs was
more than 100. In addition, overall accuracy (OA) was used to evaluate the methods.

The quantitative comparisons with the state-of-the-art methods are summarized in
Table 1. It can be seen from Table 1 that the proposed method performs better than most
other methods. Even using only xyz information as the input, the proposed method
achieved a comparative result (92.1%) to most of the existing models. In the same case,
AP-GCN achieved results with only 0.001% lower recognition than DGCNN [19], which
achieved the best recognition result. Additionally, AP-GCN achieved 1.5% higher than the
classical PointNet++ [7] and 0.4% higher than the classical PointCNN [10].

The computational complexity of each method with the same input (1k points from
ModelNet40) is shown in Table 1. Except PointNet, the time consumption of the proposed

Appl. Sci. 2022, 12, 5328 7 of 10

method is minimal compared with the other methods. It can be seen that the proposed also
achieved the lowest computational complexity.

Table 1. Shape classification results (%) based on the ModelNet40 benchmark.

Method Input Points OA (%) Time Consumption (ms)

Pointwise-CNN [34] xyz 1k 86.1 6985
PointNet [6] xyz 1k 89.2 189

PointNet++ [7] xyz 1k 90.7 8761
PointCNN [10] xyz 1k 91.7 5136

Ours xyz 1k 92.1 4218
DGCNN [19] xyz 1k 92.2 5562
SO-Net [11] xyz 2k 90.9 -

Kd-Net (depth = 15) [33] xyz 32k 91.8 -

4.2. Part Segmentation on the ShapeNet Dataset

Compared with classification, part segmentation is a much more challenging task.
The proposed method was evaluated on the ShapeNet dataset [22]. ShapeNet dataset is
composed of 16,881 shapes with 16 categories, which are labeled with 50 parts in total.
Following the data splitting operation in [6], 2048 points were randomly picked as the
input of the proposed network. Furthermore, the part segmentation performances were
compared using the average category mIoU and the average instance mIoU.

For target recognition, the set of points with real true labels was assumed to be A, and
the set of points marked by the algorithm as the A type was B. Then, IoU can be calculated
as follows:

IoU =
[A ∩ B]
[A ∪ B]

(6)

where [A] denotes the number of points in A. The average category mIoU describes the
mean IoU of the overall classes, while the average instance mIoU describes the mean IoU of
the overall instances.

The results of shape part segmentation on rotated shapes are shown in Table 2. AP-
GCN achieves a class mIoU of 83.6% and an instance mIoU of 85.4%, which are both optimal
results. The class mIoU increases by 1.3% compared with DGCNN, which obtained the
second best result. Compared with the best additional-input method, AP-GCN is obviously
better than PiontNet++ [7] and SO-Net [11], while AP-GCN only takes an xyz coordinate as
input. These results showed that AP-GCN can capture more accurate structural information
because of the addition of both vertices and edges. Figure 3 shows some examples of part
segmentation. It can be seen that AP-GCN can segment parts correctly.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 11

Figure 3. Several part segmentation results obtained by AP-GCN.

4.3. Ablation Experiments
In this section, additional experiments are conducted to evaluate the effectiveness of

the proposed neighbor selection method. Take the recognition task as an example; the
experiments are carried out under a similar network with a different neighborhood
selection method. To be clear, the number of neighborhoods is consistent (K = 100). The
classification results on the ModelNet40 dataset are shown in Table 3. As we can see from
Table 3, the proposed method achieved the best results. The results demonstrated that the
proposed neighbor selection method can obtain a much better neighborhood for feature
learning.

Table 3. Classification results on ModelNet40 with different neighbor selection methods.

Neighborhood Selection Method OA (%)
k-NN 91.7

Ball query 92.0
Ours 92.1

4.4. Discussion of AP-GCN
Due to the two modules of learnable neighbor selection mechanisms, and vertex- and

edge-based convolution operation, the proposed AP-GCN outperforms the classical
approaches. Compared with classical neighbor selection methods such as farthest point
sampling or random sampling according to a certain radius, the proposed neighbor
selection method can learn much more information. In detail, the proposed method fully
considers the relationship between each point and can construct a graph structure that
can reflect the actual relationship more accurately based on affinity measurements. On the
other hand, the proposed convolution operation based on graph vertices and edges
captures much more structure information. As an important part of the graph, the edge
in a graph contains important structure information between the vertexes in the graph.
The full use of edges and vertices can better contribute to multi-scale structural
information extraction.

5. Conclusions
In this paper, the Affinity-Point Graph Convolutional Network (AP-GCN), which

can be used to learn graph structures on point cloud and to capture the edge structural
features, was proposed for 3D point cloud analysis. The core components of AP-GCN are
the affinity measurement method and the convolution operation, which can combine edge
and vertex features. From the affinity information, a graph can be adaptively extracted

Figure 3. Several part segmentation results obtained by AP-GCN.

Appl. Sci. 2022, 12, 5328 8 of 10

Table 2. Shape part segmentation IoU results (%) on the ShapeNet dataset. The best results are
marked in bold.

Input Class mIoU Instance mIoU

PointNet 2k 80.4 83.7
DGCNN 2k 82.3 85.1
Kd-Net 4k 77.4 82.3

Ours 2k 83.6 85.4
SO-Net 1k + norm 80.8 84.6

PointNet++ 2k + norm 81.9 85.1

Input Aero Bag Cap Car Chair Guitar Knife

PointNet 2k 83.4 78.7 82.5 74.9 89.6 91.5 85.9
DGCNN 2k 84.2 83.7 84.4 77.1 90.9 91.5 87.3
Kd-Net 4k 80.1 74.6 74.3 70.3 88.6 90.2 87.2

Ours 2k 83.4 84.7 87.8 79.3 91.0 91.0 88.1
SO-Net 1k + norm 81.9 83.5 84.8 78.1 90.8 90.1 83.6

PointNet++ 2k + norm 83.5 81.0 87.2 77.5 90.7 91.1 87.3

Input Lamp Laptop Motor Mug Pistol Rocket Table

PointNet 2k 80.8 95.3 65.2 93.0 81.2 57.9 80.6
DGCNN 2k 82.9 96.0 67.8 93.3 82.6 59.7 82.0
Kd-Net 4k 81.0 94.9 57.4 86.7 78.1 51.8 80.3

Ours 2k 84.1 95.8 73.7 94.1 83.0 60.4 83.3
SO-Net 1k + norm 82.3 95.2 69.3 94.2 80.0 51.6 82.6

PointNet++ 2k + norm 83.3 95.8 70.2 93.5 82.7 59.7 82.8

Additionally, it should be noted that AP-GCN lag behind other methods in the aero,
guitar, laptop, and mug classes. Compared with other classes, these four classes suffer
much more small structural parts. Due to this reason, AP-GCN may miss some local
features. In view of this, we need to add more local information extraction structures to
AP-GCN.

4.3. Ablation Experiments

In this section, additional experiments are conducted to evaluate the effectiveness
of the proposed neighbor selection method. Take the recognition task as an example;
the experiments are carried out under a similar network with a different neighborhood
selection method. To be clear, the number of neighborhoods is consistent (K = 100). The
classification results on the ModelNet40 dataset are shown in Table 3. As we can see
from Table 3, the proposed method achieved the best results. The results demonstrated
that the proposed neighbor selection method can obtain a much better neighborhood for
feature learning.

Table 3. Classification results on ModelNet40 with different neighbor selection methods.

Neighborhood Selection Method OA (%)

k-NN 91.7
Ball query 92.0

Ours 92.1

4.4. Discussion of AP-GCN

Due to the two modules of learnable neighbor selection mechanisms, and vertex-
and edge-based convolution operation, the proposed AP-GCN outperforms the classical
approaches. Compared with classical neighbor selection methods such as farthest point
sampling or random sampling according to a certain radius, the proposed neighbor se-
lection method can learn much more information. In detail, the proposed method fully
considers the relationship between each point and can construct a graph structure that can

Appl. Sci. 2022, 12, 5328 9 of 10

reflect the actual relationship more accurately based on affinity measurements. On the other
hand, the proposed convolution operation based on graph vertices and edges captures
much more structure information. As an important part of the graph, the edge in a graph
contains important structure information between the vertexes in the graph. The full use of
edges and vertices can better contribute to multi-scale structural information extraction.

5. Conclusions

In this paper, the Affinity-Point Graph Convolutional Network (AP-GCN), which
can be used to learn graph structures on point cloud and to capture the edge structural
features, was proposed for 3D point cloud analysis. The core components of AP-GCN are
the affinity measurement method and the convolution operation, which can combine edge
and vertex features. From the affinity information, a graph can be adaptively extracted
from a point cloud. Additionally, an efficient feature learning is performed using the graph
and the proposed convolution operation. The experimental results show the effectiveness
of AP-GCN, especially its best results achieved in the part segmentation task. Although the
AP-GCN achieves success, the proposed affinity measurement is just a simple method with
a Euclidean distance, and a much more efficient method is needed in future research.

Author Contributions: Conceptualization, Y.W. and S.X.; methodology, Y.W. and S.X.; software, Y.W.;
validation, Y.W. and S.X.; formal analysis, Y.W. and S.X.; investigation, Y.W.; resources, Y.W.; data
curation, Y.W.; writing—original draft preparation, Y.W.; writing—review and editing, Y.W. and S.X.;
visualization, Y.W. and S.X.; supervision, S.X.; project administration, Y.W. and S.X. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lin, W.; Zheng, C.; Yong, J.; Xu, F. OcclusionFusion: Occlusion-aware motion estimation for real-time dynamic 3D reconstruction.

arXiv 2022, arXiv:2203.07977.
2. Jiang, B.; Zhang, Y.; Wei, X.; Xue, X.; Fu, Y. H4D: Human 4D modeling by learning neural compositional representation. arXiv

2022, arXiv:2203.01247.
3. Mittal, P.; Cheng, Y.; Singh, M.; Tulsiani, S. AutoSDF: Shape priors for 3D completion, reconstruction and generation. arXiv 2022,

arXiv:2203.09516.
4. Xie, J.; Zheng, Z.; Gao, R.; Wang, W.; Zhu, S.-C.; Wu, Y.N. Learning descriptor networks for 3D shape synthesis and analysis. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018.
5. Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A. RandLA-Net: Efficient semantic segmentation

of large-scale point clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Virtual,
14–19 June 2020.

6. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep learning on point sets for 3D classification and segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

7. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings
of the Conference and Workshop on Neural Information Processing System, Long Beach, CA, USA, 4–9 December 2017.

8. Xu, J.; Gong, J.; Zhou, J.; Tan, X.; Xie, Y.; Ma, L. SceneEncoder: Scene-aware semantic segmentation of point clouds with a
learnable scene descriptor. arXiv 2020, arXiv:2001.09087.

9. Luo, H.; Nagano, K.; Kung, H.; Xu, Q.; Wang, Z.; Wei, L.; Hu, L.; Li, H. Normalized avatar synthesis using StyleGAN and
perceptual refinement. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA,
19–25 June 2021.

10. Li, Y.; Bu, R.; Sun, M.; Chen, B. PointCNN: Convolution on X-transformed points. In Proceedings of the Conference and Workshop
on Neural Information Processing System, Montreal, QC, Canada, 3–8 December 2018.

11. Li, J.; Chen, B.M.; Lee, G.H. SO-Net: Self-organizing network for point cloud analysis. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018.

Appl. Sci. 2022, 12, 5328 10 of 10

12. He, X.; Zhou, Y.; Zhou, Z.; Bai, S.; Bai, X. Triplet-center loss for multi-view 3D object retrieval. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018.

13. Yang, Z.; Wang, L. Learning relationships for multiview 3D object recognition. In Proceedings of the IEEE International Conference
on Computer Vision, Seoul, Korea, 27 October–8 November 2019.

14. Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X. 3D Shapenets: A deep representation for volumetric shapes. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015.

15. Maturana, D.; Scherer, S. Voxnet: A 3D convolutional neural network for real-time object recognition. In Proceedings of the
Intelligent Robots and Systems, Hamburg, Germany, 28 September–2 October 2015.

16. Wang, P.S.; Liu, Y.; Guo, Y.X.; Sun, C.Y.; Tong, X. O-CNN: Octree-based convolutional neural networks for 3D shape analysis.
ACM Trans. Graph. 2017, 36, 1–11. [CrossRef]

17. Qi, X.; Liao, R.; Jia, J.; Fidler, S.; Urtasun, R. 3D graph neural networks for rgbd semantic segmentation. In Proceedings of the
IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017.

18. Yin, B.; Aaron, C.; Alhabib, A.; Eirina, B.; Yiannis, A. Graph-based object classification for neuromorphic vision sensing. In
Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019.

19. Wang, Y.; Sun, Y.B.; Liu, Z.W.; Sanjay, E.S.; Michael, M.B.; Justin, M.S. Dynamic graph cnn for learning on point clouds. ACM
Trans. Graph. 2019, 38, 1–12. [CrossRef]

20. Wang, L.; Huang, Y.; Hou, Y.L.; Zhang, S. Graph attention convolution for point cloud semantic segmentation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019.

21. Shi, W.; Ragunathan, R. Point-GNN: Graph neural network for 3D object detection in a point cloud. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020.

22. Yi, L.; Kim, V.G.; Ceylan, D.; Shen, I.-C.; Yan, M.; Su, H.; Lu, C.; Huang, Q.; Sheffer, A.; Guibas, L. A Scalable Active Framework
for Region Annotation in 3D Shape Collections. In Proceedings of the SIGGRAPH Asia, Macau, China, 5–8 December 2016.

23. Kalogerakis, E.; Averkiou, M.; Maji, S.; Chaudhuri, S. 3D shape segmentation with projective convolutional networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

24. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. In
Proceedings of the Conference and Workshop on Neural Information Processing System, Barcelona, Spain, 5–10 December 2016.

25. Kipf, T.N.; Welling, M. Semi-supervised calssification with graph-convoluational neural networks. In Proceedings of the
International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017.

26. Te, G.; Hu, W.; Zheng, A.; Guo, Z. RGCNN: Regularized graph CNN for point cloud segmentation. In Proceedings of the ACM
MM, Seoul, Korea, 22–26 October 2018.

27. Wang, C.; Samari, B.; Siddiqi, K. Local spectral graph convolution for point set feature learning. In Proceedings of the European
Conference on Computer Vision, Munich, Germany, 8–14 September 2018.

28. Simonovsky, M.; Komodakis, N. Dynamic edge-conditioned filters in convolutional neural networks on graphs. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

29. Rusu, R.B.; Cousins, S. 3D is here: Point cloud library (pcl). In Proceedings of the International Conference on Robotics and
Automation, Shanghai, China, 9–13 May 2011.

30. Liu, J.; Ni, B.; Li, C.; Yang, J.; Tian, Q. Dynamic points agglomeration for hierarchical point sets learning. In Proceedings of the
IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019.

31. Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.; Gmez-Bombarelli, R.; Hirzel, T.; Aspuru-Guzik, A. Convolutional
networks on graphs for learning molecular fingerprints. In Proceedings of the Conference and Workshop on Neural Information
Processing System, Montreal, QC, Canada, 7–12 December 2015.

32. Niepert, M.; Ahmed, M.; Kutzkov, K. Learning convolutional neural networks for graphs. In Proceedings of the International
Conference on Machine Learning, New York, NY, USA, 19–24 June 2016.

33. Klokov, R.; Lempitsky, V.S. Escape from cells: Deep Kd-Networks for the recognition of 3D point cloud models. In Proceedings of
the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017.

34. Hua, B.S.; Tran, M.K.; Yeung, S.K. Pointwise convolutional neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018.

http://doi.org/10.1145/3072959.3073608
http://doi.org/10.1145/3326362

	Introduction
	Related Works
	Deep Learning on Point Clouds
	Convolution on Graphs

	Method
	Neighbor Selection Method
	Convolution with Vertices and Edges
	Graph Pyramid Construction on a Point Cloud

	Experiments
	Classification on the ModelNet40 Dataset
	Part Segmentation on the ShapeNet Dataset
	Ablation Experiments
	Discussion of AP-GCN

	Conclusions
	References

