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Abstract: With the rapid development of Earth observation technology, how to effectively and
efficiently detect changes in multi-temporal images has become an important but challenging problem.
Relying on the advantages of high performance and robustness, object-based change detection (CD)
has become increasingly popular. By analyzing the similarity of local pixels, object-based CD
aggregates similar pixels into one object and takes it as the basic processing unit. However, object-
based approaches often have difficulty capturing discriminative features, as irregular objects make
processing difficult. To address this problem, in this paper, we propose a novel superpixel-based multi-
scale Siamese graph attention network (MSGATN) which can process unstructured data natively and
extract valuable features. First, a difference image (DI) is generated by Euclidean distance between
bitemporal images. Second, superpixel segmentation is employed based on DI to divide each image
into many homogeneous regions. Then, these superpixels are used to model the problem by graph
theory to construct a series of nodes with the adjacency between them. Subsequently, the multi-scale
neighborhood features of the nodes are extracted through applying a graph convolutional network
and concatenated by an attention mechanism. Finally, the binary change map can be obtained
by classifying each node by some fully connected layers. The novel features of MSGATN can be
summarized as follows: (1) Training in multi-scale constructed graphs improves the recognition over
changed land cover of varied sizes and shapes. (2) Spectral and spatial self-attention mechanisms
are exploited for a better change detection performance. The experimental results on several real
datasets show the effectiveness and superiority of the proposed method. In addition, compared to
other recent methods, the proposed can demonstrate very high processing efficiency and greatly
reduce the dependence on labeled training samples in a semisupervised training fashion.

Keywords: change detection; superpixel segmentation; graph attention network; remote sensing images

1. Introduction

With the continuous collection of massive multi-temporal remote sensing images, such
as multi-spectral [1,2], synthetic aperture radar (SAR) [3], hyperspectral [4], and unmanned
aerial vehicle (UAV) images [5], these multi-temporal remote sensing images have been
promoted in practical applications. In this data context, change detection (CD) is one of
the most meaningful technologies, which aims to quantitatively and qualitatively obtain
the change information of ground objects by analyzing bitemporal remote sensing images.
In many practical situations, these changes have potential significance, such as urban
development planning, natural disaster assessment, dynamic monitoring of ecological
environment, and natural resource management [6–8].

In the early stages, in order to obtain land cover change information, the traditional
CD technology usually includes the following steps. First, the bitemporal image needs to
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be preprocessed, including radiation correction, ensemble correction, and spatial registra-
tion [9,10]. Second, a difference image (DI) between bitemporal images can be acquired
by image ratio [11], image difference [12], change vector analysis [13,14], etc. Finally, a
threshold or a clustering algorithm is applied to segment DI into binary change map (BCM),
such as Otsu [15,16], double-window flexible pace search [17,18], K-means [19], fuzzy
c-means [20,21], and so on. Since bitemporal images are usually collected under different
imaging conditions, such as illumination, season, etc., the different images may contain a
large number of spurious differences [22]. Moreover, these methods usually use pixels as
processing units, and either thresholding or clustering can cause a lot of noise in the results
of these methods.

To address the limitations of pixel-level methods, many scholars have made great
efforts in CD and proposed various object-based CD methods [23,24]. In general, object-
based methods first need to segment the image to obtain multi-scale objects. Universal
image segmentation techniques include fractal net evolution segmentation approach [25],
simple linear iterative clustering (SLIC) superpixel segmentation [26], etc. These approaches
frequently generate multi-scale objects or superpixels through region growing, i.e., objects
or superpixels are obtained by gradual pixel binning with similar spectral values. Therefore,
each superpixel or object is composed of a homogeneous set of pixels. The CD can then be
achieved by the object for the image analysis and processing unit. For example, in the early
stages, Jungho et al. proposed an object-based CD based on correlation image analysis
and image segmentation [27]. An object-based approach is based on multiple classifiers
and multi-scale uncertainty analysis for CD with high-resolution (HR) remote sensing
images [28]. Recently, some novel object-based approaches have made some efforts. For
instance, Lv et al. promoted an object-oriented key point vector distance to obtain binary
CD [29]. This method can significantly improve the performance of the difference image,
as it measures the difference between the key-points vectors of two objects in bitemporal
images. Similar methods are available in [30–32].

Although the aforementioned approaches have made remarkable progress, some limi-
tations are still unavoidable. These limitations mainly include the following three aspects:

• Traditional methods are difficult to deal with and analyze irregular objects effectively
as the multi-scale objects or the superpixels represent unstructured data. Therefore,
there is still a lack of effective representative feature extraction approach for unstruc-
tured data.

• Image segmentation itself is a challenging task, and usually some parameters need to
be adjusted to obtain better segmentation results. Moreover, the error of image segmen-
tation may accumulate in the change detection task to some extent. Therefore, object-
based change detection is severely limited by the performance of image segmentation.

• Object-based CD approaches generally require more complex frameworks. This re-
sults in a lower degree of automation of the entire CD framework due to the need to
individually perform image segmentation algorithms and select appropriate segmen-
tation parameters.

With the popularization of deep learning technology, the methods based on deep
neural networks have been widely used in change detection. In particular, the graph neural
networks (GNNs) have been noticed due to their excellent performance in unstructured data
classification. Recently, GNNs have been successfully applied to image classification [33,34]
and change detection [35,36]. Specifically, in [37], graph convolutional networks (GCNs)
are utilized to extract the features of different types for hyperspectral image classification.
Saha et al. proposed a semisupervised CD approach based on GCNs [38], which adopts
multi-scale parcel segmentation to encode multi-temporal images as a graph. However,
there are still few studies on GCN-based CD at present. Therefore, GCNs-based CD still
needs continuous and further research.

Considering the excellent performance of GCNs in solving image classification, we are
able to model the change detection task as a graph node classification task for improving the
performance of CD. With this motivation, the paper proposes a novel multi-scale superpixel
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graph attention network (MSGATN), which can process unstructured data natively and
extract valuable features. In the proposed method, a difference image (DI) is firstly obtained
by Euclidean distance between bitemporal images. Then, an SLIC algorithm is employed
to divide the DI into many homogeneous superpixels. Subsequently, these superpixels
are exploited to model the problem by graph theory to build a series of nodes with Based
on this, the multi-scale features of each node are captured by a graph attention network
(GATN). Finally, the binary change map (BCM) is generated by classifying each node using
some fully connected layers.

The contributions of the proposed MSGATN approach are summarized as follows:

(1) We propose a network model based on graph theory, which can process the unstruc-
tured data of objects with irregular boundaries in OBCD and consider the adjacency
relationship between objects.

(2) The proposed method is inductive, which can simultaneously adapt to graphs of
different scales. Therefore, our proposed MSGATN can exploit the constructed graphs
of various scales, thus improving the abilities of representation and generalization.

(3) Experiments on several real datasets obtained from different sensors demonstrate
that the proposed MSGATN has high efficiency and performance, as well as certain
generalization.

The rest of this paper is organized as follows. Section 2 briefly introduces some related
works. In Section 3, our method is described in detail. Section 4 provides the experimental
settings and results. Finally, the conclusions and future works are given in Section 5.

2. Related Work
2.1. Deep-Learning-Based CD Methods

In recent years, deep learning technology has become a new favorite in the field of
CD [39,40], especially convolutional neural networks (CNNs). These deep-learning-based
methods can be roughly summarized into two categories, i.e., image-level methods and
patch-level methods.

(1) Image-level methods: This category of method is to acquire semantic change
information by analyzing a complete bitemporal image at a time [41]. Hence, that usually
requires a large number of pairs of manually labeled training image pairs. For example,
Ji et al. proposed a Siamese U-Net with shared weights to acquire a building change map in
an end-to-end manner [42]. Liu et al. devised a local-global pyramid network for building
CD in [43]. In [44], a spatial–temporal attention-based network based on self-attention
mechanism was applied to mine deep robust features for large image-to-image CD datasets.
Although these approaches can achieve competitive performance, they often not only
require a large number of manually labeled paired images to train the network, but also
cost more storage space and computational resources.

(2) Patch-level methods: Different from image-level methods, this type of method
indicates using local pixel patches or superpixels as analysis units, and capturing feature
representations through convolution or fully connection to achieve CD. In the early stages,
Gong et al. proposed a novel CD method based on deep learning [45], which can avoid the
effect of the DI to provide a better change detection performance. In [46], a Gabor-based
PCANet (GaborPCANet) was promoted for CD in SAR images, which utilizes PCA filters
as convolutional filters to capture the image features. A convolutional-wavelet neural
network (CWNN) was devised to detect sea ice change detection from SAR images in [47].
Jiang et al. developed a semisupervised multiple CD approach, which can detect multiple
changes using only a very limited samples by training a generative adversarial network [48].
This approach introduces dual-tree complex wavelet transform into CNNs to reduce the
effect of the speckle noise, thus improving detection performance. However, these methods
based on local pixel patches are still limited by the selection of regular windows. To
alleviate this limitation, superpixels-based CD methods have received attention, which
aim to use superpixels as analysis units to capture more representative features through
CNNs. To achieve this, recent methods have made further efforts. For instance, Gong et al.
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presented a superpixel-based difference representation learning to extract semantic change
information between bitemporal images [49]. In [50], an end-to-end superpixel-enhanced
CD network was designed, which combines an adaptive superpixel merging module to
mine difference information for CD. Other methods refer to [51–53].

2.2. Graph Neural Networks

In the early stage, among the works concerning CD approach, graph theory-based
approaches have been extensively used for CD [54,55]. For instance, in [56], a weighted
graph was built to measure changes for CD with SAR images. Sun et al. proposed
an iterative robust graph for unsupervised heterogenous images CD [57]. This method
constructs a robust K-nearest neighbor graph of bitemporal images, and calculates the
difference image by comparing the graphs.

With the development of deep learning, a variant of CNNs, graph neural networks
(GNNs), has received sustained attention in many applications [58–60]. In particular,
graph convolutional networks (GCNs) have been successfully applied in the fields of
remote sensing, such as remote sensing image retrieval [61], remote sensing image semantic
segmentation [62], and hyperspectral image classification [63]. Specifically, GCNs are able
to efficiently process graph-structured data by modeling the relationships between samples
(or vertices). Therefore, GCNs can be naturally used to model remote spatial relationships
in remote sensing images, which is not considered in CNNs. Recently, considering the
previous GCNs-based research in the field of remote sensing, these methods have been
developed and applied to CD tasks. For example, Wu et al. promoted a multi-scale GCN
to detect land cover changes for CD in homogeneous and heterogeneous remote sensing
images [64]. This approach constructs graph representations through object-wise high-
level features generated by a pretrained U-Net. In [65], a multi-scale dynamic GCN was
employed to mine the short-range and long-range contextual information. These GNNs-
based methods have been initially applied to solve remote sensing image CD. However,
there are still few CD methods for GNNs, and a large number of systematic theoretical
studies and applications are still lacking. Therefore, further development of GNN-based
CD methods has potential value.

3. Proposed Superpixel-Based MSGATN
3.1. Overview of the Proposed MSGATN

In this subsection, an overview of the proposed MSGATN is given briefly in Figure 1.
Firstly, the difference intensity of bitemporal remote sensed images is obtained by Euclidean
distance. Based on the pixel-wise similarity, the difference intensity map can be segmented
to massive unstructured multi-scale superpixels of varied shapes and boundaries by simple
linear iterative clustering (SLIC). With the segmented DI acquired, a region adjacency graph
(RAG) can be constructed based on the mutual consistency of neighbor superpixels. The
spatial–temporal relationships between these superpixels can be well modeled by the edges
of constructed DI RAG. Then, the bitemporal remote sensing images are also segmented into
superpixels with the guidance of the segmentation information extracted in DI superpixel
segmentation. Several significant statistical characteristics, i.e., minimum, maximum, mean,
standard deviation, skewness, and kurtosiscan further represent the features of multi-scale
bitemporal superpixels. As a result, the input graph of graph attention network (GATN) can
be constructed by the nodes obtained from features of bitemporal superpixels and the edges
acquired in the RAG of DI superpixels. Finally, superpixel-level prediction is obtained by
GATN and remapped to form the pixel-level change map. The detailed inference process
of MSGATN can be illustrated in Algorithm 1.
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Figure 1. The framework and procedure of MSGATN.

Algorithm 1 Inference process of MSGATN

Input: T1, T2: the bitemporal images.

1: Begin

2: DI ← Euclidean_Distance(T1, T2); // obtain the difference intensity

3: SDI ← SLIC(DI); // conduct superpixel segmentation over DI

4: Gsp
(
V , Esp

)
← RAG

(
SDI); // acquire the region adjacency graph of SDI

5: ST1 ← superpixel_segmentation(T1); // segment T1 according to SDI

6: ST2 ← superpixel_segmentation(T2); // segment T2 according to SDI

7: F1 ← f eature_analyse
(
ST1); // represent the significant features of ST1

8: F2 ← f eature_analyse
(
ST2); // represent the significant features of ST2

9: V f ← concatenate
(

F1, F2); // collect the superpixel-level bitemporal features

10: Ginput ←
(
V f , Esp

)
; // construct the input graph for GATN

11: Foutput ← GATN
(
Ginput

)
; // obtain superpixel-wise change map

12: CM← remap
(
Foutput

)
; // remap the superpixel prediction to acquire final CM

Output: CM: binary change map.
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As shown in the procedure above, the proposed MSGATN firstly obtains the multi-
scale unstructured features of bitemporal remote sensed images through superpixel seg-
mentation, which further promotes the fine-grained CD prediction. Then, the mutual
relationships inside these bitemporal superpixels are well represented and modeled by
GATN. Given the overall framework and inference process of the proposed MSGATN, the
detailed information of the proposed graph construction mechanism can be given in the
following section.

3.2. Graph Construction

To acquire credible prior information for GATN, a preliminary but representative
graph construction is indispensable. In the proposed graph construction method, difference
intensity and bitemporal remote sensing images are integrated to obtain comprehensive
non-local change information, which advances the changed region detection in GATN. The
overall graph construction can be further illustrated by the following steps. Initially, the
pixel-wise difference intensity DI ∈ RH×W can be represented as

distance = 2
√
(T1− T2)2 (1)

DI =
distance−min(distance)

max(distance)−min(distance)
(2)

After the difference intensity is acquired, the multi-scale superpixel segmentation over DI
can be given as

SDI =
{

p1, p2, · · · , pN_seg
}
= SLICN_seg(DI) (3)

where SLICN_seg(·) denotes the simple linear iterative clustering with different numbers of
segmented superpixels, and N_seg represents the number of superpixels. Generally, the
more superpixels, the smaller they are. In this case, we can obtain multi-scale superpixels
for the multi-scale feature recognition of the proposed MSGATN. Then, the region adjacency
co-relations Gsp of SDI can be modeled as

Gsp
(
V , Esp

)
= RAG

(
SDI

)
(4)

in which RAG(·) represents the region adjacency graph construction operation. The
edges Esp are exploited to model the local and non-local relations inside bitemporal
superpixels. To achieve this, the bitemporal superpixels need to be firstly acquired as
ST1 =

{
p1

1, p1
2, · · · , p1

N_seg

}
and ST2 =

{
p2

1, p2
2, · · · , p2

N_seg

}
. Then, the bitemporal features

of these superpixels can be denoted as

F1 = concat
[
min

(
ST1
)

, max
(

ST1
)

, mean
(

ST1
)

, std
(

ST1
)

, skew
(

ST1
)

, kur
(

ST1
)]

(5)

F2 = concat
[
min

(
ST2
)

, max
(

ST2
)

, mean
(

ST2
)

, std
(

ST2
)

, skew
(

ST2
)

, kur
(

ST2
)]

(6)

where concat(·) indicates a feature-level integration, and min(·), max(·), mean(·), std(·),
skew(·), and kur(·) represent the superpixel-wise minimum, maximum, mean, standard
deviation, skewness, and kurtosis, respectively. Given these dependable and discriminative
features of bitemporal superpixels, the nodes can be obtained as follows:

V f = concat
(

F1, F2
)

(7)

at which concat(·) denotes a feature-wise concatenation. With the nodes and edges obtained,
the input multi-scale graphs for MSGATN can be constructed as

GN_seg
input =

(
V f , Esp

)
(8)
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With different N_seg, input graphs of varied scales can be provided for the proposed
MSGATN; thus, the multi-scale change objects obtain a finer cognition.

3.3. Multi-Scale Siamese Graph Attention Network

In the proposed MSGATN, a GATN is employed to better reveal the relationships
between multi-scale unstructured superpixels, and the graph attention mechanism is the
linchpin of GATN. To further facilitate the understanding for the proposed MSGATN, the
mathematical style of graph attention is given as follows: Let fi ∈ RCI and f j ∈ RCI be the
feature vectors of current node i and its neighbor node j, respectively. Then, the edge score
eij can be obtained by

eij =
(
concat

(
fiW, f jW

))
A (9)

where W ∈ RCI×CO and A ∈ R2CO×1 are the learnable supervised parameters, concat(·)
represents a feature-wise integration, and CI and CO denote the input and output feature
lengths, respectively. With each eij acquired, the attention score aij can be given as follows:

aij =
exp
(

LeakyReLU
(
eij
))

∑k exp(LeakyReLU(eik))
(10)

where LeakyReLU(·) represents a nonlinear activation, and k denotes all the neighbor
nodes of i. In the proposed MSGATN, the graph attention mechanism is widely used to
refine the graph feature representation. To improve the recognition for multi-scale objects,
the proposed network is trained over multi-scale graphs from superpixel segmentation of
different superpixel numbers. In our method, the N_seg is set to 2000, 4000, and 6000 to
obtain input graphs of different scales. Basically, GATN can tackle inductive tasks with
graphs of varied scales. Based on this fact, the proposed MSGATN can learn multi-scale
feature representation through training over several multi-scale constructed graphs in a
Siamese framework.

4. Experiments
4.1. Dataset Descriptions

To further test and verify the ability of the proposed method, two extensively used
remote sensing CD multi-spectral datasets, i.e., the Guangzhou city dataset and the Hongqi
canal dataset, are exploited, which are shown in Figures 2 and 3.

4.1.1. Guangzhou City Dataset

This dataset is composed of a bitemporal multispectral image pair with the spatial
resolution of 2.5 m, captured by the Systeme Probatoire d’Observation de la Terre 5 (SPOT-5)
satellite. It depicts the land cover change over urban areas of Guangzhou City between
October 2006 and October 2007, respectively, as shown in Figure 2. The bitemporal images
are the size of 877× 738 pixels, including red, green, and near-infrared bands. Its annotation
focuses on vegetation change.

(a) (b) (c)

Figure 2. Guangzhou City dataset: (a) T1-time image, (b) T2-time image, (c) ground truth image.
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4.1.2. Hongqi Canal Dataset

The second dataset, Hongqi Canal dataset, contains two high-resolution multispectral
remote sensed images which focus on the region of Yellow River Estuary near the city of
Dongying in China, as shown in Figure 3. The bitemporal images, which have the spatial
resolution of 2m and the size of 539× 543, were acquired by GF-1 satellite on 9 December
2013 and 16 October 2015, respectively. It mainly describes the river changes of the Hongqi
Canal settled in Xijiu village.

(a) (b) (c)

Figure 3. Hongqi Canal dataset: (a) T1-time image, (b) T2-time image, (c) ground truth image.

4.2. Comparative Methods and Related Settings

In the experiments, to evaluate the performance of the proposed MSGATN, we selected
five related CD approaches for comparison with our MSGATN. All methods are described
as follows:

(1) PCA_K-means [19]: This approach is one of the popular unsupervised CD methods,
which adopts principal component analysis (PCA) and k-means clustering to acquire
binary change map. In this method, two parameters (h and s) should be set. For the
Guangzhou City dataset, h and s are set to 9 and 3, respectively. For the Hongqi Canal
dataset, h and s are set to 5 and 3, respectively.

(2) ASEA [66]: It is a state-of-the-art method that exploits the contextual information
around a pixel to improve detection accuracy. This method requires no parameter
setting.

(3) GaborPCANet [46]: This was proposed in [46]. It utilizes PCA filters as convolution
kernels to obtain representative neighborhood features. In this approach, a parameter,
patch size, is set to 5 for both experimental datasets.

(4) DBN [49]: This is a superpixel-based method, which can acquire a better detection
result by difference representation learning. For our experimental datasets, the param-
eter patch size is fixed to 5 in this method.

(5) CWNN [47]: It devises a convolutional-wavelet neural network in SAR images. In the
experiments, the parameter patch size is fixed to 7 for our datasets.

(6) Proposed MSGATN: In our MSGATN, the number of superpixels is a hyperparameter.
Specifically, in our method, we selected six scales of superpixel segmentation, which,
respectively, include 1000, 2000, 3000, 4000, 5000, and 6000 superpixels, to train
our MSGATN in a Siamese manner. For both experimental results, the results of
6000 superpixels are chosen to be compared with other methods.

4.3. Evaluation Criteria

To further evaluate the performance for CD, several widely used evaluation metrics,
which are precision, recall, F1, and overall accuracy (OA), are employed. Their definitions
are given as follows:

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)
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F1 =
2× Precision× Recall

Precision + Recall
(13)

OA =
TP + TN

TP + TN + FP + FN
(14)

where TP, TN, FP, and FN are the numbers of true positive, true negative, false positive,
false negative pixels, respectively. Based on these well-acknowledged evaluation metrics,
the performance of different CD methods can be better revealed.

4.4. Comparative Results

In this subsection, the comparative results on two widely used CD datasets are given
in detail. To further illustrate the proposed method, corresponding analysis will be given
in detail. Detailed visual and quantized results and analysis are presented as follows.

4.4.1. Results on the Guangzhou City Dataset

The visualized and quantitative comparison results over the Guangzhou City dataset
are shown in Figure 4 and Table 1, respectively. From the quantitative comparison, our
MSGATN can achieve the best F1 and OA (90.54% and 97.19%). However, DBN and
GaborPCANet achieved the best precision and recall, respectively. Although the proposed
MSGATN does not achieve the best precision and recall, our method still provides relatively
reliable performance in terms of precision and recall. For example, compared with the DBN,
despite DBN reaching the best precision (98.05%), it obtained the second-worst performance
in recall (78.51%). Therefore, our MSGATN can acquire more balanced performance
for the four metrics. Different from other approaches, the proposed MSGATN adopts
a multi-scale graph attention network to effectively capture the representative features
of unstructured data, thereby improving the detection accuracy. Regarding the visual
results, the proposed MSGATN exhibits the fewest false detections compared to the other
five methods. Specifically, the GaborPCANet presents many false alarms compared to
the proposed MSGATN. Moreover, although the visual results of the DBN show fewer
false alarms, a large number of missed pixels are unavoidable. Compared with these
methods, our proposed MSGATN can obtain a more balanced performance in terms of
false detections and missed detections. Moreover, the proposed MSGATN can provide
more complete change information compared with other methods, except GaborPCANet.
Overall, the visual results also yielded similar conclusions to the quantitative comparisons.

(c)

(d)

(a) (b)

(e) (f)

Figure 4. The results of different methods on the Guangzhou City dataset: (a) PCA_K-means,
(b) ASEA, (c) GaborPCANet, (d) DBN, (e) CWNN, and (f) proposed MSGATN.
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Table 1. Accuracy comparison (in %) of different methods on the Guangzhou City dataset. The best
evaluation value are presented in bold for different metrics.

Methods Precision Recall F1 OA

PCA_K-means 97.33 78.22 86.74 96.43
ASEA 95.45 79.73 86.88 96.40

GaborPCANet 51.61 94.98 66.88 85.94
DBN 98.05 78.51 87.20 96.55

CWNN 42.19 87.17 56.86 80.23
Proposed MSGATN 91.04 90.04 90.54 97.19

4.4.2. Results on the Hongqi Canal Dataset

As presented in Table 2, the proposed MSGATN achieve the overall superiority over
the Hongqi Canal dataset compared to other selected CD methods. That is, our method
outperforms the other methods in all evaluation indicators, i.e., precision, recall, F1, and
OA, with a great gap. More exactly, the best precision (80.96%) and recall (57.17%) are
achieved by the proposed MSGATN, which leads to the best F1 (67.02%) for our method. It
indicates that the proposed MSGATN can capture finer complete land cover and acquire
better mapping for changed multi-scale objects with the help of input graphs with varied
scales, and similar conclusions can be discovered in the visualized CD results depicted in
Figure 5. Given the fact that the annotation of the Hongqi Canal dataset mainly focuses
on the river change, massive false alarms can be found in the CMs generated by other
methods. These false alarms are basically caused by the unchanged farmland around
the canal. However, they are well filtered out in the proposed MSGATN, which can be
attributed to the finer feature representation of our method. As a result, the river course
change in the Hongqi Canal dataset is well denoted by the proposed MSGATN, which
suggests the advantage of our method.

(a) (b) (c)

(d) (e) (f)

Figure 5. The results of different methods on the Hongqi Canal dataset: (a) PCA_K-means, (b) ASEA,
(c) GaborPCANet, (d) DBN, (e) CWNN, and (f) proposed MSGATN.
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Table 2. Accuracy comparison (in %) of different methods on the Hongqi Canal dataset. The best
evaluation value are presented in bold for different metrics.

Methods Precision Recall F1 OA

PCA_K-means 15.67 47.28 23.53 71.57
ASEA 16.26 50.69 24.62 71.28

GaborPCANet 3.71 12.89 5.76 60.99
DBN 19.17 34.53 24.66 80.47

CWNN 31.91 56.12 40.68 84.86
Proposed MSGATN 80.96 57.17 67.02 94.80

4.5. Parameters Analysis of the Proposed MSGATN on the Guangzhou Dataset

To further investigate the effectiveness of the proposed MSGATN, parameters analyses
are performed on the Guangzhou dataset in this section. In our MSGATN, the number
of superpixels is a hyperparameter. Furthermore, we selected six scales of superpixel
segmentation, which, respectively, include 1000, 2000, 3000, 4000, 5000, and 6000 superpixels
(as shown in Figure 6), to train our MSGATN in a Siamese manner. Generally, a larger
number of superpixels indicates a smaller segmentation scale. Conversely, a smaller
number of superpixels indicates a larger segmentation scale. Thanks to the characteristics
of the inductive GATN, our MSGATN can easily exploit multi-scale superpixel features.
By this way, features of different scales can be considered in our method. In this context,
different BCMs can be generated by the proposed MSGATN at each scale, as presented in
Figure 6. As the number of superpixels increases, the scale of superpixels also becomes
finer. Similarly, the BCM of each scale is also finer as the number of superpixels enlarges
for our MSGATN.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Segmentation results and the corresponding change detection results of different superpixel
numbers in the proposed MSGATN on the Guangzhou dataset: (a) 1000 superpixels, (b) 2000 super-
pixels, (c) 3000 superpixels, (d) 4000 superpixels, (e) 5000 superpixels, (f) 6000 superpixels.

Figure 7 more intuitively demonstrates the relationship between the number of su-
perpixels and detection accuracy. Concretely, as the number of superpixels increases, all
metrics show an upward trend. However, if the number of superpixels exceeds 3000, the
accuracy gradually decreases. Hence, the performance of the proposed MSGATN may not
continue to increase as the number of superpixels increases. Moreover, more superpixels
can lead to larger graph structures, which can significantly increase the computational
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cost. According to the above analysis, the number of superpixels cannot be continuously
increased in our method.

1000 2000 3000 4000 5000 6000
The number of superpixels
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Figure 7. Relationship between change detection accuracy and superpixels numbers for the proposed
MSGATN on the Guangzhou dataset.

5. Conclusions

In this work, a novel superpixel-based multi-scale Siamese graph attention network
(MSGATN) is proposed for change detection in high-resolution remote sensed imagery. In
the proposed method, superpixel segmentation is exploited to aggregate homogeneous
difference information to construct heterogeneous change information for a better recog-
nition of multi-scale changed land cover. In addition, multi-scale superpixel-constructed
graphs are introduced to a graph attention network (GATN) in a Siamese framework, which
further facilitates the cognition of multi-scale objects for the GATN, thus improving the
performance. The proposed MSGATN is validated over two widely used change detection
datasets, and compared to several comparative change detection methods. Corresponding
results indicate that the proposed method outperforms other methods over all selected
evaluation metrics.

In the future work, efforts can be made to achieve a more fine-grained changed land
cover annotation in an unsupervised framework, which can be less time-consuming and
laboring in practical applications.
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