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Abstract: Because of the resilient frame structure, the factor graph is often used in navigation systems
to solve the sensor asynchrony problem and realize plug-and-play effectively in the navigation
information fusion method. To improve the fault detection performance of resilient integrated
navigation systems under complex interference environments, a fault detection method in factor
graph navigation framework based on INS measurements and GNSS pseudo-range measurements is
proposed in this paper. The proposed method can effectively locate the fault satellite pseudo-range
information based on the Chi-square fault detection method. Due to the plug-and-play characteristic
of the factor graph framework, this method can quickly isolate faults to improve navigation accuracy.
Finally, the effect of the method is verified by simulation and experiment. Compared with the
Chi-square fault detection method, positioning accuracy is improved by more than 40%.

Keywords: fault detection; factor graph; disturbance environment; resilient integrated navigation;
pseudo-range measurement

1. Introduction

Navigation and positioning are necessary capabilities for autonomous systems to com-
plete remote tasks [1]. Global navigation satellite system (GNSS) provides high-precision
positioning, navigation and timing (PNT) services. Based on the association and integration
of satellite navigation systems and other industries, GNSS has become the technical support
of the modern information industry, big data service and artificial intelligence technology.
An autonomous navigation system with a flexible framework and that is suitable for a
variety of environments is closely related to modern science, economy and society. Building
resilient navigation systems is the future development trend of the autonomous navigation
system, which ensures that users can continuously obtain high-quality PNT information in
a complex environment.

Due to the respective shortcomings of INS and GNSS, the positioning and attitude
of autonomous vehicles are estimated generally by fusing multi-sensor information from
inertial navigation system (INS), GNSS and other sensors [2,3]. Due to environmental
disturbance or carrier vibration, the sensors of autonomous vehicles are prone to more
significant errors or even faults [4]. Under the influence of vehicle fluctuation, the error of
the inertial navigation system will increase suddenly, and even calculation failure will occur.
GNSS signals are vulnerable to electromagnetic interference [5]. If fault information is not
processed, the fault measurement will pollute the results of fused navigation and position-
ing states. Therefore, effective fault detection and isolation methods and robust navigation
estimation under unknown interference are important for autonomous system safety.

Because of the advantages of the plug-and-play capability and its resilient structure,
the factor graph method has gradually attracted the attention of scholars at home and
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abroad in recent years [6–8]. Factor graph theory was first studied in the field of coding
theory. In 1981, Tanner introduced a bipartite graph called a “Tanner graph” to describe the
parity check matrix in the coding field [9]. Kschischang et al. combined the characteristics
of the Wiberg graph, Tanner graph and other graph models and put forward the concept
of a factor graph [10]. Indelman et al. proposed a factor graph information fusion model
based on an inertial/visual integrated navigation system [11]. Kaess et al. proposed a
simultaneous localization and mapping (SLAM) method to optimize the image plane with
the least square method [12]. Gao et al. studied a method of constructing a factor graph
based on INS, which was to make full use of INS measurement in the navigation system and
avoid wasting measurement information [13]. Zeng et al. improved the traditional factor
graph fusion method and realized integrated navigation and precise positioning based on
the multi-source navigation information of UAVs [14]. To improve robust performance, the
development of fault detection and adaptive fusion methods suitable for the factor graph
framework should be studied.

In safety critical applications (SCA), fault detection and isolation (FDI) is a key aspect
in order to effectively improve the robustness of the system and prevent the navigation
system from crashing due to sensor failure [15]. Faurie et al. proposed a new fault detection
algorithm based on the multi-model algorithm, in which the Kalman filter in the system is
replaced by the proposed model [16]. Geng et al. designed a fault-tolerant Kalman filter
scheme that included multiple filters based on the Chi-square method [17]. Almagbile
performed a statistical analysis on the separability of multiple faults in a GPS/INS combined
system and found a significant relationship between the correlation and fault test value
based on combined similarity [18]. Xiong et al. studied Kullback–Leibler divergence theory
and proposed a relative navigation fault detection method [19]. Watanabe proposed a
tight integrated vision/GNSS navigation system and introduced an integrity monitoring
reset mechanism, which can eliminate the influence of undetected faults on the new reset
detector [20]. Paul et al. used ultra-wideband (UWB) technology to make up for navigation
performance when GNSS is unreliable and discussed how to apply FDI technology to
avoid fault anchors when employing UWB in disturbance environments [21]. Jurado et al.
proposed a sensor verification method, which introduces the fault detection of a residual
into the filter update in theory and improves the integrity of the integrated navigation
system [22]. Al Hage et al. studied the use of multiple sensors in different environments to
ensure the required navigation performance and put forward a general method for integrity
problems based on measurement rejection and position error representation [23]. However,
the former methods mainly judge whether the measurement in the integrated navigation
system is faulty. There is no effective fault detection and isolation method for the resilient
architecture of graph optimization.

An INS is a kind of autonomous navigation sensor, which is generally free from
external interference. GNSS is vulnerable to electromagnetic interference, and the measure-
ment may contain fault errors. To solve the fault problem of navigation equipment in the
complex environment, a fault detection and isolation algorithm based on pseudo-range
measurements is proposed. Compared with the traditional FDI method, this method can
discern which satellite has a problem in pseudo-range and has better isolation efficiency.

The contents of this paper are organized as follows. The system scheme is defined in
Section 2.1. The factor graph fused method is introduced in Section 2.2. The integrity detec-
tion method is shown in Section 2.3. Simulation experiments and actual data experiments
are presented in Section 3. Section 4 presents the discussions. Section 5 is the conclusion.

2. Methods
2.1. System Solutions

Many navigation sensors can obtain navigation data of autonomous vehicles in a
resilient integrated navigation system, such as IMU, GNSS and MAG, etc. Autonomous
vehicles are assumed to be equipped with multi-rate sensors. Especially under interfer-
ence and disturbance, the sensor is prone to error increase and even failure. However,
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in the complex environment of the urban canyon and the electromagnetic interference
environment, it is easy to cause the solution failure of GNSS. Due to the wide distribution
of satellites, there are problems in measuring the pseudo-range data of only one or several
satellites by receivers. A new fault detection and isolation method is proposed in the paper
to locate the fault pseudo-range measurements in the factor graph navigation system. The
scheme of the FDI method and the factor graph fusion method is shown in Figure 1. The
proposed method determines whether the fault exists in the pseudo-range measurement of
GNSS, and then the system isolates the fault.

Figure 1. Scheme of integrity detection of integrated navigation.

Due to vibration and electromagnetic disturbance, some sensors may become inactive
or faulty. It is an urgent problem to improve navigation systems’ fault detection and
isolation effect and location accuracy under interference and electromagnetic disturbance.
The proposed method is to achieve more reliable navigation from multi-source sensor
information in case of failure.

After the FDI algorithm detects a sensor fault, it is helpful to isolate the measurement
information of the fault sensor in time to ensure positioning accuracy. The main feature of
a factor graph is abstracting the navigation sub-system and realizing the algorithm of rapid
integration, reconstruction and filtering. Effective fault detection and isolation algorithms
can help quickly find fault sensors and isolate fault measurements that may pollute the
whole system. Plug-and-play capability is helpful to isolate the measurement information
of the fault sensor in time. When the system has no fault, the factor graph algorithm adds a
factor node to the factor graph framework by the sensor measurement. The factor graph
algorithm isolates the fault measurement when the sensor fails by not adding factor nodes.

2.2. Factor Graph Model

Because of the flexible optimization structure, the factor graph framework has good
research prospects. It can quickly isolate the fault navigation subsystem under vibration
disturbance and electromagnetic interference.

The factor graph originates from the bipartite graph. The fixed points of a factor graph
can be divided into two different types of information, and the relationship between the
two nodes is connected by edges. The complex navigation system can be simplified by
factorization in the factor graph.

2.2.1. Factor Graph Method

The factor graph consists of two different types of nodes and edges between connected
nodes. For the state quantity and quantity measurement of the navigation system, the
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factor node represents the quantity measurement, the variable node represents the state
quantity and the equivalent measurement represents the measurement of the state; it passes
through the corresponding factor node and variable node of the edge. In the theory of a
factor graph navigation system, the maximum a posteriori probability estimation is used to
represent the state estimation problem in navigation.

Before discussing the fusion process, we constructed a factor graph model of the stan-
dard sensor. The reference sources in the system are the IMU and GNSS. The measurements
of sensors are transformed into factor nodes. In Figure 2, white circles represent variable
nodes. The black, yellow and green circles represent factor nodes. f IMU represents the
measurement from the IMU. f GNSS represents the measurement information from GNSS.
The factor graph system with plug-and-play capability can handle fault isolation and
reconnection issues.

Figure 2. Schematic diagram of factor graph navigation framework.

2.2.2. Factor Nodes

Several factor nodes equations are presented in this section.

1. Prior factor;

The prior factor information represents a set of previous information, which is defined as

f Prior(v) = d(v) (1)

Generally, in the navigation system, we assume that the prior factor obeys the Gaussian
distribution; then we can construct the prior factor model f Prior() through the mean µv and
variance Σv.

2. IMU factor;

The measurement of IMU zIMU
i =

{
fb, wb

}
is related to the time period between xi and

xi+1 according to the frequency. The navigation estimation of strapdown inertial navigation
can be realized by different integral processing methods, which will not be described in
detail in this paper. The quaternion method is used to estimate the carrier’s position, speed
and attitude. The factor node model of INS is represented by the following formula

x̂i+1 = h(xi, zIMU
i ) (2)

In principle, the form of system state equation represents an IMU factor f IMU. The
system transfer matrix and covariance can be obtained based on a nonlinear equation
about navigation state of position, velocity and attitude [24]. The state xi+1 is calculated
from the state and the measurement at time i. Through the pre-integration method, the
continuous IMU measurements over a period of time can be combined into a single factor.
The transition matrix is given by pi+1

vi+1
ϕi+1

 =

 vi · ∆t + 1
2 (∆t)2g + Cn

b · ∆p + pi
g · ∆t + Cn

b · ∆v + vi
Cn

b · ∆ϕ+ϕi

 (3)
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where ∆t = ti+1 − ti is the vpdate period. g is the gravity vector. Cn
b is the attitude

transformation matrix. ∆p, ∆v, ∆ϕ are the increment of position, velocity and attitude, and
they are obtained by zIMU

i . The covariance of transition matrix is derived by system noise.

3. Other sensor factors;

The other navigation sensor factor node is given by

zSensor
i = hSensor(xi) + nSensor (4)

where zSensor is the measurement of the navigation sensor, hSensor is the measurement
function, and nSensor is the measurement noise, which is white noise in a Gaussian sys-
tem. The measurement noise of GNSS nGNSS = [nGNSS

p , nGNSS
v ] is position and velocity

measurement noise.

2.2.3. Graph Optimization Equations

The factor graph theory calculates the navigation state estimation based on the maxi-
mum a posteriori probability estimation. The specific derivation process is as follows.

The factor fi represents an error function of the states Xi
k

fi(Xi
k) = d(erri(Xi

k, zi)) (5)

where the operator d(·) represents the specific cost function. (Xi
k, zi) represents the error

function of the factor.
For Gaussian noise distributions, the above formula can be changed into

fi(Xi
k) ∝ exp(−1

2
‖hi (Xi

k)− zi)
∥∥∥2

Σi
) (6)

where hi() is the nonlinear measurement function, and zi is the actual measurement.
X(t)MAP means the corresponding state value when the maximum posterior probabil-

ity of the state under the condition of measurement Z(t) occurrence, as

X(t)MAP = argmaxP(X(t)|Z(t))
= argmax∏

i
fi(Vi

k)
(7)

If the negative logarithm is taken on both sides of Equation (6), then the observation
equation is introduced and transformed into the form of 2-norm.

∆∗ = argmin
∆

∑
i
||Σ−1/2

i Hi∆i−Σ−1/2
i (zi − hi(X0

i ))||
2
2 (8)

where Hi is the the Jacobian matrix of the observation equation. Hi is calculated by
Hi ,

∂hi(Xi)
∂Xi
|X0

i
, and it means a partial differential of hi() at point X0

i [25].
After calculating the updated value ∆, the states’ value can be obtained by accumu-

lating and updating variables X̂k + ∆. Therefore, in the factor graph method, the state
estimation problem is solved by the least square method, and the updated estimated state
is based on the least square solution.

Through the above formula derivation, the factor graph is updated by the least square
method. Federated filtering needs to be filtered at the lowest common frequency of the
sensor, while the factor graph method only needs to add factor nodes and delete fault factor
nodes to realize the overall update.

2.3. Fault Detection and Isolation Method

It is urgent to improve the fault detection and isolation effect and location accuracy of
autonomous vehicles under interference or fluctuations. We need to detect sensor faults in
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a timely way and prevent the measurement information of fault navigation sensors from
polluting the state of a navigation system in the fault environment.

With the development of GNSS receiver autonomous integrity monitoring (RAIM),
the multiple solution separation (MSS) method effectively extends the concept of “RAIM”
to the INS/GNSS integrated navigation system. The Chi-square method is used as the
basic detection method in this paper. The linear discrete time-varying system model can be
described as {

Xk = f (Xk−1) + Wk−1
Zk = h(Xk) + Vk

(9)

where Xk is the states vector. f () and h() are the states functions and measurement model
functions. Zk represents the measurement vector. Wk is the process noise, and Vk is the
measurement noise. They are all assumed to be zero-mean Gaussian white noise.

State m-step prediction equation is

X̂k/k−m =
k−1

∏
j=k−m

f j(X̂k−m) (10)

The residual vector is
rk = Zk − h(X̂k/k−m) (11)

where rk is the residual. Furthermore, the covariance of rk is

Ak = HkPk/k−m HT
k + Rk (12)

where Hk is the Jacobian matrix of measurement equation. Rk is the variance matrix of
measurement noise. Pk|k−m is the m step prediction mean square error equation. It is
recursively obtained from the prediction mean square error matrix in the previous step, as
follows

Pk/k−m = Φk/k−1Pk−1/k−mΦT
k/k−1 + Qk−1 (13)

where Φk/k−1 is the Jacobian matrix of state equation, and ∂ f (X̂k−1)
∂X = Φk/k−1. Qk−1 is the

variance matrix of system noise.
Therefore, whether the system fails can be determined by testing the residual rk. Then,

the fault detection function is
λ(k) = rT

k A−1
k rk (14)

The filter framework of the proposed method is shown as MSS in Figure 3. The main
filter is used to process all received satellite pseudo-range data. After the fault is detected by
the main filter, each sub-filter analyzes and processes the data, deducting the pseudo-range
of a satellite.

For the framework mentioned above, the main filter F00 detects fault based on all
satellite pseudo-range measurements. The sub-filter F0n detects fault based on all satellite
pseudo-range measurements except the nth satellite pseudo-range. If nth satellite fails,
without removing the pseudo-range of the nth satellite, the fusion result of the main filter
will be polluted.

The position, velocity, attitude, gyro random constant, gyro random noise, accelerom-
eter random noise, pseudo-range and pseudo-range rate are all important in aviation
applications. Therefore, by comparing the fault detection results of the main filter and the
sub-filter, it can be decided which satellite has a fault in the pseudo-range.

dλ̂+
0n(k) = λ̂+

00(k)− λ̂+
0n(k) (15)

λ̂+
00(k) is the result of the main fault detection filter, and λ̂+

0n(k) is the fault detection
result of the sub-filter F0n.
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Figure 3. Structure diagram of MSS fault detection.

It can be determined whether there is a fault by applying the following hypothesis test{
H0, no failure : ∀n ∈ {1, N},

∣∣∣∣dλ+
0n(k)

∣∣∣∣< D0n
H1, failure detection : ∃n ∈ {1, N},

∣∣∣∣dλ+
0n(k)

∣∣∣∣≥ D0n
(16)

where D0n is a detection threshold that is related to the false alarm probability Pf a. The
effect of FDI is determined by the preset threshold. According to the Neyman–Pearson
criterion, D0n satisfies as follows

D0n =
√

λdPQ(
1
2
(1−

Pf a

N
)) (17)

where Q(.) is the error function. λdP is the maximal eigenvalue of dP+
0n(k), which is the

covariance matrix of dX+
0n(k). The matrix dP+

0n(k) is expressed as

dP+
0n(k) = E[dX+

0n(k)dX+
0n(k)

T]
= P+

0n(k)− P+
00(k)

(18)

with P+
00(k) and P+

0n(k) the covariance matrices of the estimation error for main filter and
sub-filter excluding the satellite pseudo-range measurement, respectively.

Considering that the probability of the simultaneous failure of each sub-navigation
system is small, it can be concluded that there is no fault in the system after the isolation of
the faulty pseudo-range measurements. Even if there are still outliers in the measurement
of the satellite receiver, it can be eliminated based on the integrity algorithm of the satellite
receiver to ensure better navigation performance.

3. Results

In order to verify the effectiveness of the proposed FDI algorithm in the environment
of vibration interference and multipath effect, the generation of simulated faults is estab-
lished, and the simulation results show that the proposed method can quickly detect and
isolate faults.

The simulation and actual data experiment of autonomous vehicle navigation with
fault are established to simulate the parameters of vehicle autonomous navigation sensor
in a fault environment and collect vehicle navigation data in complex scenes. The proposed
FDI algorithm based on data validation is in the next section.



Appl. Sci. 2022, 12, 5313 8 of 16

3.1. Simulation Results

According to the path of autonomous vehicles, we design an 800 s vehicle trajectory.
As shown in Figure 4, the takeoff point is 118.8◦ N, 31.95◦ E, 5 m. The initial velocity is 0
m/s, and the initial heading direction is north.

Figure 4. The path of vehicles.

The update frequency settings are shown in Table 1. The error parameters of the
navigation systems are shown in Table 2. The fault simulation scenarios settings are shown
in Table 3.

Table 1. Sensor rates setting.

Sensors Rates (Hz)

IMU 50
GNSS 1

Table 2. Errors of different sensors.

Error Types Error Values

Gyroscope random drift error 0.1 ◦/h
correlation time 800 s

Accelerometer
white noise 1 × 10−4 g

correlation time 800 s

GNSS
position errors 10 m, 10 m, 20 m
velocity errors 0.2 m/s, 0.2 m/s, 0.4 m/s

Table 3. Fault scenarios in the navigation system.

NO Sources Fault Duration

1 GNSS Add 1000 m step fault to SV-1 200–250 s
2 GNSS Add 20 m/s ramp fault to SV-1 200–250 s

As Table 3 shows, faults are added to GNSS pseudo-ranges. A step fault with ampli-
tude 1000 m and a ramp fault with a slope of 20 m/s are all typical failure types in GNSS
pseudo-ranges.
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3.1.1. No. 1 Simulation Results

Figures 5–7 and Table 4 compare the performance of the Chi-square and the proposed
method in the No. 1 scenario. In Figure 5, the diagram of the test statistic caused by
a step fault in SV-1 shows that both methods can successfully detect the step fault in
a single-satellite pseudo-range measurement. In Figure 6, the Chi-square method can
generally detect satellite faults between 200–250 s. After isolating the position factor,
position and speed will diverge without correction. The proposed method can isolate the
fault pseudo-range measurements. Furthermore, the normal satellite data can correct the
inertial navigation data as usual. Table 4 proves the proposed method has better accuracy
with the RMS results by simulation under the step fault. The box diagram of position and
velocity errors also shows the superiority of the proposed method in Figure 7. Positioning
accuracy can be improved by more than 70%.

Figure 5. The test statistic of fault detection obtained by simulation under the single-satellite step fault.

Figure 6. The fusion states errors under the single-satellite step fault: (a) position errors; (b) velocity errors.
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Figure 7. The box diagram of fused position errors under the single-satellite step fault.

Table 4. RMS of navigation errors obtained by simulation under the single-satellite step fault.

Sources Fault Information Fault Duration

Position (m)
longitude 2.0 0.9
latitude 2.8 0.7
height 6.7 1.1

Velocity (m/s)
east velocity 0.08 0.06

north velocity 0.13 0.07
up velocity 0.41 0.18

3.1.2. No. 2 Simulation Results

Figures 8–10 and Table 5 compare the performance of the Chi-square and the proposed
method in the GNSS ramp fault scenario. In Figure 8, the test statistic caused by a ramp
fault in SV-1 shows that both methods can detect the ramp fault and that the proposed
method can detect it faster. In Figure 9, when the ramp fault first appears, neither method
can detect the fault. When the ramp fault increases, the proposed method can detect the
fault faster, then detect and isolate the fault satellite pseudo-range measurements with
sub-filters to ensure positioning accuracy. Table 5 proves that the proposed method has
lower RMS results. The box diagram of position errors also shows the superiority of the
proposed method in Figure 10. Positioning accuracy can be improved by more than 60%.

Figure 8. The test statistic of fault detection obtained by simulation under the single-satellite ramp fault.
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Figure 9. The fusion states’ errors under the single-satellite ramp fault: (a) position errors; (b) velocity errors.

Figure 10. The box diagram of fused position errors under the single-satellite ramp fault.

Table 5. RMS of navigation errors obtained by simulation under the single-satellite ramp fault.

Sources Fault Information Fault Duration

Position (m)
longitude 4.7 1.2
latitude 3.1 1.0
height 5.5 1.9

Velocity (m/s)
east velocity 0.18 0.11

north velocity 0.08 0.06
up velocity 0.14 0.11

3.2. Experiment Results

We make full use of the open-source vehicle city data set. The data set used in the
experiment is captured by the vehicle platform of the Hong Kong Polytechnic University,
China. The vehicle navigation system data includes INS data and GNSS original pseudo-
range data, together with accurate ground truth from the SPAN-CPT system. The detailed
sensors setup, noise analysis and data format of this open-source dataset are in [26]. The
path is shown in Figure 11.

The on-board strapdown inertial navigation system is composed of a gyroscope and an
accelerometer. The vehicle position is calculated by angular velocity and acceleration. The
raw GNSS RINEX information includes pseudo-range measurements, Doppler shift and
ephemeris. The INS data is provided by Xsens Mti-10, and raw GNSS data is collected by
u-blox M8T. Due to the urban canyon environment in Hong Kong, the GNSS signal is easily
disturbed, resulting in non-line-of-sight (NLOS) receptions, multipath effect or breakdown.
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Figure 11. The path of the vehicle platform in an urban environment.

As a high-frequency sensor, the preprocessed IMU measurement value is regarded
as an equivalent IMU factor. When the GNSS detects the pseudo-range fault due to the
proposed FDI algorithm, the data isolation and fusion system isolates the fault pseudo-
range measurements and adds the GNSS factor calculated from the remaining normal data.

The dataset UrbanNav-HK 2020 is obtained in the urban community environment of
residences. Since the experimental environment is residential, no fewer than four satellites
are observed during the experimental vehicle’s trajectory. The performance is analyzed
by the dataset UrbanNav-HK 2020 in the following figures. In Figure 12, the number of
satellites in the low urbanization environment is greater than 4. If the detection value in the
figure is greater than the threshold (132–150 s), it is the case that the pseudo-range errors
are large, due to the surrounding buildings.

Figure 12. The test statistic of fault detection obtained by the dataset UrbanNav-HK 2020.

By analyzing the detection value of sub-filters during 132–150 s, the fault detection
value of a satellite with a PRN of 8 exceeds the threshold. After the isolation of satellite
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pseudo-range measurements with a PRN of 8, the positioning accuracy of fusion is im-
proved in Figure 13a. Due to the pseudo-range detection, the velocity errors of the two
methods are approximately the same in Figure 13b.

Figure 13. The fusion states errors obtained by the dataset UrbanNav-HK 2020: (a) position errors;
(b) velocity errors.

From Table 6, the positioning accuracy of the proposed method in the fault period
is improved by 42.34% on average. The box diagram of position errors also shows the
superiority of the proposed method in Figure 14. The box diagram of position error shows
that the errors of the proposed method are smaller in 132–150 s.

Table 6. RMS of navigation errors obtained by the dataset UrbanNav-HK 2020 under the satellite fault.

Sources Fault Information Fault Duration

Position (m)
longitude 11.9 4.4
latitude 3.7 2.9
height 59.0 34.7

Figure 14. The box diagram of fused position errors obtained by the dataset UrbanNav-HK 2020.
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4. Discussion

The factor graph fusion navigation method can deal with the non-synchronization of
navigation information and realize the ability of plug-and-play, which is consistent with
the results of [14]. The traditional FDI method is based on INS measurements and GNSS
position and velocity measurements. Generally, INS measurement is used as a reference
to isolate the satellite fault, which leads to the waste of regular pseudo-range information.
On this basis, the proposed FDI method can judge that the pseudo-range of a satellite is
faulty. After isolating the faulty pseudo-range measurements, it can still rely on normal
measurements to improve positioning accuracy.

The factor graph navigation FDI method based on pseudo-range can detect GNSS
pseudo-range faults effectively. It improves the navigation and positioning accuracy under
disturbance and meets the needs of positioning in the complex environment. After isolating
the fault pseudo-range measurements, it is equivalent to preventing the fault measurements
from polluting the fused navigation information, which effectively improves the reliability
of navigation. The positioning accuracy of the proposed FDI method in three directions is
improved by 40% to 70%.

The algorithm and experimental verification in this paper focus on detecting a single-
satellite pseudo-range fault. In order to expand the application scope of the algorithm,
we will optimize the algorithm framework and experimental scheme in the future and
supplement the detection of multi-satellite pseudo-range fault measurements and INS
fault measurements. Through the multi-filter architecture, different fault measurement
types will be comprehensively detected. In addition, adaptive filtering is widely used in
the autonomous navigation system. The two detection thresholds proposed in [21] can
calculate the weight of measurement information through the detection function value. We
can also use an adaptive weight factor to isolate fault measurements’ insignificant errors
and reduce the weight of sensor factors in minor errors. It can obtain more accurate and
robust navigation information. This will be worth further investigation.

5. Conclusions

To improve the fault detection performance of factor graph navigation systems under
complex environments, a fault detection method is applied. It provides the capability of
satellite pseudo-range fault location, which can detect the fault pseudo-range measurements
and improve the positioning accuracy of the resilient integrated navigation system after
isolation. The conclusions can be summarized as follows:

(1) The factor graph navigation algorithm has been widely used because it can effectively
solve the problem of sensor asynchrony in navigation information fusion and realize
the plug-and-play configuration of multiple sensors.

(2) Based on the Chi-square testing and MSS method, a new fault detection method
based on a factor graph framework is designed and constructed through the INS
measurements and GNSS pseudo-range. The proposed method can locate faulty
pseudo-range measurements.

(3) The simulation and open-sourcing data experimental results show that the proposed
method has a better performance by improving fault detection under complex in-
terference. Compared with the Chi-square fault detection method, the navigation
performance is improved by more than 40%.
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