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Abstract: This paper presents a novel area-time efficient hardware architecture of the lattice-based
CRYSTALS-Kyber, which has entered the third round of the post-quantum cryptography standard-
ization competition hosted by the National Institute of Standards and Technology. By developing
a dual-path delay feedback number theoretic transform multiplier dedicating for Kyber parameter
set and deploying this multiplier in the Kyber architecture, the key generation, encryption, and
decryption operations are accelerated substantially. Furthermore, the proposed architecture offers
the best value of area-time product in comparison with existing approaches. The implementation
results on Xilinx Vivado targeted for Virtex-7 FPGA board demonstrate that the proposed Kyber
cryptoprocessor completes encryption and decryption operations in approximately 57.5 µs at the
highest frequency of 226 MHz. Furthermore, the area-time product value when using the proposed
Kyber architecture is improved by at least twofold compared with existing architectures.

Keywords: CRYSTALS-Kyber; decryption; encryption; number theoretic transform (NTT); polynomial
multiplier; post-quantum cryptography

1. Introduction

Existing public key cryptography schemes such as Rivest-Shamir-Adleman and ellip-
tic curve cryptography can be broken by powerful quantum computers running Shor’s
algorithm [1]. Consequently, post-quantum cryptography (PQC) has attracted immense
attention from the research community [2–6] during the last few years. The National
Institute of Standards and Technology (NIST) began promoting standardization of PQC [7]
in 2016 through a competition. This competition attracted a large number of submissions,
demonstrating the keen interest that has been engendered. There were initially 69 submis-
sions, but only 25 and 16, respectively, remained after the first and second rounds. The
results of round three are expected to be announced in 2022. Among the finalists of round
three, CRYSTALS-Kyber [8,9] is considered a very promising candidate.

Implementations of Kyber have been described in recent works in pure software
design [8,10,11], software-hardware codesign [11], and pure hardware design [11–14].
Authors in [8] presented the implementation of Kyber on Intel and ARM Cortex-M4 CPUs.
In [11], authors reported the software implementation of Kyber using C language on
ARM Cotex-A53. Authors in [10] introduced highly parallel algorithms implemented on
a GPU to accelerate the operations of Kyber. Authors in [11] also introduced a software-
hardware codesign of Kyber that helped improve the encapsulation and decapsulation
times compared with those of the pure software design. Pure hardware implementations
were presented in [11–14] to reduce the hardware complexity and speed up operations in
Kyber. In hardware design of Kyber, many authors used the number theoretic transform
(NTT)-based multiplier to execute the polynomial multiplication. However, the existing
NTT-based multipliers which process data in serial limit the performance of operations
in Kyber.
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In this study, we focus on designing an area-time efficient hardware architecture for
Kyber. Specifically, we introduce a dual-path delay feedback (DDF) number theoretic
transform (NTT) designed for a specific Kyber’s parameter set. Next, we implement
the proposed NTT/INTT architecture in the key generation, encryption, and decryption
modules. We also present the architecture design of Kyber’s sub-modules in detail. The
implementation results on Xilinx Vivado targeted for Virtex-7 FPGA board show that the
proposed Kyber architecture offers the best value of area-time product compared with
existing approaches. The contributions of this paper are itemized as follows:

1. We introduce a DDF-based NTT architecture designed for Kyber. Specifically, the
coefficients of the input polynomial are grouped into odd and even groups to increase
the speed of the NTT operation.

2. We deploy the proposed DDF-based NTT in the key generation, encryption, and
decryption architectures of Kyber to accelerate these operations.

3. We introduce a new architecture design for the main modules used in Kyber such
as key generation, encryption, decryption, polynomial multiplication, compression,
decompression, and modulo reduction in detail.

4. We synthesize and implement the proposed Kyber architecture using Xilinx Vivado
targeted for a Virtex-7 FPGA board. The implementation results show that the pro-
posed Kyber architecture outperforms its predecessors in terms of area-time efficiency.

The remainder of this paper is structured as follows. In Section 2, we briefly discuss
the preliminaries. In Section 3, we present the architecture design of the main modules in
Kyber. The implementation results and comparison are discussed in Section 4. Finally, we
conclude the paper in Section 5.

2. CRYSTALS-Kyber Algorithms

CRYSTALS-Kyber [8] is a lattice-based CCA-secure key encapsulation mechanism
based on the problem of module learning with errors. Kyber introduces three parameter
sets corresponding to three security levels of NIST, as summarized in Table 1. Specifically,
polynomials are of the same degree n = 256, and their coefficients are members of the
base prime field Zq, where q = 3329 for all security levels. However, different numbers
of polynomials are required for each security level. These polynomials are treated as a
vector whose size is specified using the parameter k, where k is 2, 3, and 4, corresponding
to three security levels, 1, 3, and 5, respectively. Secret noise polynomials are sampled from
a centered binomial distribution.

Table 1. Kyber parameter sets [15].

Algorithm NIST Security Level
Parameters

n k q

Kyber-512 1 256 2 3329

Kyber-768 3 256 3 3329

Kyber-1024 5 256 4 3329

Kyber is categorized in the public-key encryption and key-establishment algorithms of
NIST round three finalists. Functions in the Kyber public-key encryption algorithm include
key generation, encryption, and decryption, which are described as follows:

1. KeyGen(): Key generation creates a public key pk used in the encryption process and
a secret key sk used in the decryption processes. Noise vectors s and e are sampled
from a centered binomial distribution. The public matrix Â is sampled from a rejection
sampler. The public key pk and private key sk are obtained from formulas pk = (ρ, t̂)
and sk = ŝ, where t̂ = Â ◦ ŝ + ê.

2. Enc(pk, m, r): Encryption constructs ciphertexts c = (c1, c2) from the input message m,

public key pk, and random coins r ∈ B32. ÂT is sampled from a uniform distribution,
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and r, e1, e2 are obtained from a binomial sampler. Ciphertext c is computed as
c = (Compressq(u, du), Compressv(v, dv)), where u = INTT(ÂT ◦ r̂) + e1 and v =

INTT(t̂T ◦ r̂) + e2 + m.
3. Dec(sk, c): Decryption recovers the original message m from ciphertext c using secret

key sk. The value of m is calculated as m = Compress(v− INTT(ŝT ◦ û), where u and
v are obtained from c.

3. Proposed Area-Time Efficient Hardware Architecture for Kyber

In this section, we present the proposed DDF-based NTT/INTT architecture designed
for Kyber. Next, we deploy the proposed NTT/INTT architecture in key generation,
encryption, and decryption operations to enhance these operations. We also describe the
architecture design of main modules used in Kyber in detail.

3.1. Proposed Dual-Path Delay Feedback NTT Architecture for Kyber

NTT is a variant of the conventional fast Fourier transform (FFT) [16,17] with arith-
metic operations being performed in a finite field. NTT uses the n-th primitive root of unity
ωn in the ring Zq. NTT multiplication is selected as a part of the Kyber scheme. Consider a
polynomial a in Rq as follows:

a(x) = a0 + a1x + a2x2 + · · ·+ a255x255 (1)

NTT(a) is defined as

â(x) = â0 + â1X + â2X2 + · · ·++â255X255 (2)

In Equation (2), â2i = ∑127
j=0 a2jζ

(2br7(i)+1)j) and â2i+1 = ∑127
j=0 a2j+1ζ(2br7(i)+1)j), where

ζ = 17 is the first primitive 256th root of unity modulo q, and br7(i) is the bit reversal of
the unsigned 7-bit integer i. The inverse NTT (INTT) operation is similar to NTT, which
converts â(x) back to a(x), where ωn is replaced by ω−1

n , and the resulting coefficients of
a(x) are divided by n [14]. We proposed a DDF-based NTT/INTT architecture to enhance
the polynomial multiplication in Kyber. A polynomial a defined in Equation (1) can be
rewritten as

a(x) =
127

∑
i=0

a2ix2i +
127

∑
i=0

a2i+1x2i+1 (3)

In order to accelerate NTT/INTT operations, the coefficients of input polynomial are
divided into two parts to be processed in parallel. The proposed NTT/INTT architecture
for Kyber is presented in Figure 1. As can be seen from Figure 1a, the coefficients of input
polynomials are divided into two groups, odd and even coefficients, so that they can be
handled simultaneously. Each group will be processed through seven stages which include
two modulo reduction modules, butterfly units, first-in-first-out (FIFO) registers, and
pipelined stages. Values of ωn and ω−1

n are loaded from memory (MEM). The output of the
NTT module includes two parts, A0, A2, . . . , A254 and A1, A3, . . . , A255, corresponding to
the coefficients a0, a2, . . . , a254 and a1, a3, . . . , a255 of the input polynomial. In the proposed
NTT architecture, modulo reduction modules M1 and M2 are Barret reduction [18] and
Montgomery reduction [19], respectively. Architectures of Montgomery reduction and
Barret reduction are introduced in Figure 2a,b, respectively.

The INTT architecture in Figure 1b converts A0, A1, . . . , A255 back to a0, a1, . . . , a255.
These coefficients are also divided into two groups to process simultaneously.

A =
127

∑
i=0

A2iX2i +
127

∑
i=0

A2i+1X2i+1 (4)
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The remaining parts of INNT architecture are similar to NTT architecture, with ωn
being replaced by ω−1

n , as shown in Figure 1b. Montgomery reduction and Barret reduction
are also used in INTT architecture.

(a)

(b)

Figure 1. Proposed DDF-based architecture for Kyber (a) NTT architecture and (b) INTT architecture.

(a) (b)

Figure 2. Modulo reduction architectures: (a) Montgomery reduction and (b) Barret reduction.

3.2. Proposed Kyber Key Generation Architecture

The proposed DDF NTT multiplier-based key generation architecture is introduced
in Figure 3. Specifically, Figure 3a presents the key generation architecture to construct
public key pk and secret key sk from input noise vectors. The PRNG core, a Keccak-based
architecture [20,21] used to generate random values from the input seed, is presented in
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Figure 3b. Noise vectors s and e are generated from a binomial sampler. In addition, Â is
chosen from a uniform distribution. The architecture of the binomial sampler and rejection
sampler is introduced in Figure 3c.

To accelerate the NTT operation, we deploy the proposed DDF-based NTT architecture
in the key generation architecture to obtain the values of ŝ = NTT(s) and ê = NTT(e).
Specifically, coefficients of each noise vector s and e are divided into two groups to be
processed in parallel in order to reduce processing time. The values of NTT(s) and NTT(e)
are then stored in BRAM. In addition, the value of t̂ is calculated by adding the point-wise
multiplication result Â ◦ ŝ to ê. Finally, a key pair (pk, sk) is generated using two encoders
pk = Encode(t̂ mod+q)||ρ and sk = Encode(ŝ mod+q). The public key pk and secret key
sk then participate in encryption and decryption processes, respectively.

(a)

(b)

(c)

Figure 3. Proposed DDF NTT-based key generation architecture. (a) Top level of key generation
architecture, (b) PRNG core architecture, and (c) rejection and binomial samplers.

3.3. Proposed Kyber Encryption Architecture

The proposed encryption architecture constructs the ciphertext c = (c1, c2) from input
message m using public key pk. The main modules in the proposed encryption architecture
include samplers, DDF-based NTT, DDF-based INTTs (INTT1 and INTT2), decoder, encoder,
compression, decompression, point-wise multiplication, and addition modules, as shown
in Figure 4.

The value of ρ is obtained using the formula ρ = pk+ 12 · k · n/8. The rejection sampler
generates ÂT from the seed ρ, while the binomial sampler generates error vectors e1 and
e2 from a random coin r. r̂ is obtained by performing NTT(r) using the DDF-based NTT
module in Figure 4. A part of ciphertext, c, c1, is constructed by encoding the compressed
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message u, where u = INTT(ÂT ◦ r̂) + e1. INTT(ÂT ◦ r̂) is performed by the proposed
DDF-based INTT1 module in Figure 4.

Figure 4. Proposed encryption architecture.

The architecture design of the compression block is presented in Figure 5. The com-
pression elements (CE) in Figure 5a are detailed in Figure 5b.

(a)

(b)

Figure 5. Compression block: (a) compression architecture, and (b) compression element.

The remaining part of ciphertext c, c2 is constructed from the public key pk, error
polynomial e2, input coin r, and input message m. The output t̂ of the decode module
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in Figure 4 is multiplied with the transform of sample r, r̂ = NTT(r) using point-wise
multiplication. This result is transformed using the DDF-based INTT2 module in Figure 4,
and then the error polynomial e2 is added. The result of this addition, INTT(t̂T ◦ r̂) + e2,
is added with the decompression of input message m to generate v = INTT(t̂T ◦ r̂) + e2
+ Decompress(m). The architecture design of the decompression block is presented in
Figure 6. The decompression elements (DE) in Figure 6a are detailed in Figure 6b. Ci-
phertext c2 is generated by encoding the compression of v, c2 = Encode(Compress(v, dv))
using compression and encoder modules. Finally, ciphertext c = (c1, c2) is constructed.

(a)

(b)

Figure 6. Decompression block: (a) decompression architecture, and (b) decompression element.

3.4. Proposed Decryption Architecture Design

The proposed Kyber decryption architecture to recover the input message m from
ciphertext c = (c1, c2) and secret key sk is presented in Figure 7.

Secret key sk and ciphertext c are decoded and then decompressed to obtained the
values of ŝ and u, respectively. In particular, u = Decompressq(Decodedu(c), du), and
ŝ = Decode(sk). In addition, the value of v = Decompressq(Decodedv(c + du · k · n/8), dv)
can be reconstructed from ciphertext c through the decompression and decoding opera-
tions. The obtained value of u is transformed using the proposed DDF-based NTT, and
then multiplied by ŝT . The product ŝT ◦NTT(u) is transformed using DDF-based INTT
module, and then subtracted by v to obtain the value v− INTT(ŝT ◦NTT(u)). This result
is compressed using the compression module in Figure 5, and encoded to obtain the value
m = Encode(Compress(v − INTT(ŝT ◦NTT(u)), 1)). The original message m is finally
recovered.
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Figure 7. Proposed decryption architecture.

4. Implementation Results

The proposed architectures for Kyber are modeled using Verilog HDL and synthesized
using the Xilinx Vivado 2020.1. The implementation results are the placed-and-routed data
on Xilinx Virtex-7. The results for key generation and encryption/decryption are presented
in Tables 2 and 3, respectively.

From Table 2, the proposed key generation architecture requires 22K LUTs, 12K FFs,
21 DSPs, and 4.5 BRAMs. As can be seen, the proposed key generation architecture can op-
erate at a maximum frequency of 217 MHz. Public key pk and secret key sk are successfully
generated after only 39 µs. As a result, the proposed key generation architecture achieves
the area-to-time value of 0.86.

Table 2. Implementation results of Kyber key generation architectures.

Parameters This Work

Devices Virtex-7

LUTs 22K

FFs 12K

DSPs 21

BRAMs 4.5

Frequency (MHz) 217

Time (µs) 39

Area × Time (LUTs × s) 0.86

Table 3 describes a comparison between the proposed Kyber architecture with the
most recent works [12–14,22]. The reported values of the proposed work in Table 3 are for
encryption and decryption operations. Generally, the proposed architecture offers the best
value of area-time product. The proposed architecture requires 29,718 LUTs, 22,556 FFs,
71 DSPs, and 11 BRAMs to perform Kyber encryption and decryption operations. These
hardware resource requirements are substantially lower than those of the architecture
in [13]. The hardware cost of the proposed architecture is slightly higher than that of the
architectures in [12,22]. However, the proposed architecture outperforms those architec-
tures in terms of processing time and area-time product. Specifically, the total encryption
and decryption time of the proposed architecture is approximately 57.5 µs, which is ap-
proximately 3.6 times and 2.7 times faster than that of architectures in [12,14], respectively.
Noticeably, the proposed architecture is much better than that of architectures in [13,22] in
terms of latency. Furthermore, the area-time product value of the proposed architecture
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is 1.68, which is approximately half of that of the architectures in [12,14]. Specifically, this
area-time product value is approximately 189 times and 306 times smaller than that of
the designs in [13,22]. Furthermore, the proposed architecture can operate at the highest
frequency of 226 MHz, which is higher than the frequency at which architectures in [12–14]
operate.

Table 3. Performance comparison with existing schemes in NIST security level 5.

Parameters This Work [14] [12] [13] [22]

Devices Virtex-7 Virtex-7 UltraScale+ Virtex-7 Virtex-7

Protocol Kyber-1024 Kyber-1024 Kyber-1024 Kyber-1024 SIKEp751

LUTs 29,718 16,000 23,868 252,107 20,207

FFs 22,556 6000 9805 335,125 39,339

DSPs 71 12 0 584 452

BRAMs 11 17 2 402.5 41.5

Frequency (MHz) 226 156 150 192 233

Time (µs) 57.5 205 153 1264 25,500

Area × Time (LUTs× s) 1.68 3.28 3.62 318.66 515.28

Norm. Area × Time 1.00 1.95 2.15 189.68 306.71

5. Conclusions

An area-time efficient hardware architecture for CRYSTALS-Kyber is introduced in
this paper. By implementing the proposed dual-path delay feedback NTT and INTT ar-
chitectures in key generation, encryption, and decryption, these operations are noticeably
improved in terms of processing time and area-time efficiency. Specifically, the key gen-
eration operation in the proposed architecture is accelerated by twofold compared with
existing works. In addition, the proposed architecture offers the best value of area-time
product among the state-of-the-art Kyber architectures. Therefore, the proposed architec-
ture can be applied in designs where the high balance between hardware complexity and
processing time is strictly considered.
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