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Abstract: Automatic charging for electric vehicles has broad development prospects for meeting the
personalized service experience of users while overcoming the inherent safety hazards. An identifica-
tion and positioning approach suitable for engineering applications is the key to promoting automatic
charging. In this paper, a low-cost, high-precision method to identify and position charging ports
based on SIFT and SGBM is proposed. The feature extraction approach based on SIFT is adopted
to produce the difference of Gaussian (DOG) for scale space construction, and the feature matching
algorithm with nearest-neighbor search, which is a kind of machine learning, is utilized to yield the
map set of matching points. In addition, the disparity calculation is conducted with a semi-global
matching algorithm to obtain high-precision positioning results for the charging port. In order to
verify the feasibility of the method, a complete identification and positioning experiment of charging
port was carried out based on OpenCV and MATLAB.

Keywords: identification and location of charging port; SIFT feature extraction; nearest neighbor
search feature matching; semi-global matching method; disparity calculation

1. Introduction

The rapid development of new energy vehicles in the context of carbon peak and neu-
trality goals provides a new opportunity for the electric vehicle charging facility industry.
With the increasing number of electric vehicles, the charging facilities for electric vehicles
(EV) are gradually improving [1]. At present, processes of EV charging, such as charging
port docking and charging time control of electric vehicles in the charging station, need to
be completed manually; a large number of complex damage problems to the charging port
caused by improper operation. At the same time, in view of the long-term exposure of the
charging pile to the outdoors, it is inevitable that the insulation will be damaged due to
aging, and there is a potential electric shock safety hazard of manual operation. With the
advent of the era of intelligence, electric vehicle users will inevitably pay more attention to
the intelligent and humanized experience of services [2–4]. Therefore, there is great value
in studying the generalized automatic identification scheme of charging parts based on
image recognition and to further design the automatic charging control system.

In recent years, a large number of studies related to automatic charging have been
carried out. For example, Tesla has developed a serpentine high-degree-of-freedom charg-
ing machinery and equipment, but it is limited to the range of motion of the mechanical
structure, which has high requirements related to the parking position of the vehicle, and is
only suitable for Tesla models [5]. The E-Smart Connect system developed by Volkswagen
in Germany uses sensors to trigger cameras to locate vehicles and interfaces, and the system
controls the KUKA robot for charging [6]. Shi Ying designed a robot-based electric vehicle
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charging system, which used binocular vision sensors to locate the coordinates of the charg-
ing port to drive the robotic arm, but did not conduct high-precision target positioning and
experimental research under fuzzy light sources [7]. Zhang Hui from Hunan University
applied machine vision to detect and locate charging ports, but did not obtain the pose
in three-dimensional space, and only consider the case of round holes [8]. Sun Cheng
studied the charging port identification and pose detection methods of electric vehicles
under multiple disturbance factors, using monocular visual identification; although it is
economical, it is not able to accurately obtain depth information [9].

High-precision identification and positioning algorithms are the top priority for auto-
matic charging of electric vehicles, and an important prerequisite for ensuring the docking
of charging devices. This paper proposes a high-precision charging port identification and
positioning method suitable for different light intensities, backgrounds, and charging ports
of any shape. First, the SIFT feature extraction algorithm is presented with the Gaussian
difference pyramid being generated to construct the scale space. Then, the FLANN match-
ing algorithm is utilized to obtain a high-precision mapping set of matching points. Second,
in the process of binocular ranging, the SGBM (semi-global block matching) algorithm is
used to calculate the parallax. This algorithm can calculate the parallax of the left and right
camera images, so as to calculate the depth of the charging port more accurately. In order
to verify the effectiveness of the proposed method, image identification and binocular rang-
ing experiments were carried out, respectively, and high-precision matching and ranging
results were obtained.

2. The Overall Process of Charging Port Identification and Positioning

First, to identify and locate the charging port through binocular vision, it is necessary
to establish a binocular camera model. In order to solve the distortion problem in the
perspective projection of the camera, camera calibration is conducted, through which the
model parameters and distortion coefficients of the camera can be obtained for image
correction. Second, based on the binocular vision system, the identification and localization
algorithm of electric vehicle charging ports is studied, including filtering preprocessing
of collected images, image segmentation, matching of pre-stored features of charging
ports, and stereo matching of local graphic features. Finally, the three-dimensional spatial
coordinates of the charging port are reconstructed; that is, the positioning of the charging
port is completed [10]. The process of charging port image identification and positioning
system is shown in Figure 1.
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As the premise of identification and positioning of the charging port, the camera
calibration process is based on the model of the existing camera. The parameters of
the camera are calculated and transformed from the coordinates of the feature points.
In the following, the three-dimensional reconstruction is carried out. Generally, “Zhang’s
calibration” method can be used, in which the value of the coordinate transformation
matrix can be solved through more than four sets of points. However, in order to reduce
errors and acquire stronger robustness, generally, many images should be taken and a large
number of angle points selected for calibration [10].

3. Image Feature Extraction and Feature Matching Based on SIFT

The problem of charging port identification in the target area must be first solved to
achieve automatic charging. The charging pile is generally placed outdoor with strong
electromagnetic field, due to which the collected images are easily affected by noise. There-
fore, the adopted charging port image identification method should possess good anti-
interference performance in addition to strong robustness under different ambient light
backgrounds. The target detection algorithm based on binocular vision is one of the most
promising, as well as practical, methods in recent years, with its key lying in the feature
point extraction and feature matching algorithm. SIFT (Scale-invariant feature transform),
which is a scale-invariant feature transform algorithm, is a local feature detection method
based on spatial scale extreme points. As the algorithm has invariance to rotation operation,
scaling operation and brightness change in addition to strong robustness to noise and the
characteristic of scalability, it can accurately extract the corner features in the image [11].
The extracted image features are then matched with the pre-stored charging port features
to complete the identification function of the charging port. Figure 2 shows the flowchart
of the image identification process of the charging port.
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Figure 2. Schematic diagram of charging port feature extraction and matching.

The extraction of feature points by the SIFT algorithm can be realized by steps such
as the construction of the scale space, the calculation of the spatial extreme points, the
positioning of the stable key points, the information distribution of the direction of the
stable key points, as well as the description of the key points which are shown as follows.

3.1. Scale Space Construction

Spatial scale coordinate transformation is performed on the detected image to obtain
the scale space sequence. In the following, the main spatial contour of the scale space
sequence is extracted, which is marked as a feature vector to complete the corner feature
extraction of key points at different resolutions. The scale space constructed is invariant
to scale changes, which is achieved by blurring and down-sampling the image through
the Gaussian function [12–14]. In order to make the calculation relatively efficient, the
Gaussian difference scale space is calculated by the Gaussian difference function, through
which the Gaussian difference pyramid is generated, as shown in formula (1):

G(x, y, kσ)− G(x, y, σ) ≈ (k− 1)σ2∇2G (1)
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In the formula, x and y are the scale coordinates. σ is the image smoothness coefficient.
G(x, y, σ) = 1

2πσ2 e−(x2∗y2)/2πσ2
and k − 1 is a constant.

3.2. Finding the Extreme Point in Space

In order to find the extreme point of the Gaussian function, any pixel needs to be
compared with its adjacent points in the image domain and scale space domain. In the
two-dimensional space of the image, any pixel is compared with the adjacent 8 pixels, and
in the scale space of the same group, the center pixel is compared with the 18 pixels of
the adjacent layer image respectively. In this way, double local extreme points in the scale
space as well as the two-dimensional space of the image can be obtained [15].

3.3. Precise Positioning of Stable Key Points

Noise and edges are prone to cause mutation of Gaussian values, so the local extreme
points obtained in Section 3.2 need to be further confirmed and screened to remove unstable
and falsely detected extreme points. In addition, a downsampled image is used when
constructing the Gaussian difference scale space, and it is necessary to determine the exact
position of the extreme points obtained in the image corresponding to the original image.

3.4. Stable Keypoint Orientation Information Assignment

The stable extreme point extraction based on different scale spaces ensures the scale-
invariant characteristics. Whereas the distribution of the direction information of the key
points, that is, the gradient of the extreme point, ensures the angular invariance and rotation
invariance of the key points to the image. Define L(x, y) as the original image space function,
with the gradient magnitude of any key point being shown in formula (2), and the gradient
direction in formula (3).

m(x, y) =
√
(L(x + 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y− 1)) 2, (2)

θ(x, y) = tan−1(
L(x, y + 1)− L(x, y− 1)
L(x + 1, y)− L(x− 1, y)

). (3)

The direction of the key point is obtained through the gradient direction histogram.
Firstly, the gradient direction of all pixels in the neighborhood of the key point is calculated
with 10◦ being used as a unit direction interval for classification. Secondly, the number
of key points that fall within each direction interval is accumulated and represented as a
gradient direction histogram. Finally, the direction indicated by the maximum value of the
longitudinal coordinate in the histogram is assigned to the key point as its main direction,
and the direction with the number of key points equivalent to 80% of the peak value is
utilized as the auxiliary direction of the key point [16–18]. The application of auxiliary
directions can improve the robustness of the algorithm and help stabilize feature matching.

3.5. Description of Key Points

The key point description is the expression of the key point in mathematical language,
which is a important step in realizing the matching of image feature points. It describes
the key point and the surrounding pixels that contribute to it. The pixel area to be solved
is first divided into blocks, and the gradient histogram of the corresponding block is then
calculated to generate the direction vector. Therefore, the image information is expressed
in an abstract form. As is shown in Figure 3, the gradient value of each block of pixels is
Gaussian weighted to obtain eight orientations through which a 32-dimensional vector can
be generated to be utilized as the mathematical expression of the key point. Experiments
show that, for each key point, using a 128-dimensional vector descriptor to represent the
key point can achieve the best effect.
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3.6. Feature Matching

After extracting the image features, it is necessary to perform feature matching with
the pre-stored feature point set of the charging port to complete the identification of the
charging port. Fast Library for Approximate Nearest Neighbors (FLANN) is a collection
of nearest neighbor search algorithms for high-dimensional features in large data sets,
optimizing the nearest neighbor search algorithms and high-dimensional features in large
data sets. The FLANN matching algorithm records the feature points of the target image and
the image to be matched, according to which a feature vector is constructed. By comparing
and filtering the feature vectors, a mapping set of matching points is obtained. When
using the FLANN matching algorithm, it is necessary to select an appropriate nearest
neighbor search algorithm, such as random k-d tree algorithm, priority search k-means tree
algorithm, hierarchical clustering tree, etc., as well as the number of recursive traversals.
The more traversal times, the more accurate the results, but the longer the corresponding
search time. Therefore, it is necessary to optimize and reasonably select the parameters [19].

4. Binocular Ranging Algorithm

According to the parallax theory, binocular vision positioning is based on the geo-
metric relationship between the camera plane and the object to be recognized. The three-
dimensional position information of the object is obtained through “feature matching” and
“triangulation principle”. In order to reduce the computational load and appropriately
ease the matching difficulty, the images captured by the binocular camera need to be
calibrated in the epipolar direction, making it an ideal binocular vision system. Through
the stereo multi-dimensional matching technology, the correspondence between the points
of the left and right images is determined to obtain the parallax, and then the depth and
three-dimensional information of the image to be recognized is obtained according to the
projection model. In general, stereo matching has always been a critical, yet difficult, ques-
tion in stereo vision technology due to factors such as distortion, noise, specular reflection,
and projection reduction.

The stereo matching method usually consists of four processes: the calculation of
the matching cost, the aggregation of the cost, the acquisition of the disparity, and the
refinement of the disparity. Among these steps, the calculation of the matching cost
is the basis of the whole algorithm, which is the grayscale similarity detection under
different parallaxes. Common detection indicators include the square or absolute value
of the grayscale difference, corresponding to the different cost aggregation algorithms are
adopted. After the matching costs are added, the disparity calculation of the local algorithm
selects the minimum matching cost within a certain range as the matching point, while
the global algorithm directly calculates the original matching cost to obtain the minimum
value of the evaluation function. In addition, for some occasions with high-precision
requirements, parallax refinement processing, such as image filtering, segmentation, and
matching cost curve fitting, is also required.

SGM, known as semi-global matching algorithm, is represented modularly as the
semi-global block matching (i.e., SGBM) in OpenCV. In the algorithm, the difference map
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is constructed by selecting the difference of the pixel points, and the global cost function,
which is related to the difference map, is set and minimized to solve the optimal difference
of pixels [20]. The effect of SGBM stereo matching is better than that of local algorithms,
but at the same time more complicated. The specific process of the algorithm is as follows:

(1) Preprocessing:
Step1: Use the horizontal Sobel operator for image processing.
Step2: Map the image pixels into a new image.
(2) Cost calculation:
Step3: The gradient cost of the preprocessed image is obtained by sampling method.
Step4: The SAD cost of the original image is obtained based on sampling method, and

is superimposed with the gradient cost.
(3) Dynamic programming:
Step5: Establish a global Markov energy equation, and superimpose the full path

information to calculate the pixel matching cost.
Step6: Add the multi-directional matching cost to obtain the total matching cost.
(4) Postprocessing:
Step7: Uniqueness detection.
Step8: Sub-pixel interpolation.
Step9: Consistency detection of the left and right images.
The SGBM algorithm attempts to establish a global Markov energy equation through

the constraints of one-dimensional paths in multiple directions on the image. The final
matching cost of each pixel is the superposition of all path information, and the disparity
selection of each pixel is simply decided by WTA (Winner Takes All). The energy is
accumulated in each direction according to the idea of dynamic programming, and then
the matching costs in each direction are added to obtain the total matching cost, as shown
in formula (4):

Lr(p, d) = c(p, d) + min


Lr(p− r, d)

Lr(p− r, d± 1) + p1

min
i=dmin,...,dmax

Lr(p− r, i) + p2

− min
i=dmin,...,dmax

Lr(p− r, i) (4)

In the formula, L is the cost function accumulated by the current path; P1 and P2 are the
smoothing penalties in the case of small and large differences in the disparity between the
pixel and adjacent points with P1 < P2; the third term is adopted just to eliminate the effect
caused by the difference in the lengths of each path in different directions. Furthermore,
the total matching cost is obtained by adding up the matching costs in all r directions. The
penalty coefficient controls the smoothness of the disparity map; the larger the P2, the
smoother the disparity map.

5. Experimental Verification

In order to verify the feasibility and effectiveness of the proposed feature recognition
and depth calculation of charging port image based on the SIFT algorithm and the SGBM
algorithm, the image feature recognition experiment and binocular ranging experiment
were carried out in turn. The binocular camera model DUAL-200M-030T160 is used in the
experiment. Before acquiring the image of the charging port, the binocular camera needs to
be calibrated and corrected first.

5.1. Camera Calibration and Stereo Correction Experiment

Considering factors such as calibration cost, accuracy, and robustness, the “Zhang’s
Calibration” method was selected to calibrate the binocular camera used in the project. First,
a checkerboard is printed and stuck on the plane as a calibrator. Second, the orientation of
the calibrator or camera is adjusted to obtain six pairs of calibration board pictures taken
by left and right lenses respectively. Finally, the pictures are sent to the camera calibrator
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calibration tool in MATLAB, from which the checkerboard corner points are extracted to
estimate five internal parameters and six external parameters in the ideal distortion-free
situation. Then, the actual distortion coefficient is further estimated using the least squares
method for distortion correction (Figure 4) and stereo correction (Figure 5). After calibration
and stereo correction of the camera, relevant experiments such as image feature extraction
based on SIFT and feature matching can be carried out.
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5.2. Experiments on Image Retrieving and Key Point Extraction
5.2.1. Image Preprocessing

The charging pile is generally set outdoors with a strong magnetic and electric scene,
in which environment the image obtained by the camera will inevitably contain noise.
Therefore, image filtering preprocessing is required to suppress the noise of the image
while retaining the as many details of the image as possible to ensure the smooth extraction
of image features. The commonly used filtering algorithms include mean filtering, median
filtering, and Gaussian filtering. Performance comparison of the filtering methods is shown
in Table 1, among which median filtering has the best effect on processing the noise of the
charging port image and is adopted in this experiment. Figure 6 shows the feature points
of filtering processed images.

Table 1. Performance comparison of filtering methods.

Approach Feature Points
Extraction Amount of Noise The Influence of Noise on Feature

Point Extraction

original image Extract a large number of
feature points A lot The interference is very large, and a large

number of noise points are extracted

mean filtering Extract many feature points A lot, some being obvious The interference is large, and more noise
points are extracted

median filtering Extract a large number of
feature points Very little, some not obvious Less interference, a small number of

noise points are extracted

Gaussian filtering Extract a large number of
feature points A lot, some being obvious The interference is large, and more noise

points are extracted
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5.2.2. Feature Extraction and Matching of Image

The image features of the charging port are extracted utilizing the SIFT algorithm
in OpenCV. In order to enhance the robustness of feature matching, each key point is
described by 16 seed points, generating 128 data points, which is a 128-dimensional SIFT
feature vector that is not affected by scale changes and geometric deformations is finally
formed. Further, normalizing the lengths removes the effect of lighting changes. The
parameter settings are shown in Table 2.

Table 2. Parameters of SIFT algorithm.

Parameter Meaning Value

nOctaveLayers The number of levels in each group in the pyramid 3
contrastThreshold Threshold for filtering out bad feature points 0.04

edgeThreshold Threshold to filter out edge effects 10
double sigma Gaussian filter coefficient of image in layer 0 of the pyramid 1.6
K(FLANN) Top K points with the best match that the KNN algorithm returns 1

After the SIFT feature vector is generated, the Euclidean distance method is used as
the similarity criterion for key points. In order to exclude the key points with no matching
relationship caused by background confusion or occlusion, a machine learning algorithm,
K-nearest neighbor (KNN), is used to compare the nearest-neighbor distance and the next
nearest neighbor distance. If the ratio is less than the set threshold, it is judged that the
matching result is correct. By lowering the threshold, the number of matching points will
decrease, but it will be more stable.

Figure 7 shows the features of the charging port extracted using the SIFT algorithm.
It can be seen from the figure that the SIFT algorithm can extract the feature points of the
charging port very well. After the extracted features are obtained, the FLANN matcher is
utilized to perform feature matching between the feature points of charging port in the
image extracted by SIFT and the pre-stored features, and the feature matching result is
visualized as shown in Figure 8. It can be seen from the figure that the FLANN matcher
can more accurately match feature points in the template extracted by SIFT with the target
feature points.
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5.3. Binocular Ranging Experiment

After feature matching of the charging port is completed, the three-dimensional
reconstruction of the charging port needs to be performed to identify the three-dimensional
coordinates of the charging port. The disparity map can be obtained by using the BM
algorithm and the SGBM algorithm.

5.3.1. Comparison of Parallax Map

Figure 9a is the disparity map obtained through the SGBM algorithm. The algorithm
selects the difference of each pixel to form a difference map, related to which the global
energy function is defined and minimized to obtain the optimal difference of each pixel.
Figure 9b shows the disparity map calculated by the BM algorithm. The BM algorithm
divides the frames of the two cameras into many small squares for model matching. By mov-
ing the small squares to match the small squares in the other image, and by finding the pixel
positions of different small squares in the other image, combined with the relationship data
of the two cameras (rotation matrix and translation matrix in the calibration parameters),
the actual depth of the object is calculated to generate the corresponding depth map.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 13 
 

5.3. Binocular Ranging Experiment 
After feature matching of the charging port is completed, the three-dimensional re-

construction of the charging port needs to be performed to identify the three-dimensional 
coordinates of the charging port. The disparity map can be obtained by using the BM al-
gorithm and the SGBM algorithm. 

5.3.1. Comparison of Parallax Map 

Figure 9a is the disparity map obtained through the SGBM algorithm. The algorithm 
selects the difference of each pixel to form a difference map, related to which the global 
energy function is defined and minimized to obtain the optimal difference of each pixel. 
Figure 9b shows the disparity map calculated by the BM algorithm. The BM algorithm 
divides the frames of the two cameras into many small squares for model matching. By 
moving the small squares to match the small squares in the other image, and by finding 
the pixel positions of different small squares in the other image, combined with the rela-
tionship data of the two cameras (rotation matrix and translation matrix in the calibration 
parameters), the actual depth of the object is calculated to generate the corresponding 
depth map. 

Comparing the disparity maps obtained by the two algorithms, it can be seen that 
the disparity map processed by the SGBM algorithm is more refined than that of the BM 
algorithm, and with a better effect of the stereo matching. Therefore, the SGBM algorithm 
is used in this paper for stereo matching and disparity calculation. 

 
Figure 9. Comparison of disparity maps obtained by two algorithms: (a) SGBM algorithm; (b) BM 
algorithm. 

5.3.2. Distance Measurement 
Table 3 shows the results of multiple sets of ranging experiments on charging ports 

using the SGBM algorithm under different light intensities (1st to 6th rows: 20–500 lx; 7th 
row: 100,000 lx). The first six groups of data in the table are the test results of the binocular 
camera under randomly changing light within a small interval, and the last group is the 
test data under overexposure. The first three columns of the test results are the world 
coordinates (unit: mm) of the charging port relative to the left camera, and the three values 
are X (the horizontal direction of the captured image), Y (the vertical direction of the cap-
tured image), and Z (the distance between the camera and the charging port, i.e., depth). 
The fourth column is the actual distance of Z axis (ZA) and the last two columns are the 
calculated overall distance (CD) and the actual overall distance (AD), respectively. It can 
be seen from the table that under the current camera calibration state and slowly changing 

Figure 9. Comparison of disparity maps obtained by two algorithms: (a) SGBM algorithm;
(b) BM algorithm.



Appl. Sci. 2022, 12, 5247 10 of 12

Comparing the disparity maps obtained by the two algorithms, it can be seen that
the disparity map processed by the SGBM algorithm is more refined than that of the BM
algorithm, and with a better effect of the stereo matching. Therefore, the SGBM algorithm
is used in this paper for stereo matching and disparity calculation.

5.3.2. Distance Measurement

Table 3 shows the results of multiple sets of ranging experiments on charging ports
using the SGBM algorithm under different light intensities (1st to 6th rows: 20–500 lx;
7th row: 100,000 lx). The first six groups of data in the table are the test results of the
binocular camera under randomly changing light within a small interval, and the last
group is the test data under overexposure. The first three columns of the test results are the
world coordinates (unit: mm) of the charging port relative to the left camera, and the three
values are X (the horizontal direction of the captured image), Y (the vertical direction of the
captured image), and Z (the distance between the camera and the charging port, i.e., depth).
The fourth column is the actual distance of Z axis (ZA) and the last two columns are the
calculated overall distance (CD) and the actual overall distance (AD), respectively. It can be
seen from the table that under the current camera calibration state and slowly changing
light, when the actual Z distance is 200 mm (the distance is measured by the scale), the test
distance RMS error between the calculated overall distance and the actual overall distance
of the first six rows is about 1.51 mm (0.755%), which is acceptable in practical applications
(<2% requested).

Table 3. Binocular camera range results (unit: mm) under (1st, . . . , 6th rows) random change in light
in normal range and (7th row) an overexposure condition.

X Y Z ZA CD AD

−13.8329 4.0394 198.3303 200 198.8531 201
−10.3983 −32.383 199.3371 200 202.2179 201
−20.1614 14.990 198.530 200 200.1133 201
−13.5946 4.6332 200.5588 200 201.0724 201
−14.6609 12.3290 201.5883 200 202.4964 201
−19.4849 47.2711 200.7639 200 207.1722 205
−57.71264 70.5011 283.3291 200 297.6181 220

It should be noted that the test error of the binocular camera is large under over-
exposure (the last set of data), which is also a disadvantage of binocular visual ranging.
However, as the charging facilities are generally placed indoors (such as underground
parking spaces) or are equipped with a rain cover or a roof, which is necessary for the
automatic charging system of the research, the situation of overexposure can be excluded.
Figure 10a is the visual ranging result and Figure 10b is the scale ranging image.
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Figure 10. Comparison of two measurement results: (a) Identification and distance measurement of
charging port; (b) scale measurement results.
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Tables 4 and 5 show the results of multiple sets of ranging experiments on charging
ports when the Z axis is 250 mm and 300 mm, respectively (under different light intensities
from 20 lx to 500 lx). XA, YA, and ZA represent the actual distances of corresponding axes
in each test. |e|I% means the error between the measured value and actual value of axis
I (I = X, Y, Z) and |e|% is the error between the calculated overall distance (CD) and the
actual overall distance (AD). Furthermore, the mean error of each axis is illustrated by
|e|’I% (I = X, Y, Z) in the table below, from which it can be seen that although the errors in
the X and Y axes are slightly bigger, the overall distance errors |e|’ are 0.71% and 0.60% in
Tables 4 and 5, respectively, which are still in the acceptable range.

Table 4. Binocular camera range results when Z = 250 (unit: mm).

X XA |e|X% Y YA |e|Y% Z ZA |e|Z % CD AD |e|%

47.57 50 4.86 21.44 20 7.20 251.59 250 0.64 256.94 256 0.37
−8.89 −10 11.10 −78.19 −80 2.26 249.81 250 0.08 261.91 263 0.41
−42.99 −45 4.47 −68.37 −70 2.33 249.06 250 0.38 261.83 263 0.44
−80.62 −80 0.78 68.15 70 2.64 249.55 250 0.18 270.96 272 0.38
44.53 45 1.04 22.82 23 0.78 250.56 250 0.22 255.51 255 0.20
34.80 35 0.57 15.79 15 5.27 245.23 250 1.91 248.19 253 1.90
−32.28 −30 7.60 78.66 80 1.68 249.55 250 0.18 263.64 264 0.14

4.37 5 12.60 3.84 5 23.20 243.23 250 2.71 243.30 250 2.68
23.26 25 6.96 63.40 60 5.67 247.57 250 0.97 256.62 258 0.53
−4.27 −5 14.60 63.64 65 2.09 249.06 250 0.38 257.10 258 0.35
47.80 50 4.40 67.67 70 3.33 249.30 250 0.28 262.71 264 0.49

Mean error: |e|’X = 6.27% |e|’Y = 5.13% |e|’Z = 0.71% |e|’ = 0.71%.

Table 5. Binocular camera ranging results when Z = 300 (unit: mm).

X XA |e|X% Y YA |e|Y% Z ZA |e|Z% CD AD |e|%

−40.01 −40 0.02 45.42 45 0.93 299.11 300 0.30 305.17 306 0.26
−52.01 −50 4.02 −103.57 −100 3.57 298.25 300 0.58 319.98 320 0.06
−43.46 −45 3.42 −104.43 −105 0.54 295.39 300 1.54 316.31 321 1.47
38.83 40 2.93 12.95 15 13.67 297.20 300 0.93 300.01 303 1.00
31.36 30 4.53 −10.01 −10 0.10 302.60 300 0.87 304.39 302 0.90
−38.21 −40 4.48 54.23 55 1.40 301.55 300 0.52 308.76 308 0.37
−14.50 −15 3.33 90.48 90 0.53 301.38 300 0.46 315.00 314 0.46
40.27 40 0.68 −104.22 −105 0.74 299.25 300 0.25 319.43 320 0.29
−50.62 −50 1.24 −103.40 −105 1.52 295.08 300 1.64 316.74 322 1.56
−41.52 −40 3.80 −12.52 −15 16.53 300.55 300 0.18 303.66 303 0.21
−7.21 −10 27.9 21.39 20 6.95 301.49 300 0.50 302.33 301 0.50

Mean error: |e|’X = 5.12% |e|’Y = 4.23% |e|’Z = 0.72% |e|’ = 0.60%.

6. Conclusions

In this paper, a low-cost, high-precision identification and positioning method for
charging ports suitable for engineering applications is proposed. This method adopts the
binocular visual recognition technology, and deeply collaborative applications of the SIFT
feature extraction algorithm, the nearest-neighbor search feature matching algorithm, and
the SGBM disparity calculation method are conducted. Through operations such as camera
calibration, scale space construction, spatial extreme point detection, stable key point posi-
tion, direction information allocation, feature matching by machine learning and parallax
calculation, etc., a charging port identification and positioning method suitable for different
light intensities, backgrounds, and arbitrary shapes is obtained. In order to verify the
feasibility of the method, a complete identification and positioning experiment of charging
port was conducted. Through camera calibration and stereo correction experiments, the
SIFT-based image recognition experiment, as well as the binocular ranging experiment,
ideal identification of the charging port was obtained, providing a theoretical and technical
foundation for subsequent research into charging docking driven by a robotic arm.
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Automatic charging processing method and device for charging pile (No. 202111595712.9).
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