
Citation: Li, Y.; Wang, N.; Lei, J.;

Wang, F.; Li, C. Modeling GPR Wave

Propagation in Complex

Underground Structures Using

Conformal ADI-FDTD Algorithm.

Appl. Sci. 2022, 12, 5219. https://

doi.org/10.3390/app12105219

Academic Editors: José A. F.

O. Correia and Vincent A. Cicirello

Received: 19 April 2022

Accepted: 19 May 2022

Published: 21 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Modeling GPR Wave Propagation in Complex Underground
Structures Using Conformal ADI-FDTD Algorithm
Yinping Li 1, Niannian Wang 1, Jianwei Lei 1,*, Fuming Wang 1 and Ce Li 2

1 School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China;
lyp07170111@163.com (Y.L.); wnnian@zzu.edu.cn (N.W.); fuming573@126.com (F.W.)

2 School of Mechanical Electronic & Information Engineering, China University of Mining & Technology,
Beijing 100083, China; celi@cumtb.edu.cn

* Correspondence: leijianwei@gs.zzu.edu.cn; Tel.: +86-153-3382-7823

Abstract: Ground Penetrating Radar (GPR) is a shallow geophysical method for detecting and
locating subsurface targets. The GPR image echo characteristics of complex underground structures
can be obtained by carrying out GPR forward modeling research. The traditional finite-difference
time-domain (FDTD) method has low efficiency and accuracy. The alternating direction implicit FDTD
(ADI-FDTD) algorithm surmounts the stability limitations of the traditional FDTD method, making it
possible to select a larger time step for higher computational efficiency. For circular underground
structures, a pseudowave produced by the ladder approximation method can be corrected using
the surface conformal technique. This paper proposes a high-efficiency and high-accuracy GPR
forward modeling method that combines the ADI-FDTD algorithm and surface conformal technology.
The performance of the conformal ADI-FDTD algorithm is verified by a simple two-layer model.
Based on the proposed algorithm, the GPR image features of three complex underground structure
models are obtained. Finally, a field experiment is used to support the accuracy and usefulness of
the conformal ADI-FDTD algorithm. The numerical simulation results and experimental results
show that the conformal ADI-FDTD algorithm reduces the pseudodiffraction wave caused by the
ladder approximation method and can significantly improve the computing efficiency for complex
underground structure models.

Keywords: GPR; ADI-FDTD; surface conformal technology; complex underground structure;
numerical simulations

1. Introduction

With rapid urban development, the scale of underground pipeline networks has
gradually expanded [1,2]. Pipelines with different functions and purposes are arranged
alternately, and the arrangement of the underground pipeline network is very complicated.
As detailed distribution information for the entire underground pipeline network cannot
be accurately obtained, accidents (e.g., the collapse of old pipelines or the cutting-off of
existing pipelines) often occur [3–6]. In addition, road collapse accidents due to pipeline
leaks occur frequently. The quick and accurate determination of the type, size, and location
of underground pipelines and hidden diseases around underground pipelines has become
necessary in urban road construction and maintenance projects.

GPR is widely regarded as one of the most powerful and useful geophysical meth-
ods [7]. GPR has the advantage of non-destructive detection and is fast, lightweight, and
easy to operate with strong anti-interference and high resolution, etc. compared with
other Non-Destructive Testing (NDT) methods such as seismic, sonic, temperature, resis-
tivity, logging, and magnetic exploration methods [8,9]. Information about the location,
size, and dielectric properties of complex underground structures can be obtained by
inversion analysis of the GPR echo signals [10–13]. Through accurate and efficient GPR
forward modeling of complex underground structure models, the propagation law of GPR
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electromagnetic waves in underground structures can be obtained [14–16]. This lays the
theoretical foundation for inversion analysis and helps to improve the interpretation and
processing accuracy of GPR-measured data. At present, the most commonly used GPR
forward simulation techniques include the finite element method (FEM) [17,18], the ray
tracing method (RTM) [19,20], the method of moment (MOM) [21], the finite difference
time domain method (FDTD) [22–24], the pseudospectral time domain method (PSTD) [25],
and the symplectic algorithm [26–28], among others. Although research into GPR forward
simulation has achieved fruitful results, these algorithms still have some limitations in
terms of computational accuracy and efficiency. For example, the FEM may appear as a
“pseudosolving” phenomenon during calculation; the RTM cannot consider the dynamic
characteristics of the electromagnetic wave of the ground penetrating radar, while the
time step of the symplectic algorithm needs to satisfy the Courant–Friedrichs–Lewy (CFL)
stability condition, and the computational efficiency is limited. Therefore, it is necessary
to propose a GPR forward modeling method with high computational accuracy and fast
computational efficiency.

The ADI-FDTD algorithm overcomes the CFL stability condition and can employ a
larger time step to improve the computing simulation efficiency [29–31]. The efficiency
and accuracy of GPR forward simulation are also related to the modeling method. Some
methods are available to improve the accuracy of GPR simulation calculations for circular
structures, such as sub-grid technology and conformal grid technology. The sub-grid
technique has been widely used to improve the calculation accuracy, but it generates
pseudowaves at the interface of the fine and coarse grids [32,33]. The derivations and
calculations for conformal grid technology are simple, making it very suitable for circular
underground pipes [34–36].

In this paper, the efficient and accurate GPR forward models are established to simulate
GPR electromagnetic wave propagation in underground structures, employing the ADI-
FDTD algorithm and surface conformal technology. We obtained the reflection profile
images of multi-pipe models and complex underground pipe models with hidden diseases.
By analyzing the profile images, the spatial propagation characteristics of radar waves can
be more clearly understood, and the interpretation accuracy of the data can be improved.
A field experiment proved the correctness and effectiveness of the proposed algorithm in
actual detection. The numerical simulation results and field experiment indicate that the
conformal ADI-FDTD method requires less computation time and can greatly reduce the
pseudowave effect compared with the traditional FDTD.

2. Methodology
2.1. ADI-FDTD Algorithm

For transverse magnetic (TM) waves in two-dimensional lossy media, the Maxwell
equations [37] are expressed as

µ
∂Hx

∂t
= −∂Ez

∂y
, (1)

µ
∂Hy

∂t
=

∂Ez

∂x
, (2)

ε
∂Ez

∂t
+ σEz =

∂Hy

∂x
− ∂Hx

∂y
, (3)

where Hx and Hy are the magnetic field intensities in the x and y directions; Ez is the electric
field intensity in the z direction; σ is the electrical conductivity; ε is the dielectric constant;
µ is the magnetic permeability.

In the ADI-FDTD algorithm, we divide a time step into two sub-steps and discretize
them in different ways. In the sub-step n→n + 1/2, the x-direction derivative adopts the
implicit difference format, and the y-direction derivative adopts the explicit difference
format. In the sub-step of n + 1/2→n + 1, the x-direction derivative adopts the explicit
difference format, and the y-direction derivative adopts the implicit difference format.
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In the n→n + 1/2 time step, the difference scheme of Equation (1) is as follows:

Hn+ 1
2

x (i, j +
1
2
) = Hn

x (i, j +
1
2
)− ∆t

2µ
· 1
∆y
·[En

z (i, j + 1)− En
z (i, j)]. (4)

Similarly, the difference discretization scheme of Equation (2) is

Hn+ 1
2

y (i +
1
2

, j) = Hn
y (i +

1
2

, j) +
∆t
2µ
· 1
∆x
·
[

En+ 1
2

z (i + 1, j)− En+ 1
2

z (i, j)
]

. (5)

For Equation (3), the Ez component takes the mean value of time n∆t and time
(n + 1/2)∆t, where the difference discretization scheme of Equation (3) is

En+ 1
2

z (i, j) = CA·En
z (i, j) + CB·

{
1

∆x ·
[

Hn+ 1
2

y (i + 1
2 , j)− Hn+ 1

2
y (i− 1

2 , j)
]

− 1
∆y ·
[

Hn
x (i, j + 1

2 )− Hn
x (i, j− 1

2 )
]} (6)

where
CA =

4ε− σ∆t
4ε + σ∆t

CB =
2∆t

4ε + σ∆t
. (7)

Equations (4)–(6) are the time domain advancing formulas of the electromagnetic field
from step n→n + 1/2. Equation (4) is called the display format because the right side of
the formula only involves the field value at time n. However, both sides of Equations (5)
and (6) include the simultaneous field value, which is called the implicit format, which
cannot be used to calculate the display time advance. To solve this problem, we substitute
Equation (5) into Equation (6) and eliminate Hn+1/2

y , and we can derive

− ∆t
2µ∆x2 CB·En+ 1

2
z (i− 1, j) +

[
1 + ∆t

µ∆x2 ·CB
]
·En+ 1

2
z (i, j)− ∆t

2µ∆x2 ·CB·En+ 1
2

z (i + 1, j)

= CA·En
z (i, j) + CB

∆x ·
[

Hn
y (i +

1
2 , j)− Hn

y (i− 1
2 , j)

]
− CB

∆y ·
[

Hn
x (i, j + 1

2 )− Hn
x (i, j− 1

2 )
]
,

(8)

where

ai = − ∆t
2µ∆x2 ·CB bi = 1 + ∆t

µ∆x2 ·CB ci = − ∆t
2µ∆x2 ·CB

di = CA·En
z (i, j) + CB

∆x ·
[

Hn
y (i +

1
2 , j)− Hn

y (i− 1
2 , j)

]
− CB

∆y ·
[

Hn
x (i, j + 1

2 )− Hn
x (i, j− 1

2 )
]
.

(9)

Then, Equation (8) can be expressed as

aiE
n+ 1

2
z (i− 1, j) + biE

n+ 1
2

z (i, j) + ciE
n+ 1

2
z (i + 1, j) = di, (10)

and Equation (9) is written in matrix form as

AX = Y, (11)

where

X =



En+ 1
2

z (1, j)
...

En+ 1
2

z (i, j)
...

En+ 1
2

z (imax, j)


, Y =



d1
...

di
...

dimax


, A =


b1 c1 0 0 0
a2 b2 c2 0 0

0
. . .

. . .
. . . 0

0 0 aimax−1 bimax−1 cimax−1
0 0 0 aimax bimax

. (12)

Here, the matrix A is a tridiagonal strip matrix, and the first-row elements (b1 and c1)
and the last-row elements (aimax and bimax) are given by absorption boundary conditions.
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In the n + 1/2→n + 1 time step, the difference discretization schemes of Equations (1)–(3) are

Hn+1
x (i, j +

1
2
) = Hn+ 1

2
x (i, j +

1
2
)− ∆t

2µ
· 1
∆y
·
[

En+1
z (i, j + 1)− En+1

z (i, j)
]
, (13)

Hn+1
y (i +

1
2

, j) = Hn+ 1
2

y (i +
1
2

, j) +
∆t
2µ
· 1
∆x
·
[

En+ 1
2

z (i + 1, j)− En+ 1
2

z (i, j)
]

, (14)

En+1
z (i, j) = CA·En+ 1

2
z (i, j) + CB·

{
1

∆x ·
[

Hn+ 1
2

y (i + 1
2 , j)− Hn+ 1

2
y (i− 1

2 , j)
]

− 1
∆y ·
[

Hn+1
x (i, j + 1

2 )− Hn+1
x (i, j− 1

2 )
]}

.
(15)

The time domain advance of the electromagnetic field in sub-step n + 1/2→n + 1 can
be calculated by Equations (13)–(15), as Equations (13) and (15) contain the simultaneous
field value (i.e., implicit format) and cannot be used to calculate the display time advance.
From Equations (13) and (15), we can derive

− ∆t
2µ∆y2 ·CB·En+1

z (i, j− 1) +
[
1 + ∆t

µ∆y2 ·CB
]
·En+1

z (i, j)− ∆t
2µ∆y2 ·CB·En+1

z (i, j + 1) =

CA·En+ 1
2

z (i, j)− CB
∆y ·
[

H
n+ 1

2
x (i, j + 1

2 )− H
n+ 1

2
x (i, j− 1

2 )

]
+ CB

∆x ·
[

H
n+ 1

2
y (i + 1

2 , j)− H
n+ 1

2
y (i− 1

2 , j)
]

,
(16)

where

aj = − ∆t
2µ∆y2 ·CB bj = 1 + ∆t

µ∆y2 ·CB cj = − ∆t
2µ∆y2 ·CB

dj = CA·En+ 1
2

z (i, j)− CB
∆y ·
[

Hn+ 1
2

x (i, j + 1
2 )− Hn+ 1

2
x (i, j− 1

2 )

]
+ CB

∆x ·
[

Hn+ 1
2

y (i + 1
2 , j) −Hn+ 1

2
y (i− 1

2 , j)
]

.
(17)

Then, Equation (16) can be rewritten as

ajEn+1
z (i, j− 1) + bjEn+1

z (i, j) + cjEn+1
z (i, j + 1) = dj, (18)

and Equation (17) can be written in the following matrix form:

AX = Y, (19)

where

X =



En+1
z (i, 1)

...
En+1

z (i, j)
...

En+1
z (i, jmax)


, Y =



d1
...

dj
...

djmax


, A =


b1 c1 0 0 0
a2 b2 c2 0 0

0
. . .

. . .
. . . 0

0 0 ajmax−1 bjmax−1 cjmax−1
0 0 0 ajmax bjmax

. (20)

Here, matrix A is a tridiagonal strip matrix, and the first-row elements (b1 and c1) and
the last-row elements (ajmax and bjmax) are given by absorption boundary conditions.

In conclusion, the steps for calculating the 2D TM wave by ADI-FDTD are as follows:

In the n→n + 1/2 time step:

(1) Calculate Hx
n+1/2 by Equation (4);

(2) Calculate Ez
n+1/2 by Equation (10);

(3) Calculate Hy
n+1/2 by Equation (5).

In the n + 1/2→n + 1 time step:

(1) Calculate Hy
n+1 by Equation (14);

(2) Calculate Ez
n+1 by Equation (18);

(3) Calculate Hx
n+1 by Equation (13).
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2.2. Surface Conformal Technology

The surface conformal technique was used to simulate the mesh generation of circular
underground structures. Figure 1 shows schematic diagrams of the grid division of the
circular structure model constructed by different methods. Figure 1a shows the actual
subdivision grid of the circular structure, where the white squares are ordinary and the red
squares are the actual subdivisions. Figure 1b shows the conventional ladder approximation
subdivision grid for a circular structure, where the green squares are the subdivisions
obtained by the step approximation method. The subdivision grid of a circular structure
based on surface conformal technology is shown in Figure 1c, where the orange squares
are conformal areas and the blue squares are non-conformal areas.
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Figure 1. Grid dissection of the circular structure: (a) Actual grid dissection of a circular structure;
(b) Grid dissection of circular structure by ladder approximation method; (c) Dissection of circular
structure by conformal grid technology.

A conformal grid point in Figure 1c is taken as an example in order to demonstrate
the selection of equivalent medium parameters for the conformal grid region in 2D TM
waves. As shown in Figure 2, where F is the sampling point of the electric field Ez; A, B and
C, D are sampling points of the magnetic field Hx and Hy, respectively; ∆y and ∆x are the
height and width of the grid, respectively; Sxy1 and Sxy2 are the areas of media 1 and 2 in
the conformal grid, respectively; Lx1 and Lx2 are the lengths occupied by media 1 and 2 on
the edge of magnetic field node B, respectively; and Ly1 and Ly2 are the lengths occupied
by media 1 and 2 on the edge of magnetic field node D, respectively.
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n n n

i z i z i z i
a E i j b E i j c E i j d

  
        , (22) 
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         1            
2 2

y y y

i i i

l l lt t t
a CB b CB c CB

x S x S x S  
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l
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H i j H i j

S
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grids; (b) Conformal grids.
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Considering the two-dimensional TM wave, for the conformal grid of an ideal conduc-
tor (metal conductor), the recursive formula of a magnetic field node remains unchanged
and is still calculated according to conventional ADI-FDTD. For the recursive formula of
the electric field node, we make the following changes:

In the n→n + 1/2 time step, Equation (6) is changed to

En+ 1
2

z (i, j) = CA·En
z (i, j) + CB·

{
ly
S ·
[

Hn+ 1
2

y (i + 1
2 , j)− Hn+ 1

2
y (i− 1

2 , j)
]

− lx
S ·
[

Hn
x (i, j + 1

2 )− Hn
x (i, j− 1

2 )
]}

.
(21)

where lx and ly represent the length of the corresponding edge of the electric field node
outside the conductor, and S represents the area of the cell outside the conductor.

We substitute Hn+1/2
y in Equation (5) into Equation (21) and obtain the update equation

about En+1/2
z

ai
′En+ 1

2
z (i− 1, j) + bi

′En+ 1
2

z (i, j) + ci
′En+ 1

2
z (i + 1, j) = di

′, (22)

where

ai
′ = − ∆t

2µ∆x ·
ly
S ·CB bi

′ = 1 + ∆t
µ∆x ·

ly
S ·CB ci

′ = − ∆t
2µ∆x ·

ly
S ·CB

di
′ = CA·En

z (i, j) + CB· lyS ·
[

Hn
y (i +

1
2 , j)− Hn

y (i− 1
2 , j)

]
− CB· lxS ·

[
Hn

x (i, j + 1
2 )− Hn

x (i, j− 1
2 )
]
.

(23)

In the n + 1/2→n + 1 time step, the difference discretization schemes of Equation (15) are

En+1
z (i, j) = CA·En+ 1

2
z (i, j) + CB·

{
ly
S ·
[

Hn+ 1
2

y (i + 1
2 , j)− Hn+ 1

2
y (i− 1

2 , j)
]

− lx
S ·
[

Hn+1
x (i, j + 1

2 )− Hn+1
x (i, j− 1

2 )
]}

,
(24)

Similarly, we can obtain the iterative format of En+1
z

aj
′En+1

z (i, j− 1) + bj
′En+1

z (i, j) + cj
′En+1

z (i, j + 1) = dj
′, (25)

where

aj
′ = − ∆t

2µ∆y ·
lx
S ·CB bj

′ = 1 + ∆t
µ∆y ·

lx
S ·CB cj

′ = − ∆t
2µ∆y ·

lx
S ·CB

dj
′ = CA·En+ 1

2
z (i, j)− CB· lxS ·

[
Hn+ 1

2
x (i, j + 1

2 )− Hn+ 1
2

x (i, j− 1
2 )

]
+ CB· lyS ·

[
Hn+ 1

2
y (i + 1

2 , j) −Hn+ 1
2

y (i− 1
2 , j)

]
.

(26)

For media (non-metallic conductor) surface conformal meshes, the permittivity, per-
meability, and conductivity of dielectrics 1 and 2 are assumed to be ε1, µ1, and σ1 and ε2,
µ2, and σ2, respectively. A weighted average of the electromagnetic coefficients, accord-
ing to the sizes of the conformal grids occupied by media 1 and 2, respectively, provides
the following equivalent medium parameters for the dielectric constant, permeability,
and conductivity:

εe f f =
Lx1ε1 + Lx2ε2

δ
, σe f f =

Lx1σ1 + Lx2σ2

δ
, µe f f =

Sxy1µ1 + Sxy2µ2

δ2 . (27)

In the n→n + 1/2 time step, the difference discretization schemes of the electric field
node and the magnetic field node are written as

Hn+ 1
2

x (i, j +
1
2
) = Hn

x (i, j +
1
2
)− ∆t

2µe f f
· 1
∆y
·[En

z (i, j + 1)− En
z (i, j)], (28)
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Hn+ 1
2

y (i +
1
2

, j) = Hn
y (i +

1
2

, j) +
∆t

2µe f f
· 1
∆x
·
[

En+ 1
2

z (i + 1, j)− En+ 1
2

z (i, j)
]

, (29)

aiE
n+ 1

2
z (i− 1, j) + biE

n+ 1
2

z (i, j) + ciE
n+ 1

2
z (i + 1, j) = di, (30)

where

CA =
4εe f f−σe f f ∆t
4εe f f +σe f f ∆t CB = 2∆t

4εe f f +σe f f ∆t

ai = − ∆t
2µe f f ∆x2 ·CB bi = 1 + ∆t

µe f f ∆x2 ·CB ci = − ∆t
2µe f f ∆x2 ·CB

di = CA·En
z (i, j) + CB

∆x ·
[

Hn
y (i +

1
2 , j)− Hn

y (i− 1
2 , j)

]
− CB

∆y ·
[

Hn
x (i, j + 1

2 )− Hn
x (i, j− 1

2 )
]
.

(31)

In the n + 1/2→n + 1 time step, the difference discretization schemes of the electric
field node and the magnetic field node are

Hn+1
x (i, j +

1
2
) = Hn+ 1

2
x (i, j +

1
2
)− ∆t

2µe f f
· 1
∆y
·
[

En+1
z (i, j + 1)− En+1

z (i, j)
]
, (32)

Hn+1
y (i +

1
2

, j) = Hn+ 1
2

y (i +
1
2

, j) +
∆t

2µe f f
· 1
∆x
·
[

En+ 1
2

z (i + 1, j)− En+ 1
2

z (i, j)
]

, (33)

ajEn+1
z (i, j− 1) + bjEn+1

z (i, j) + cjEn+1
z (i, j + 1) = dj, (34)

where

CA =
4εe f f−σe f f ∆t
4εe f f +σe f f ∆t CB = 2∆t

4εe f f +σe f f ∆t

aj = − ∆t
2µe f f ∆y2 ·CB bj = 1 + ∆t

µe f f ∆y2 ·CB cj = − ∆t
2µe f f ∆y2 ·CB

dj = CA·En+ 1
2

z (i, j)− CB
∆y ·
[

Hn+ 1
2

x (i, j + 1
2 )− Hn+ 1

2
x (i, j− 1

2 )

]
+ CB

∆x ·
[

Hn+ 1
2

y (i + 1
2 , j) −Hn+ 1

2
y (i− 1

2 , j)
]

.

(35)

2.3. UPML Absorbing Boundary Condition

GPR electromagnetic wave propagation in underground structures is an open domain
problem. Thus, it is necessary to set reasonable absorbing boundary conditions at the
truncated boundary of the computational region. In this paper, the uniaxial anisotropic
absorption layer (UPML) with easy programming and simple iterative formula is used as
the absorption boundary [38]. The Maxwell curl equation in the UPML medium can be
written as:

∇× H = jωεS·E
∇× E = −jωµS·H (36)

where S has the characteristics of a uniaxial anisotropic medium, expressed as:

S =

 sysz/sx 0 0
0 szsx/sy 0
0 0 sxsy/sz

. (37)

Here, si = κi + σi/jωε0 (i = x, y, z) is the diagonal tensor of a uniaxially anisotropic
medium (for a 2D GPR wave, sz is 1), σi is the attenuation factor of the UPML region, and
κi is used to absorb the modulated wave that reaches the UPML layer.

For the 2D TM wave, Ex = 0, Ey = 0, and Hz = 0, and the ADI-FDTD formula under the
UPML boundary conditions is shown below.

When Dz = εsyEz, the time advance formula of Hx, Hy→Dz is as follows:

∂Hy

∂x
− ∂Hx

∂y
= κx

∂Dz

∂t
+

σx

ε0
Dz, (38)
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and the time advance formula of Dz→Ez is:

∂Dz

∂t
= ε1κy

∂Ez

∂t
+ ε1

σy

ε0
Ez, (39)

When Bx = µ1Hx/sx and By = µ1Hy/sy, the time advance formulae for Ez→Bx, By are
as follows:

∂Ez

∂y
= −κy

∂Bx

∂t
−

σy

ε0
Bx, (40)

∂Ez

∂x
= −κx

∂By

∂t
+

σx

ε0
By, (41)

and the time advance formulae for Bx, By→Hx and Hy are as follows:

κx
∂Bx

∂t
+

σx

ε0
Bx = µ1

∂Hx

∂t
, (42)

κy
∂By

∂t
+

σy

ε0
By = µ1

∂Hy

∂t
, (43)

setting

ax = 2κx/∆t + σx/2ε0 ay = 2κy/∆t + σy/2ε0 er = 2/(ε1∆t)
bx = 2κx/∆t− σx/2ε0 by = 2κy/∆t− σy/2ε0 hr = ∆t/(2µ1)

(44)

In sub-step n→n + 1/2, discretize equation (38) as

Dn+ 1
2

z (i, j) =
bx
ax
·Dn

z (i, j) +
1
ax
·
{

1
∆x
·
[

Hn+ 1
2

y

(
i +

1
2

, j
)
− Hn+ 1

2
y

(
i− 1

2
, j
)]
− 1

∆y
·
[

Hn
x

(
i, j +

1
2

)
− Hn

x

(
i, j− 1

2

)]}
. (45)

The discretization scheme of Equation (39) is

En+ 1
2

z (i, j) =
by
ay
·En

z (i, j) +
er
ay
·
[

Dn+ 1
2

z (i, j)− Dn
z (i, j)

]
, (46)

where
Dn+ 1

2
z (i, j) = Dn

z (i, j) +
ay
er
·En+ 1

2
z (i, j)− by

er
·En

z (i, j). (47)

The discretization schemes of Equations (40)–(43), respectively, are

Bn+ 1
2

x

(
i, j +

1
2

)
=

by
ay
·Bn

x

(
i, j +

1
2

)
− 1

ay
· 1
∆y
·[En

z (i, j + 1)− En
z (i, j)], (48)

Bn+ 1
2

y

(
i +

1
2

, j
)
=

bx
ax
·Bn

y

(
i +

1
2

, j
)
+

1
ax
· 1
∆x
·
[

En+ 1
2

z (i + 1, j)− En+ 1
2

z (i, j)
]

, (49)

Hn+ 1
2

x

(
i, j +

1
2

)
= Hn

x

(
i, j +

1
2

)
+ hr·

[
ax·Bn+ 1

2
x

(
i, j +

1
2

)
−bx·Bn

x

(
i, j +

1
2

)]
, (50)

Hn+ 1
2

y

(
i +

1
2

, j
)
= Hn

y

(
i +

1
2

, j
)
+ hr·

[
ay·Bn+ 1

2
y

(
i +

1
2

, j
)
−by·Bn

y

(
i +

1
2

, j
)]

, (51)

In Equations (45)–(51), except for Equation (48), both sides contain the field component
at time (n + 1/2). By eliminating the simultaneous components from Equations (45)–(51),
except for Ez

n+1/2, we obtain

aiE
n+ 1

2
z (i− 1, j) + biE

n+ 1
2

z (i, j) + ciE
n+ 1

2
z (i + 1, j) = di, (52)

where
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ai = − hr
(∆x)2 ·

ay
ax bi =

ax·ay
er + hr

(∆x)2 ·
2·ay
ax ci = − hr

(∆x)2 ·
[

ay
(

i + 1
2 , j
)

/ax
(

i + 1
2 , j
)]

di =
ax·by

er En
z (i, j) +

{
1

∆x ·
[

Hn
y

(
i + 1

2 , j
)
− Hn

y

(
i− 1

2 , j
)]
− 1

∆y ·
[

Hn
x

(
i, j + 1

2

)
− Hn

x

(
i, j− 1

2

)]}
+(bx− ax)·Dn

z (i, j) + hr
∆x ·
[

ay·bx
ax − by

]
·Bn

y

(
i + 1

2 , j
)
−
[

ay·bx
ax − by

]
·Bn

y

(
i− 1

2 , j
)

.

(53)

In the sub-step of n + 1/2→n + 1, the difference scheme of Equation (38) is the same as
above, which can be expressed as

Dn+1
z (i, j) =

bx
ax
·Dn+ 1

2
z (i, j) +

1
ax
·
{

1
∆x
·
[

Hn+ 1
2

y

(
i +

1
2

, j
)
− Hn+ 1

2
y

(
i− 1

2
, j
)]
− 1

∆y
·
[

Hn+1
x

(
i, j +

1
2

)
− Hn+1

x

(
i, j− 1

2

)]}
. (54)

Equation (39) can be discretized as

En+1
z (i, j) =

by
ay
·En+ 1

2
z (i, j) +

er
ay
·
[

Dn+1
z (i, j)− Dn+ 1

2
z (i, j)

]
, (55)

where
Dn+1

z (i, j) = Dn+ 1
2

z (i, j) +
ay
er
·En+1

z (i, j)− by
er
·En+ 1

2
z (i, j). (56)

Equations (40)–(43), respectively, can be discretized as

Bn+1
x

(
i, j +

1
2

)
=

by
ay
·Bn+ 1

2
x

(
i, j +

1
2

)
− 1

ay
· 1
∆y
·
[

En+1
z (i, j + 1)− En+1

z (i, j)
]
, (57)

Bn+1
y

(
i +

1
2

, j
)
=

bx
ax
·Bn+ 1

2
y

(
i +

1
2

, j
)
+

1
ax
· 1
∆x
·
[

En+ 1
2

z (i + 1, j)− En+ 1
2

z (i, j)
]

, (58)

Hn+1
x

(
i, j +

1
2

)
= Hn+ 1

2
x

(
i, j +

1
2

)
+ hr·

[
ax·Bn+1

x

(
i, j +

1
2

)
−bx·Bn+ 1

2
x

(
i, j +

1
2

)]
, (59)

Hn+1
y

(
i +

1
2

, j
)
= Hn+ 1

2
y

(
i +

1
2

, j
)
+ hr·

[
ay·Bn+1

y

(
i +

1
2

, j
)
−by·Bn+ 1

2
y

(
i +

1
2

, j
)]

. (60)

Eliminating the simultaneous components of Equations (54)–(60), the time domain
advance calculation is obtained as follows:

ajEn+1
z (i, j− 1) + bjEn+1

z (i, j) + cjEn+1
z (i, j + 1) = dj, (61)

where

ai = − hr
(∆y)2 · ax

ay bi =
ax·ay

er + hr
(∆y)2 · 2ax

ay ci = − hr
(∆y)2 · ax

ay

di =
ax·by

er En+ 1
2

z (i, j) +
{

1
∆x ·
[

Hn+ 1
2

y

(
i + 1

2 , j
)
− Hn+ 1

2
y

(
i− 1

2 , j
)]
− 1

∆y ·
[

Hn+ 1
2

x

(
i, j + 1

2

)
− Hn+ 1

2
x

(
i, j− 1

2

)]}
+(bx− ax)·Dn+ 1

2
z (i, j)− hr

∆y ·
[(

ax·by
ay − bx

)
·Bn+ 1

2
x

(
i, j + 1

2

)
−
(

ax·by
ay − bx

)
·Bn+ 1

2
x

(
i, j− 1

2

)]
.

(62)

The steps of ADI-FDTD for the UPML boundary of 2D TM waves are as follows:

In the time step of n→n + 1/2:

(1) Calculate Ez
n+1/2 by Equation (52);

(2) Calculate Dz
n+1/2 by Equation (47);

(3) Calculate Bx
n+1/2 and By

n+1/2 by Equations (48) and (49);
(4) Calculate Hx

n+1/2 and Hy
n+1/2 by Equations (50) and (51).

In the time step of n+1/2→n+1:

(1) Calculate Ez
n+1 by Equation (61);
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(2) Calculate Dz
n+1 by Equation (56),

(3) Calculate Bx
n+1 and By

n+1 by Equations (57) and (58);
(4) Calculate Hx

n+1 and Hy
n+1 by Equations (59) and (60).

We used a simple air model to verify the absorption effect of the UPML boundary
conditions. Visual Studio 2010 was used as a development tool, and the CPU was an
Intel Core i5-4200H with an NVIDIA GeForce GTX 950m. The computing environment
above supported all the computing processes in this paper. The simulation area was
a 2.0 m × 2.0 m rectangular area; the spatial step was 0.005 m, and the time step was
∆t = 0.01 ns. A Ricker wavelet was added at the positive center of the model’s area (see
Figure 3). Figure 4 shows the snapshots of the Ez field at different moments. It can be
seen that the UPML absorption boundary condition had no obvious reflections, and the
absorption effect was good.
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3. Numerical Simulations
3.1. Two-Layer Medium Model with Circular Cavity

As shown in Figure 5, the model area was set to 2.0 m × 2.0 m. The upper layer of
the model was a 0.2 m air layer, and the lower layer was a 1.8 m clay layer. The main
frequency of the excitation source was a 1 GHz Ricker wavelet, which was located at a
0.2 m depth in the model, and the transmitter and receiver were 0.1 m apart. The relative
dielectric constant of the clay layer was 12, and the conductivity was 2 mS/m. A circular
cavity with a diameter of 0.1 m was set in the clay layer. The relative dielectric constant
and conductivity were 30 and 0 mS/m, respectively. The relative magnetic conductivity of
all the material was 1. We set the spatial step size to 0.005 m, the time step size to 0.01 ns,
and the thickness of the UPML to 0.01 m.
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The time step of the conventional FDTD algorithm needs to satisfy the CFL stability
condition. However, the ADI-FDTD algorithm is unconditionally stable and can save
computation time by choosing a larger time step. Figure 6 shows a comparison of the Ez
field distributions of the conformal ADI-FDTD with different CFLN, the non-conformal
FDTD, and the non-conformal ADI-FDTD. The CFLN is the ratio of the time step of the
ADI-FDTD algorithm to that of the FDTD algorithm. It can be seen that the results of
the non-conformal FDTD, the non-conformal ADI FDTD algorithm, and the conformal
ADI FDTD algorithm have good consistency in different time steps. Table 1 provides the
calculation time of the different algorithms when simulating the circular cavity model,
respectively. When CFLN is 5, compared with the non-conformal FDTD algorithm, the
time step of the conformal ADI-FDTD algorithm is increased to 5 times, and the number
of iterations is reduced to 1/5. At this point, the computation time of the conformal ADI-
FDTD algorithm is 961 s and that of the non-conformal FDTD algorithm is 1849 s, saving
about 48% of the time. Figure 7 shows the GPR profiles obtained by the non-conformal
FDTD method, non-conformal ADI-FDTD method, and the conformal ADI-FDTD method.
We indicate multiple reflections within the cavity with red boxes. As can be seen from
Figure 7, the images of the non-conformal FDTD method and the non-conformal ADI-FDTD
method are consistent. The conformal ADI-FDTD method has fewer multiple reflections
than the non-conformal ADI-FDTD method. At the same time, the conformal ADI-FDTD
method is closer to the conformal FDTD method than the non-conformal ADI-FDTD
method. This indicates that the conformal ADI-FDTD method can effectively reduce the
false reflection waves caused by conventional ladder approximation when simulating an
underground circular cavity. Table 1 and Figure 7 show that the conformal ADI-FDTD
algorithm can greatly improve the computational efficiency and can also effectively improve
the computational accuracy.
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Table 1. Computational resource usage of different methods.

Method Memory (Mb) ∆t (ns) Iterations Time (s)

Non-conformal FDTD 10.16 0.01 5000 1849
Conformal FDTD 10.20 0.01 5000 1897

Non-conformal ADI-FDTD 22.39 0.01 5000 4765
Conformal ADI-FDTD-CFLN = 1 22.48 0.01 5000 4812
Conformal ADI-FDTD-CFLN = 2 22.48 0.02 2500 2403
Conformal ADI-FDTD-CFLN = 3 22.48 0.03 1667 1608
Conformal ADI-FDTD-CFLN = 4 22.48 0.04 1250 1196
Conformal ADI-FDTD-CFLN = 5 22.48 0.05 1000 961
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Figure 7. GPR B-scan images of the two-layer cavity model: (a) Obtained by conformal ADI-FDTD
method; (b) Obtained by conformal FDTD method; (c) Obtained by non-conformal ADI-FDTD
method; (d) Obtained by non-conformal FDTD method.

3.2. Single-Pipe Model with Cavity Disease

This model simulated two types of the cavity disease around the pipeline, which
further verifies the accuracy of the conformal algorithm. The model had two layers with
an air layer on top and a clay layer on the bottom. As shown in Figure 8, there were some
irregular cavities above the concrete pipe with an outer diameter of 0.6 m and an inner
diameter of 0.48 m. Figure 9 shows a concrete pipe with an outer diameter of 1.2 m and an
inner diameter of 0.96 m with some irregular cavities underneath. The spatial steps and
time steps were 0.005 m and 0.01 ns, respectively, and the simulation iterations were 5000.
Table 2 shows the conductivity and relative permittivity of different materials in the model.
The excitation source of the model was the same as above.
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Table 2. Conductivity and dielectric constant of different media.

Material εr σ (S/m)

Air 1 0
Clay 12 0.002

PVC plastic 3 0
Concrete 6 0.001

Metal 1 1.0 × 106

By analyzing Figure 10, the non-conformal model profile only shows one distinct
reflected wave at the bottom of the pipe. The profile of the conformal model shows that
there are two reflected waves on the upper and lower sides of the pipe, and the reflected
waves of the irregular cavity disease above the pipe are incredibly apparent. As shown in
Figure 11, both the non-conformal and conformal model profiles clearly show the reflected
waves at the top and bottom of the pipe, but the non-conformal model profile only shows
the reflected waves from the cavity damage on the left side, while the conformal model
profile completely shows the reflected waves distributed on both sides of the cavity damage.
As can be seen in Figures 10 and 11, the circular pipe grid points are more accurately
processed using the conformal grid technique, and the conformal ADI FDTD algorithm is
more accurate.
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3.3. Complex Multi-Pipe Model

This model used the conformal ADI-FDTD algorithm to simulate the complex multi-
tube model. Figures 12 and 13 show the schematic diagrams of complex multi-pipe models.
Figure 12 shows an underground concrete multi-pipe model, with pipe diameters of 0.03 m,
0.06 m, and 0.1 m. Figure 13 shows an underground multi-pipe model with pipe diameters
of 0.4 m. The pipe materials were concrete, metal, and PVC plastic. The space step and time
step were set as 0.005 m and 0.01 ns, and simulation iterations were 5000. The model had
two layers: the upper layer was an air layer, and the lower layer was a clay layer. Table 2
provides the relative permittivity and conductivity. The excitation source and GPR system
were the same as for the single-pipe model.
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Figure 13. Underground multi-pipe model with different pipe materials.

Figures 14 and 15 show the GPR B-scan images obtained by the underground multi-
pipe model using the conformal ADI-FDTD algorithm. Figure 14, G1, G2, and G3 indicate
the intersection points of the hyperbolic asymptotes at the tops of concrete pipes with
diameters of 0.3 m, 0.6 m, and 1.0 m, respectively. Reflected waves are evident at the top
and bottom of the pipeline; the more reflective the diameter, the more pronounced the
reflected waves are. There are multiple reflected and stray waves at the bottom of the
profile image. In Figure 15, the PVC plastic pipe on the right side of the profile has weak
reflected waves, and the concrete pipeline located on the left side has distinct hyperbolic
reflected waves. The reflected waves are evident at the top of the middle metal tube, while
not at the bottom. In addition, some interfering stray waves and multiple reflected waves
can be observed at the bottom of the image.
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Figure 15. Simulation results of underground multi−pipe model with different pipe materials.

As shown in Figures 14 and 15, for an underground multi-pipe model with the same
depth and materials but different diameters, an increase in diameter causes the intersection
position of the hyperbolic asymptote at the top of the pipe to become higher, and the
reflection waves at the bottom and top of the pipe will be more obvious. As the thickness
of the pipe wall is related to the pipe’s diameter, two obvious hyperbolas with larger
diameters can be seen at the bottom and top of the concrete pipe. For underground multi-
pipe models with the same diameter and composed of different materials, the closer the
dielectric properties of the pipe material are to those of the surrounding clay, the weaker its
response to the electromagnetic waves and the less pronounced the diffraction hyperbolic
features are at the top and bottom. Due to the strong response of electromagnetic waves
to metals, the diffraction hyperbolic characteristics at the top of the metal pipe were very
obvious, while there were no hyperbolic characteristics at the bottom of the pipe and fewer
multiple reflections occurred inside.

3.4. Complex Underground Structures

We used the conformal ADI-FDTD algorithm to simulate complex underground
structure models. Figure 16 shows schematic diagrams of rectangular and circular void
models. There was a metal pipe located 0.5 m below the surface with an outside diameter
of 0.3 m and an inside diameter of 0.2 m. There was a rectangular cavity of a size of 0.1 m
on the left side of the metal pipe. On the other side, there was a circular cavity of a diameter
of 0.1 m. The space step and time step were set as 0.005 m and 0.01 ns, and simulation
iterations were 5000. The model had two layers: the upper layer was an air layer, and the
lower layer was a clay layer. Table 2 provides the relative permittivity and conductivity.
The excitation source and GPR system were the same as for the previous model.
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Figure 17 shows the GPR B-scan image obtained by the underground cavity model
using the conformal ADI-FDTD algorithm. By analyzing Figure 17, the metal pipe produces
strong reflected and diffracted waves. It is due to the strong response of the electromagnetic
waves to metals. The upper interface of the rectangular cavity is still a flat interface in
the radar forward image. Meanwhile, the lower interface is similar to the upper interface
but retains weak reflected wave energy. The circular cavity produces a clear reflected
wave, and the diffracted wave is weaker due to its smaller size. Moreover, some mutual
interference clutters and multiple reflection waves can be observed at the bottom of the
image. By analyzing the GPR scans, the characteristics of the model can be inferred more
comprehensively and accurately, helping to interpret the GPR information.
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4. Field Experiment

The correctness and effectiveness of the conformal ADI-FDTD algorithm were verified
by a GPR detection experiment of rectangular voids. As shown in Figure 18, a carton with a
length of 0.5 m, a width of 0.3 m, and a height of 0.16 m was buried in the soil, and the top
surface of the carton was 0.16m from the ground. In this experiment, GSSI SIR-4000 road
radar was used for detection, and the center frequency was 400 MHz.
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The experimental model was simplified to a two-dimensional case, as shown in
Figure 19. It was assumed that the relative permittivity of the soil layer was 6.8 and the
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conductivity was 3 mS/m. The time step was set to 0.001 ns; the space step was set to
0.005 m, and the simulation iterations were taken as 2000. Figure 20 was a single-channel
wave comparison diagram of the numerical simulation results of the conformal ADI-FDTD
algorithm and the measured results.
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Figure 20. Single−channel wave comparison diagram of simulated and measured results.

It can be seen from Figure 20 that the simulated waveform obtained by the algorithm
in this paper is in good agreement with the measured waveform in terms of amplitude and
delay, with differences only in details. This is mainly due to the fact that we considered the
soil layer as a homogeneous and isotropic medium, which led to the difference between the
assumed dielectric constant of the material and the real dielectric constant of the material
during the simulation. This example verifies the applicability and effectiveness of the
proposed algorithm for practical engineering inspection.

5. Conclusions

In this study, an efficient and accurate GPR forward model based on the ADI-FDTD
method and surface conformal technology was established. The GPR image characteristics
of the different shaped cavity diseases and multiple underground pipeline structures with
different materials and diameters were obtained. The model provides a basis for further
processing and interpretation of the measured data of GPR electromagnetic waves. The nu-
merical simulation results demonstrate that the conformal ADI-FDTD method can greatly
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reduce the errors caused by the ladder approximation method, which is traditionally em-
ployed to divide a circular pipe grid. Moreover, when the time step is increased to 5 times,
the conformal ADI-FDTD algorithm can save 48% of the computation time compared to the
traditional FDTD method. The correctness and effectiveness of the conformal ADI-FDTD
algorithm was verified by a field experiment. In future research, we intend to conduct GPR
inversion analyses of the underground pipe structures. Through a 2D GPR image inversion
analysis of the underground pipe structures, we will determine the positions and sizes of
cavity diseases in underground pipes.
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