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Abstract: The complex workflows and interactions between heterogeneous entities in Cyber-Physical
Production Systems (CPPS) call for the use of context-aware computing technology to operate
effectively and meet the order requirements in a timely manner. In addition to the objective to
meet the order due date, due to resource contention between production processes, CPPS may enter
undesirable states. In undesirable states, all or part of the production activities are in waiting states or
blocked situation due to improper allocation of resources. The capability to meet the order due date
and prevent the system from entering an undesirable state poses challenges in the development of
context-aware computing applications for CPPS. In this study, we formulate two situation awareness
problems, including a Deadline Awareness Problem and a Future States Awareness Problem to
address the above issues. In our previous study, we found that Discrete Timed Petri Nets provide an
effective tool to model and analyze CPPS. In this paper, we present a relevant theory to support the
operation of CPPS by extending the Discrete Timed Petri Nets to lay a foundation for developing
context-aware applications of CPPS with deadline awareness and future states awareness capabilities.
We illustrate the theory developed in this study by an example and conduct experiments to verify the
computational feasibility of the proposed method.

Keywords: context-aware application; cyber-physical production systems; situation-aware; deadline;
discrete timed; Petri net

1. Introduction

The term Cyber-Physical Systems (CPS) was introduced in [1] to refer to the paradigm
that supervises, manages and controls entities in the physical world through the use of
cyber world models. The widespread use of the Internet of things (IoT) as well as relevant
Information and Communication Technologies (ICTs) have encouraged the adoption of the
CPS paradigm by manufacturers [2,3]. The CPS for manufacturing systems are referred
to as Cyber-Physical Production Systems (CPPS) [4]. A five-level classification of CPPS
according to the level of integration was discussed in [5]. These five levels include the
Connection level, Conversion level, Cyber level, Cognition level and Configuration level.
This classification was extended to CPPS applications in [6].

The Supervisory Control and Data Acquisition (SCADA) system in CPPS can access
the real-time data from sensors based on the IoT infrastructure. The SCADA system in CPPS
may provide the features of Connection level, Conversion level, Cyber level, and Cognition
level services in CPPS, depending on the implementation. Rich accessible real-time data
from sensors have several implications for managers and workers and open the door for
the creation of many potentially innovative context-aware applications [2]. For example,
CPPS enable managers to monitor and supervise the status of production activities and
operations at their fingertips. For workers on the shop floor in CPPS, real-time data provide
feedback information to guide their operations. The widely accessible real-time data enable
and facilitate the development of context-aware applications for CPPS. Context-aware
applications for CPPS make it easier for entities on the shop floor in CPPS to acquire
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contextual information at the point of need. Therefore, the development of context-aware
applications for CPPS is an important research area in the literature [2–4].

In ICTs, context awareness is a property with which computers or applications can
both sense and react based on the environment. Context awareness refers to the capability
to consider the situation of entities [7]. Therefore, a context-aware application should be
aware of the situation of entities in the system. Situation awareness refers to the perception
of an environment and relevant events to comprehend the current situation and predict
its future status [8]. CPPS aims to fulfill the order requirements by meeting the due date.
However, due to the complex production processes and interactions between entities in
CPPS, CPPS may enter undesirable states in which all or part of the production activities
are in waiting states or blocked due to the resources not being allocated properly. Therefore,
situation awareness in CPPS includes two properties: deadline awareness and future
states awareness. These two situation awareness properties should be considered in the
development of an effective context-aware application for CPPS.

Existing studies on context-aware applications for CPS primarily focus on the genera-
tion of contextual information for entities in CPS [9]. The challenge of attaining situation
awareness in CPPS is not addressed. As a result, although the real-time data are readily
available to managers and workers in CPPS, managers and workers cannot respond to
the environment efficiently without an effective decision support tool. As a result, man-
agers and workers in CPPS cannot make the right decisions and perform the operations as
needed in the CPPS to meet customers’ order requirements. Motivated by this need, this
paper attempts to develop the theory to analyze the situation of CPPS in terms of deadline
awareness and future states awareness to support decision makers and generate contextual
information in CPPS. The goal of this paper is to realize the situation awareness of context-
aware applications for CPPS. The complexity of developing an effective context-aware
application depends on the complexity of identifying the “context” and analyzing the
“situation” of the entities in a system. For CPPS, “context” is equivalent to the current states
of entities, whereas “situation” is relevant to the evolution of future states. The complexity
of analyzing the “situation” is much greater than the complexity of identifying the “context”
of entities in CPPS. Therefore, we focus on the theory of analyzing the “situation” of CPPS
to pave the way for the development of context-aware and situation-aware applications
for CPPS.

In scientific studies, researchers tend to propose a new solution method based on
the knowledge from the relevant literature instead of reinventing the wheel. Reinventing
the wheel is only necessary when there is no one that can meet the requirements. The
strategy of borrowing existing models and tailoring them to fit the requirements of studies
is common in scientific research. In this paper, we adopt a class of Petri nets as the model
of CPPS. Petri nets were invented by Carl Adam Petri to describe chemical processes [10].
Ramchandani borrowed the Petri net model invented by Carl Adam Petri and extended
it to a timed Petri net [11] by considering the time factor (which was not considered in
the original Petri net model). In a timed Petri net, the time it takes to fire a transition
is described by a delay. Another researcher, Merlin, also borrowed the Petri net model
invented by Carl Adam Petri and extended it to a time Petri net [12] by considering the time
factor in the Petri net in a different way. In a time Petri net, a transition can only be fired
with a specific time interval since it is enabled. In terms of the model used in this paper,
we borrow characteristics from the existing discrete timed Petri net model in the literature
from [13]. The way to discretize time is similar to the one used by Lefebvre and Daoui
in [14]. In terms of the solution methodology in this paper, we propose a new solution
approach without reinventing the wheel. The model used in this paper extends the class of
deterministic timed Petri nets in [13] by allowing more complex resource sharing patterns
in CPPS. In this paper, we define the problems relevant to the situation awareness of CPPS
and develop the theory needed to lay a foundation for achieving situation awareness of
CPPS, and for developing deadline-aware and future states-aware applications in CPPS.
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We illustrate the computational feasibility of our approach by presenting our computational
experience based on experiments of the proposed method to analyze the situation of CPPS.

The contributions of this paper are summarized as follows: (1) the conceptualization of
deadline awareness and future states awareness of CPPS, (2) a formulation of the deadline
awareness problem and future states awareness problem of CPPS, (3) an optimization
approach to the deadline awareness problem and future states awareness problem of
CPPS and (4) a computational complexity analysis and verification based on the results.
The problem addressed in this paper is obviously different from the existing studies of
context-aware applications for CPPS. Several concepts are proposed in this paper, including
deadline awareness and future states awareness based on a class of discrete timed Petri
net models. The time factor and deadline awareness issues addressed in this study are
not studied in the context-aware workflow management method proposed in [15,16]. The
discrete timed Petri net model used in this paper is also different from the temporal
reasoning time interval model in [16]. This study extends the method proposed in [9,13] to
generate contextual information by exploiting the discrete timed Petri net models for CPPS.

In terms of the use of Petri nets in context-aware applications, in this paper, we adopt
Petri nets as a tool to generate control policy instead of using Petri nets as models for the
evaluation of performance [17]. This paper focuses on achieving the deadline awareness
and future states awareness of CPPS based on a class of discrete timed Petri nets. This is
different from the study [18] that uses Petri nets in the modeling of a context-aware Human-
Computer System. The research problem addressed in this paper concerns decision making
in CPPS which is different from the literature on Petri net decision-making modelling for
cloud service composition in [19].

The remainder of this paper is organized as follows. A review of the related literature
is provided in Section 2. We state the situation awareness problem of CPPS in Section 3
and present the problem formulation in Section 4. Our approach to solving the situation
awareness problem is presented in Section 5. Results obtained based on experiments of
the proposed method and discussion are reported in Sections 6 and 7, respectively. We
conclude this paper in Section 8.

2. Literature Review

Context-aware computing technologies refer to the use of sensor, information and
communication technologies to sense an environment and adapt the behaviors of applica-
tions and devices accordingly, in order to provide the relevant information at the point of
need for users [20]. To understand context-aware computing technologies, the meaning
of “context” should be clarified. There are many definitions of the word “context” as
mentioned by Alegre et al. in [21]. However, there is no consensus on the definition of the
word “context” [22]. Despite this fact, Dey gave a definition of the word “context” as “any
information that can be used to characterize the situation of an entity” [23]. This defini-
tion is easy to understand and has been widely accepted in the literature. Context-aware
computing relies on the use of contexts. With the advancement of sensor, information and
communication technologies, more and more contexts can be accessed and used in the
development of context-aware applications. These contexts include time context, location
context, environment context, device context and user context, among others [24]. The
prevailing Internet of Things have created innovative research issues and application areas
in context-aware computing. For example, the study of [25] presents a survey of context
awareness issues on movement and activity tracking, and localization and environmental
sensing for mobile platforms. Recent development of context-aware computing for guid-
ance support in disaster evacuation can be found in the survey paper [26]. The application
of context-aware computing technologies in recommendation systems has been a hot area
of research in recent years. The study [27] provides a review of the state-of-the-art tech-
niques for context-aware recommendation systems. With the availability of real-time sensor
data, this enables the use of time context and environmental context in the development of
context-aware scheduling applications. Hence, context-aware scheduling is an important
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research area [28]. Recently, a study was conducted on the methodology to support the
realization of emerging context-aware social-technical applications from conception, design,
and development, through to evolution, based on an activity theory-based approach [29].

The design of context-aware applications must consider the factors of time, location
and activities of users. Therefore, time, locations and activities are the basic contextual
elements in context-aware computing technologies. A concept directly relevant to context-
aware computing is awareness. Awareness refers to the state of being conscious of some-
thing. It also refers to the ability to perceive, feel, or be cognizant of events [30]. Despite
extensive studies on context-aware computing in the literature, there are only a few studies
that are relevant to the situation awareness properties of CPS. These include the study of [9]
on context-aware CPS and the study of the impact of resource failures on the operation of
CPS [10]. Although CPPS can be viewed as a special class of CPS, some of the characteristics
of CPPS are different from CPS. The way in which resources are shared among different
workflows in CPPS is different from that of CPS. This calls for a study on the situation
awareness of CPPS. In the context of CPPS, situation awareness includes two elements:
deadline awareness and future states awareness. These two situation awareness properties
should be considered in the development of an effective context-aware application for
CPPS. In this paper, we develop a theory to lay the foundation for situation awareness of
CPPS and pave the way for deadline-aware and future states-aware applications in CPPS.

To achieve these goals, the characteristics of CPPS should be studied first. The review
paper by Napoleone et al. provides an in-depth survey of state-of-the-art CPPS litera-
ture [31]. In [31], several characteristics of CPPS were highlighted to develop a solution
methodology. Among these characteristics, the ability to deal with complexity and hetero-
geneity in CPPS is essential. To deal with complexity and heterogeneity in CPPS, proper
tools and methods should be used. In [32], Harrison et al. reviewed the engineering ap-
proaches and tools available for CPPS. Selection of a proper modeling language is needed
to handle complexity and heterogeneity in CPPS.

To cope with the changing requirements in the business environment of CPPS, the
concept of Model Driven Architecture (MDA) was proposed [33]. The MDA approach to
the development of software systems focuses on platform-independent models instead of
the platform dependent models of an application. A generic transformation procedure is
then applied to transform platform-independent models into platform dependent models
for the target application. The Unified Modeling Language (UML) and the Systems Mod-
eling Language (SysML) are two popular modeling languages that can be used with the
MDA approach. UML is a widely accepted and general-purpose modeling language in
software engineering [34]. As an industrial standard, UML provides a standard way to
visualize the design of software systems. In [35], Thramboulidis proposed a model driven
approach for control and automation software based on UML. SysML is a general-purpose
architecture modeling language for Systems Engineering applications [36]. The application
of SysML to support embedded systems engineering can be found in [37]. In [38], a model
and simulation for mechatronic systems with SysML was studied. Despite the powerful
modeling tools provided by UML and SysML, they lack the support to address the situation
awareness issues of systems. To analyze the situation awareness of systems, a formal
modeling language that supports the analysis of system dynamics should be used.

Petri nets and different variants of Petri nets are graphically oriented and formal
modeling languages that have been used for the simulation, verification and analysis of
software systems. According to Wikipedia, Petri nets were invented to describe chemical
processes in August 1939 by Carl Adam Petri [39]. In the literature, the Petri net model
was documented in the dissertation of Carl Adam Petri in 1962. Since its invention, the
Petri net model has been widely applied in different problem domains, including the
computer, communication manufacturing and chemical sectors [40]. The adoption of
Petri nets as the platform-independent models in MDA has been studied in [15]. In [15],
the authors adopted untimed Petri nets as the platform-independent models to develop
context-aware workflow systems. However, the time factor is not considered in [15]. In
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the literature, many variants of Petri net models considering time semantics have been
proposed to deal with timing issues in real world systems. The paper [41] by Zuberek
surveys several variants of timed Petri nets proposed in the literature. There are different
ways to model the time factor in timed Petri nets. For example, Zuberek introduced a class
of deterministic timed Petri nets by specifying a fixed time interval for each transition [42].
In [43], Sifaki proposed a class of timed Petri nets by specifying a fixed time interval for
each place in [38] to evaluate performance. Tokens are considered to be unavailable during
the specified time interval of the corresponding place. Another way to model the stochastic
nature of firing time is to assign a random variable to represent the firing time of each
transition. This class of timed Petri nets are called Stochastic Petri Nets (SPN) [44]. In
a continuous time SPN, the transitions are fired based on transition rates and the firing
time is exponentially distributed. In a discrete time SPN, the transitions are fired based on
the specified conditional probabilities and the firing time is geometrically distributed [45].
SPNs are primarily used in performance evaluation whereas deterministic timed Petri
nets are used for scheduling or the control of systems. In this paper, we adopt a class of
deterministic timed Petri nets as the model of CPPS to formulate the Deadline Awareness
Problem and Future States Awareness Problem.

In this study, we consider a class of deterministic timed Petri nets by borrowing the
timed Petri nets that were invented by Ramchandani [11] and tailoring them properly to
Discrete Timed Petri Net (DTPN) models based on the discretization of time. The way to
discretize time is similar to the one used by Lefebvre and Daoui in [14]. The model used in
this paper extends the class of Petri nets in [13] by allowing more complex resource sharing
patterns in CPPS. We propose a transformation method to solve the problem. We conduct
experiments to study the computational feasibility of the proposed method.

3. Situation Awareness Problem in CPPS

Due to the complex workflows and heterogeneous resources involved in the operation
of CPPS, identification of the “situation” of CPPS is a challenging problem as “situation”
is characterized by evolution of the future states of the system. To concretely characterize
the “situation” of CPPS, we first clarify the objectives of CPPS and factors that may impact
the achievement of these objectives. Based on the objectives of CPPS and factors that may
impact on the achievement of the objectives we can state the situation awareness problem
for CPPS.

CPPS aims to produce products to meet the order requirements of customers. There-
fore, the objectives of CPPS are to fulfill order requirements. Each order is specified by
product demand and the associated deadline for delivering the requested products. There-
fore, the “situation” of CPPS is often linked to whether the deadline of an order can be met.
In this paper, we introduce the term “deadline awareness” to refer to the situation about
whether the deadline of an order can be met.

In CPPS, due to resource sharing and contention between production processes, the
systems may enter undesirable states in which all or part of the production activities are in
a waiting state or blocked, due to the resources not being allocated properly. To characterize
whether a CPPS can avoid such undesirable states, we introduce another term (“future
states awareness”) to refer to the situation about whether undesirable states can be avoided
and the target state can be reached.

Based on the terms defined above, we state the following situation awareness problems.
Deadline Awareness Problem: Given a CPPS and an order, determine whether the

order can be fulfilled by the deadline.
Future States Awareness Problem: Given a CPPS and an order, determine whether

undesirable states can be avoided and the target state can be reached.
To address the problems stated above, we need to formulate these problems formally.

We introduce proper models for CPPS first. We then formulate the above problems based
on the models for CPPS. Finally, we develop the theory for solving these problems.
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In order to analyze the properties of CPPS, a suitable modeling tool must be used to
construct the model of CPPS. Several requirements of modeling tools must be satisfied.
These requirements include the capabilities to model the operations, events and timing of
the entities in CPPS. The modeling tool selected to model CPPS should be able to capture
interactions between entities such as the synchronization of resources and operations, and
concurrent and asynchronous events in CPPS. In particular, the modeling tool should be
easy to learn and use. In addition, there must be analysis methods or theory accompanied
with or developed for the selected modeling tool to facilitate analysis of the properties of
CPPS. In computer science, several tools have been proposed and used to build models for
systems. Among these modeling tools, Petri nets are a graphical modeling language that
satisfy the requirements discussed above.

Considering time in Petri nets poses challenges for the analysis of Petri nets with time
semantics in terms of time and space complexity. Many researchers contributed a lot by
proposing more efficient methods to tackle the complexity issue. Different methods of
analyzing time in time Petri nets or timed Petri nets have been proposed in the literature.
In the early work [46] of Berthomieu and Menasche, the concept of State Class was first
proposed in conjunction with an algorithm for the enumeration of State Classes for the
analysis of Merlin’s time Petri nets. A State Class graph preserves markings and traces with
finite representations of states. It enables the analysis of time Petri nets. The concept of
State Class was also used in the work [47] by Berthomieu and Diaz to verify time dependent
systems. Although the State Class graph is suitable for reachability analysis, the branching
structure of the state graph is not preserved. Berthomieu and Vernadat proposed the graph
of atomic classes which preserves branching structure [48]. In the work [49], a Timed
Aggregate Graph was proposed by Klai et al. to abstract the reachability state space of
a time Petri net. In the Timed Aggregate Graph, the nodes are referred to as aggregates
which represent grouped sets of states with associated time information encoded inside.
Klai et al. illustrated the advantage of the Timed Aggregate Graph by experimental results.
As the approaches were proposed primarily for model checking and the verification of
systems, Lefebvre proposed a Timed Extended Reachability Graph to encode markings
and temporal constraints, as well as the earliest firing policy for control and scheduling
issues [50]. Lefebvre proposed an Approximated Timed Reachability Graph in [51] to
reduce the complexity of the Timed Extended Reachability Graph by aggregating the states
in which the markings are equal and the temporal constraints are not far from each other.
A common property of the methods mentioned above is the need to explore state space
or reduced state space by the aggregation of states to reduce complexity. However, all
these methods suffer from state explosion problems as the complexity for constructing
or exploring the variants of reachability graphs (State Class graphs or Timed Extended
Reachability Graphs) grows exponentially with the problem size. This motivates us to
develop a novel method for a subclass of nets without constructing or exploring any
variants of reachability graphs.

In the next section, we introduce the way to construct models for CPPS based on a
class of Petri nets. We then formulate the problems stated in the previous section based on
the models constructed for CPPS.

4. CPPS Models

In this paper, to study the Deadline Awareness Problem and the Future States Aware-
ness Problem of CPPS, we adopt a variant of timed Petri nets called discrete timed Petri
nets (DTPN) to construct models for CPPS. We follow a bottom-up approach to building
models for CPPS by constructing individual models of the entities in CPPS first and then
constructing the overall model for CPPS, taking into account the interactions between
resources and operations in the workflows. The models of individual entities in CPPS are
divided into two categories: task subnets and resource subnets. To present the modeling of
CPPS, we list the symbols and notations used in this paper in Table 1.
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Table 1. Symbols and notations.

Symbol/Variable Meaning

J The total number of different task subnets
J The set of indices of task subnets, J= {1, 2, 3, ..., J}
j A type of task subnet, j ∈ J

Π The number of periods in the time horizon
τ The index of a period, τ ∈ {1, 2, ..., Π}

Dj
The requested quantity of the products (demand) to be produced by type-j task subnets,

j ∈ J = {1, 2, 3, ..., J}
Φ The order deadline

GJj The model of type-j task subnet, GJj = (Pj, Tj, Fj, mj0, µj)
Nj Total operations in GJj
R Total resource types
R The set of indices of different types of resources, R = {1, 2, 3, ..., R}
r The index of a resource type, r ∈ R = {1, 2, 3, ..., R}
k The k-th operation performed by a resource
‖ A merging operator to merge two or more Petri nets

GRr A model of type-r resource subnet, GRr = (Pr , Tr, Fr, mr0, µr)
Crt The nominal capacity of type-r resources in period t; Crt is set to mr0(r) for all t
G A CPPS model, G = (P, T, F, m0, µ) = GJ‖GR, where GJ = ‖

j∈J
GJj and GR = ‖

r∈R
GRr

m A marking of G
STNj(Vj, Aj) The spatial–temporal network of type-j task subnet, j ∈ J= {1, 2, 3, ..., J}
JSTN(V, A) A Joint Spatial–Temporal network

V(v) The set of nodes in V directed connected to v
Vj(s) The set of nodes in Vj directed connected to s
Vj(ej) The set of nodes in Vj directed connected to ej

a An arc in STN(V, A), where a ∈ A or an arc in STNj(Vj, Aj), where a ∈ Aj.

a(v, w) , (v, w)
An arc from node v to node w is represented explicitly by a(v, w) .

The arc a(v, w) is abbreviated as (v, w) or a whenever it is clear from the context
ta The transition associated with arc a
f A solution of the Nominal Optimization Problem (NOP)

f (a), f (a(v, w)) f (v, w)
f (a(v, w)) represents the value of the solution f to NOP on the arc a= a(v, w)= (v, w) of

STN(V, A). f (a(v, w)) is abbreviated as f (v, w) or f (a) with a= (v, w) whenever it is clear
from the context

g(τ) The earliness penalty function for τ ≤ Φ
h(τ) The lateness penalty function for τ > Φ

A CPPS consists of different types of entities, including resources and tasks. We
propose task subnets and resource subnets for different types of resources and tasks. Task
subnets and resource subnets in CPPS are described by a class of discrete timed Petri nets
(DTPN) [9]. Resources and tasks in a system are represented by tokens in a DTPN. The
number of tokens in each place can be represented by a vector called a marking. An event in
a system is called a transition in a DTPN. The occurrence of an event changes the marking
of a DTPN. A DTPN evolves from the initial marking due to the firing of transitions. In the
DTPN model, we assume the time horizon is divided into Π periods and the duration of
each period is δ. The choice of δ depends on its application. Note that the method proposed
in this study works regardless of the choice of δ so long as δ > 0. The value of the firing
time of a transition is described by µδ, where µ ∈ Z and Z is the set of nonnegative integers.
Note that continuous time Petri nets are limiting cases of the discrete time Petri nets as
δ→ 0 .

A formal definition of DTPN is as follows.

Definition 1. We assume that the time horizon is divided into Π periods and the duration of each
time period is δ. A DTPN is a five-tuple G = (P, T, F, m0, µ) which consists of a set of places: P, to
describe the states, a set of transitions; T, to represent events, flow relation; F ⊆ (P× T)∪ (T× P),
to characterize the connection between places and transitions, an initial marking; m0, to describe
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the initial state and the firing time of a transition t ∈ T is µ(t)δ, where µ : T → Z , Z is the set of
nonnegative integers and δ is real.

To describe the dynamics of a DTPN, we need the following definition about
transition firing.

Definition 2. We use •t to denote the set of input places of transition t and use t• to denote the
set of output places of t. If m(p) ≥ F(p, t)∀p ∈ •t, transition t is enabled under marking m. An
enabled transition t can be fired. A transition t selected for firing in period τ under a control action
will be fired at the beginning of period τ and the firing will be completed at the end of the designated
period τ + µ(t)− 1. After firing an enabled transition t, the number of tokens in each input place
in •t will be reduced by one and the number of tokens in each output place in t• will be increased by
one.

Figure 1a is an example of DTPN, where •t1 = {r1} and t•1 = {p2}.
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Definition 3. A resource subnet GRr for a type-r resource is a discrete timed Petri net
GRr = ( Pr, Tr, Fr, mr0, µr ) that consists of a number of activities of type-r resources, where
r ∈ R and the function µr is used to specify the firing time of each transition in Tr. Each activity
is represented by a circuit [36] in which a number of transitions and places forms a closed loop. A
resource subnet GRr has an idle state place denoted by pr. The set of all idle state places of resources
is denoted by Po = {pr, r ∈ R = {1, 2, ..., R}}. Without loss of generality, we will also refer to the
type-r resource by r ∈ R whenever it is clear from the context.

Figure 1a,b show two resource subnets, GRr1 and GRr2 . There are four circuits, r1t1 p2t2,
r1t3 p4t4, r1t5 p7t6 and r1t7 p9t8 in GRr1 . There are two circuits, r2t2 p3t3 and r2t6 p8t7 in GRr2 .

Definition 4. The capacity of type-r resources in period τ is denoted as Crτ , where Crτ = mr0(pr)
for all τ ∈ {1, 2, ..., Π}, where Π is the time horizon.

A CPPS may process different types of tasks. Let J denote the set of task types. Each
task consists of a number of operations. Each operation can be specified by transitions. A
type of task is described by a task subnet. Therefore, the task subnet considered in this
study consists of a sequence of transitions. Let Tj denote the set of transitions in a task
subnet. A transition may involve multiple resources.

Definition 5. A type j task subnet GJj = (Pj, Tj, Fj, mj0, µj), j ∈ J, is a discrete timed Petri net
which consists of a sequence tj0, tj1, tj2, ..., tjNj , tjNj+1 of Nj + 2 transitions in the set Tj and a
sequence pj0, pj1, pj2, pj3 , . . . , pjNj of Nj + 1 places in Pj, where µj : Tj → Z is a function that
specifies the lower bound of the firing time of each transition t ∈ Tj. The first transition tj0 is a
fictitious transition that represents the release of a task. The transition tjNj represents completion of
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the final operation of the task. The last transition tjNj+1 is a fictitious transition that represents the
removal of a completed task.

Note that the set of transitions in Tj\
{

tj0, tjNj tjNj+1

}
requires allocation of resources,

i.e., |•t ∩ Po| ≥ 1 ∀t ∈ Tj\
{

tj0, tjNj tjNj+1

}
and |•t ∩ Po| = 0 ∀t ∈

{
tj0, tjNj , tjNj+1

}
. A

transition t ∈ Tj involving multiple resources is characterized by |•t ∩ Pr| ≥ 2. The number
of resources required to fire transition t, where t ∈ Tj, is denoted by Rjt(r)∀r ∈ R.

Figure 2a,b show two task subnets, GJ1 and GJ2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 34 
 

jTt∈  involving multiple resources is characterized by 2≥∩•
rPt . The number of re-

sources required to fire transition t , where jTt∈ , is denoted by R∈∀rrRjt )( . 
Figure 2a,b show two task subnets, 1GJ  and 2GJ . 

  

(a) (b) 

Figure 2. Examples of jGJ , where }2,1{=∈ Jj : (a) 1GJ ; (b) 2GJ . 

To convey the idea to construct the model, we introduce a composition operator “
” to merge two or more DTPN models through common transitions, places and arcs. There 
are many composition or synthesis methods in the literature (e.g., [13,52–55]). These in-
clude composition by merging transitions or places. Several operations that preserve the 
liveness property of the composed nets have been proposed in [52,53]. These operations 
include the fusion of a series of places or transitions and parallel places or transitions, and 
the elimination of self-loop places or transitions. Some of these studies focus on the syn-
thesis of Petri nets for manufacturing systems (e.g., [13,55]). For this paper, the composi-
tion operation is used to capture the synchronization of resources and workflows. There-
fore, the composition operation used in this paper is the same as the one used in [13]. It is 
defined as follows. 

Definition 6 ([13]). Given two discrete timed PNs, 1G  = ( 1P , 1T , 1F , 10m , 1μ ) and 2G  = ( 2P , 2T
, 2F , 20m , 2μ ), the operator ""  to combine 1G  and 2G  is defined as follows:  

21 GG  = ( P , T , F , W , 0m , μ ), where 21 PPP ∪= , 21 TTT ∪= , 





∈∈
∈∈

=
222

111

),(
),(

),(
TtandPpiftpF
TtandPpiftpF

tpF , 




∈∈
∈∈

=
222

111

),(
),(

),(
TtandPpifptF
TtandPpifptF

ptF , 





∈
∈

=
220

110
0 )(

)(
)(

Ppifpm
Ppifpm

pm  and 








∈
∈

∩∈
=

122

211

2121

\),(
\),(

))(),(max(
)(

TTtift
TTtift

TTtiftt
t

μ
μ

μμ
μ . 

Although the composition operation is the same as the one in [13], the properties and 
structure of the resulting models obtained by the composition operation are different from 
the ones obtained in [13]. The DTPN models considered in this paper allow more complex 
interactions patterns between resources and tasks. Hence, the liveness property of the 
composed DTPN models may not be preserved (This point is discussed in Section 4 of this 
paper). This is the reason why a control policy is needed to maintain the liveness property 
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To convey the idea to construct the model, we introduce a composition operator “ ‖” to
merge two or more DTPN models through common transitions, places and arcs. There are
many composition or synthesis methods in the literature (e.g., [13,52–55]). These include
composition by merging transitions or places. Several operations that preserve the liveness
property of the composed nets have been proposed in [52,53]. These operations include
the fusion of a series of places or transitions and parallel places or transitions, and the
elimination of self-loop places or transitions. Some of these studies focus on the synthesis
of Petri nets for manufacturing systems (e.g., [13,55]). For this paper, the composition
operation is used to capture the synchronization of resources and workflows. Therefore, the
composition operation used in this paper is the same as the one used in [13]. It is defined
as follows.

Definition 6 ([13]). Given two discrete timed PNs, G1 = ( P1, T1, F1, m10, µ1) and G2 = ( P2, T2,
F2, m20, µ2), the operator “‖” to combine G1 and G2 is defined as follows:

G1‖G2 = ( P, T, F, W, m0, µ), where P = P1 ∪ P2, T = T1 ∪ T2,

F(p, t) =

{
F1(p, t) i f p ∈ P1 and t ∈ T1
F2(p, t) i f p ∈ P2 and t ∈ T2

, F(t, p) =

{
F1(t, p) i f p ∈ P1 and t ∈ T1
F2(t, p) i f p ∈ P2 and t ∈ T2

,

m0(p) =
{

m10(p) i f p ∈ P1
m20(p) i f p ∈ P2

and µ(t) =


max(µ1(t), µ2(t)) i f t ∈ T1 ∩ T2
µ1(t), i f t ∈ T1\T2
µ2(t), i f t ∈ T2\T1

.

Although the composition operation is the same as the one in [13], the properties and
structure of the resulting models obtained by the composition operation are different from
the ones obtained in [13]. The DTPN models considered in this paper allow more complex
interactions patterns between resources and tasks. Hence, the liveness property of the
composed DTPN models may not be preserved (This point is discussed in Section 4 of this
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paper). This is the reason why a control policy is needed to maintain the liveness property
of the composed DTPN models.

Definition 7. A nominal model is described by a discrete timed Petri net G = (P, T, F, m0, µ) =
GJ‖GR, where GJ = ‖

j∈J
GJj and GR = ‖

r∈R
GRr = ( PR, TR, FR, mR0, µR), where m0 : P→ Z|P| .

The state of G is called a marking and it is represented by a vector m ∈ Z|P|.

The overall model obtained by combining Figure 1a,b with Figure 2a,b is shown in
Figure 3a.
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most one resource involved for each transition.

To make it clear for readers to understand the differences between the models used
in this paper and the one proposed in [13], we illustrate their differences by an example.
Figure 3b is a model that is similar to the one proposed in [13]. Note that the model
in Figure 3b only allows at most one resource involved for each transition. By contrast,
there are two types of resources involved in transitions t2, t3, t6 and t7 in the model of
Figure 3a. This is due to the synchronization of operations with the two resources in
CPPS. Obviously, this means that the model proposed in this paper allows more complex
interactions patterns between resources and tasks. That is, the model proposed in this paper
extends the one proposed in [13]. However, this powerful modeling capability should be
used in conjunction with a proper control method. Note that the overall model in Figure 3b
will not evolve to any undesirable state no matter what sequence of transitions is fired.
However, the overall model in Figure 3a may evolve to the circular waiting state in Figure 4.
In Figure 4, all resources are held by tasks in the production processes and wait for the
resources to be released. Therefore, the development of a method to supervise and control
the usage of resources is an important issue.
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Before defining the control policy, we first define the initial marking and the final
marking of the CPPS model. The initial marking is set according to the order requirements.
The requirements of an order can be described by product demands, Dj, where Dj > 0∀j ∈ J
and deadline Φ. The initial marking (state) and final marking (state) is defined as follows.

Definition 8. Suppose the order requirements for type-j tasks is Dj. The number of tokens in the
first place pj0 under the initial marking mj0 of the type-j task subnet GJj = (Pj, Tj, Fj, mj0, µj) is
mj0
(

pj0
)
= Dj, where Dj > 0.

The final marking of the CPPS model is defined as follows.

Definition 9. For a task subnet GJj

(
mj f

)
= (Pj, Tj, Fj, mj f , µj) in the final state mj f in which

the order requirements for type-j tasks is fulfilled, the number of tokens in the last place pjNj of the
final marking is mj f (pjNj) = Dj.

Definition 10. Let r denote the idle place of type-r resource subnet GRr. The final state of the type-r
resource subnet GRr

(
mr f

)
= (Pr, Tr, Fr, mr f , µr) satisfies mr f (pr) = mr0(pr). That is, resources

are in an idle state after processing the required tasks.

Based on the initial states of tasks and resources, we define the CPPS model in the initial
state as G(m0) = (P, T, F, m0, µ) = GJ‖GR, where GJ = ‖

j∈J
GJj
(
mj0
)

and

GR = ‖
r∈R

GRr(mr0) =(PR, TR, FR, mR0, µR). Based on the final states of tasks and resources,

we define the CPPS model in the final state as G(m f ) = (P, T, F, m f , µ) = GJ‖GR, where

GJ = ‖
j∈J

GJj

(
mj f

)
and GR = ‖

r∈R
GRr

(
mr f

)
= (PR, TR, FR, mR f , µR).

In the CPPS model G = (P, T, F, m0, µ), a controlled transition is a transition that
requires an allocation of resources to be fired. Let Tc, where Tc ⊆ T, be the set of controlled
transitions in G. We define a control action c as a vector in Z|Tc | that specifies the number
of times each transition in Tc to be fired concurrently. A sequence of control actions {cn} is
called a control policy u. The behaviors of G = (P, T, F, m0, µ) under a control policy u is
denoted by Gc = (P, T, F, m0, µ, u).
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Definition 11. A CPPS model G = (P, T, F, m0, µ) under a control policy u is represented by a
controlled DTPN Gc = (P, T, F, m0, µ, u) and is abbreviated as Gc(m0, u), where u is a control
policy that is defined by a mapping u: R(m0)→Z|Tc | that generates a sequence {cn} of control
actions for Gc.

A control action c is a vector in Z|Tc | that specifies the number of times each transition
in Tc to be fired concurrently. Suppose Tc = {t1, t2, t3, t5, t6, t7}. For the marking in Figure 3a,
the control action c = [2 0 0 0 0 0] can be applied to fire transition t1 twice. A sequence of
control actions to be executed in the CPPS model define a control policy. Not all control
policies can preserve the liveness property of the system. For the example in Figure 3a,
c1 = [2 0 0 0 0 0], c2 = [0 2 0 0 0 0] and c3 = [1 0 0 1 0 0] are three control actions that
can be applied consecutively from the marking in Figure 3a. Applying the sequence
of control actions c1, c2 and c3 will fire t1 three times, fire t2 two times and fires t5 one
time. The sequence of control actions c1, c2 and c3 define a control policy. However, this
control policy brings the CPPS to an undesirable circular waiting situation in Figure 4.
Therefore, generation of the control actions that can maintain the liveness of the CPPS
model is an important issue. The Context-Generation Algorithm for CPPS to be introduced
in Section 5.3 serves to generate the sequence of control actions to be executed.

When an order is released to CPPS, processing of the order can be represented by the
evolution of the states of the model Gc of CPPS under a control policy. The requirements of
an order can be described by product demands, Dj, where Dj > 0∀j ∈ J, and deadline Φ,
where the deadline is specified by a period in the time horizon Π.

In the model of CPPS, a marking represents the state of the system. Before processing
the given order, the CPPS is in its initial state with the initial marking m0. For the given
order requirements, the number of different types of products to be produced to fulfill the
product demands of the order can be represented by a final marking m f in the model of
CPPS. Whether the order deadline can be met can be calculated by determining whether
the marking m f can be reached from m0 by the deadline Φ. Throughout the evolution
from m0, the CPPS may visit undesirable states. An improper control policy may bring
the system to an undesirable state under which some or all the transitions can no longer
be fired. Figure 4 shows an example of an undesirable state in which transitions can no
longer be fired, with the exception of tr1 and tr2. There is a research issue and question that
needs to be addressed: can the CPPS model reach the target (final) state by the deadline
without visiting any undesirable state? To answer this question, we formulate the Deadline
Awareness Problem and the Future States Awareness Problem.

Based on the model of CPPS, we formulate the Deadline Awareness Problem. As the
Deadline Awareness Problem is to determine whether the requirements of a given order
can be fulfilled by the order deadline, the Deadline Awareness Problem is to determine
whether final marking m f can be reached by the deadline Φ. Formally, this problem can be
stated as:

Deadline AwarenessProblem
Given the model G of a CPPS with an initial marking m0, determine whether G can be

brought to the target marking m f from m0 by the deadline Φ under some control policy,
where m f and the deadline Φ are specified by the order requirements.

For the target marking m f and the deadline Φ corresponding to the given order
requirements, the Future States Awareness Problem can be formulated as follows.

Future States AwarenessProblem
Given the model G of a CPPS with an initial marking m0, determine whether there

exists a control policy to bring G to the target marking m f without visiting any undesirable
states, where the marking m f is the marking corresponding to the given order requirements.

5. Approach to Deadline Awareness Problem and Future States Awareness Problem

To solve the Deadline Awareness Problem and Future States Awareness Problem, we
must analyze the evolution of the markings of the CPPS model. We propose an optimization
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approach to determine a control policy for CPPS. In this section, we first analyze the liveness
condition of CPPS in Sections 5.1 and 5.2 as the liveness property to be defined in Definition
12 is not directly related to the timing aspect. Analysis of the timing or temporal properties
of CPPS is presented in Section 5.3 of this paper.

5.1. Analysis of the CPPS Model

Note that the model G of a CPPS is an abstraction of the underlying production system.
The minimal resource requirements must be satisfied for the CPPS to run and manufacture
the products of an order. The minimal resource requirements for the model G of a CPPS

can be represented by a marking m∗, where m∗(p) =

 ∑
j∈J

∑
t∈T

Rjt(r)∀p ∈ Po

0 p ∈ P\Po

.

The Future States Awareness Problem is concerned with whether the target marking
m f can be reached without visiting any undesirable states. In Petri net theory, the concept
of liveness property ensures that undesirable states will not be visited. Therefore, we solve
the Future States Awareness Problem based on the concept of liveness in Petri nets. We
define the liveness of Gc(m0, u) as follows.

Definition 12. Gc(m0, u) is live if for each marking reached from m0 under u, each transition can
still be fired ultimately by progressing through some further firing sequence.

For the existence of a control policy u under which Gc(m0, u) is live, there must be
sufficient resources under the initial marking m0. In this paper, it is assumed that the
initial marking m0 satisfies the condition: m0 ≥ m∗. Under this assumption, the following
property states a liveness condition for the model G of a CPPS.

Property 1. Gc(m0, u) is live under a control policyu if and only if there is a sequence of control
actions that can bring each marking m reached under control policy u to m′ with m′ ≥ m∗.

Proof.
Sufficiency:
We must prove that if there is a sequence of control actions c1c2c3...cn that can bring

each marking m reached under control policy u to m′ with m′ ≥ m∗, Gc(m0, u) is live under
the control policy u. To show that Gc(m0, u) is live under the control policy u, we must
show that each transition can still be fired by progressing through some further firing
sequence from m′. Note that m′ ≥ m∗. The resources under m′ satisfy the minimal resource
requirements. Therefore, we can construct a sequence of control actions to fire transition
tjn in type-j task subnet by firing tj0, tj1, tj2, ..., tj(n−1), tjn, ..., tjNj , tj(Nj+1) sequentially. As
the requirements to fire transition t in Tj is Rjt(r) ≤ m∗(r)∀r ∈ R, the firing sequence
tj0, tj1, tj2, ..., tj(n−1), tjn, ..., tjNj , tj(Nj+1) can be fired. Therefore, transition tjn can be fired by
progressing through the firing sequence tj0, tj1, tj2, ..., tj(n−1), tjn.

Let m′′ be the marking reached after firing tj0, tj1, tj2, ..., tj(n−1), tjn, ..., tjNj , tj(Nj+1). Un-
der m′′ , all the resources return to the idle state. Hence m′′ ≥ m∗ and every transition can
be fired again by progressing through some firing sequence again. Based on the above
reasoning, each transition can still be fired by progressing through some further firing
sequence from m′.

Therefore, Gc(m0, u) is live under the control policy u.
Necessity:
Let m be a marking reached under the given control policy u. We prove by constructing

a firing sequence that can bring m to m′ with m′ ≥ m∗. We first construct a firing sequence
that can bring m to m′ under which all the resources are returned to an idle state. As
Gc(m0, u) is live under a control policy u, for each marking reached from m0 under u, each
transition can still be fired by progressing through some further firing sequence. There
must exist a firing sequence s from m such that the last transition tj(Nj+1) is fired at least
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Nj

∑
n=0

m(pjn) times for each type-j task subnet, j ∈ J. We construct a firing sequence s′ based

on s to complete all the remaining tasks under m without introducing new tasks as follows.
Consider a type-j task subnet, where j ∈ J . As transition tj(Nj+1) of type-j task subnet

is fired at least
Nj

∑
n=0

m(pjn) times, firing sequence s from m can be represented as s = s1s2,

where transition tj(Nj+1) appear in s1 exactly
Nj

∑
n=0

m(pjn) times. Note that firing sequence

s1 may contain transition tj0 and transition tj0 may appears a number of times in s1. This
means that transition tj0 may also be fired in s1 a number of times. Firing transition tj0 will
bring new task (s) into type-j task subnet and may make the transitions at the downstream
fired in s1. We construct a firing sequence s′1 based on s1 by removing transition tj0 and all
relevant transitions at the downstream of tj0 fired in s1. Removing the transitions of new
tasks from s1 reduces the number of resources to be used for firing transitions. As s1 can
be fired from m, the resulting firing sequence s′1 can also be fired from m. Note that all the
remaining operations in the existing tasks in type-j task subnet under m will be completed
after firing s′1. Therefore, all the resources required by type-j task subnet will return to the
idle state. In this way, we have constructed a firing sequence s′1 that can be fired from m.

Note that the firing sequence s′ = s′1s2 is still a valid firing sequence that can be fired

from m and transition tj′(Nj′+1) of type-j′ task subnet is fired at least
Nj′

∑
n=0

m(pj′n) times in

s′ = s′1s2 for each type-j′ task subnet, where j′ ∈ J\{j}. Therefore, we can follow a similar
procedure to construct a firing sequence s′′ to complete all the remaining operations in the
existing tasks in each type-j′ task subnet under m for each j′ ∈ J\{j} one by one. After
firing s′′ from m, a marking m′ will be reached and all the resources required by each type of
task subnets will return to the idle state under m′. Due to the conservation of resources, the
set of resources in an idle state under m′ is the same as that under m0, therefore, m′ ≥ m0.
As m0 ≥ m∗, m′ ≥ m∗. Therefore, we have proved that the firing sequence s′′ that can bring
m to m′ with m′ ≥ m∗. Let c1, c2, . . . , cτ be the sequence of control actions associated with
the firing sequence s′′ . Hence, there is a sequence of control actions c1, c2, . . . , cτ that can
bring each marking m reached under control policy u to m′ with m′ ≥ m∗.

This completes the proof. �

5.2. An Optimization Approach to Determining a Control Policy for CPPS

Direct application of the existing reachability analysis method to determine the con-
dition of Property 1 about whether there is a sequence of control actions that can bring
a marking m to m′ with m′ ≥ m∗ is not feasible as the state space of reachable markings
of the CPPS model grows with problem size. The way we work around this problem is
to construct a Joint Spatial-Temporal Network (JSTN) to capture the spatial and temporal
dynamics of workflows in the networks. Timing information is taken into consideration in
constructing the JSTN to capture the spatial and temporal constraints of workflows. The
firing time of each transition is used in construction of a JSTN.

Based on JSTN, we will formulate a problem to determine whether there is a sequence
of control actions that can bring a marking m to m′ with m′ ≥ m∗. The algorithm to con-
struct a JSTN is based on Algorithm 1 to construct the Spatial-Temporal Network (STN) for
each type of task subnet. Algorithm 1 shows the Spatial–Temporal Network Construction
Algorithm for a Type-j Task Subnet. The logic of Algorithm 1 to construct a STN for each
type of task subnet is highly intuitive. Algorithm 1 first creates a start node sj and an
end node ej. For a time horizon of Π periods, Algorithm 1 creates Π + 1 nodes for each
n ∈

{
1, 2, ..., Nj

}
, iteratively. Algorithm 1 creates an arc to connect start node sj to the first

node and then create horizontal arcs and non-horizontal arcs, iteratively. Finally, Algorithm
1 creates arcs to connect to the end node ej. The earliness penalty function g(τ) for period
τ ≤ Φ and the lateness penalty function h(τ) for τ > Φ are used to set the weight of arcs.
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Algorithm 1: Spatial–Temporal Network Construction Algorithm for Type-j Task Subnet

Input: GJj, Π, Φ, g(t), h(t)
Output: STNj(Vj, Aj), where Vj is the set of nodes and Aj is the set of arcs
Step 0: Create the start node sj

Create the end node ej

Vj ←
{

sj, ej

}
Step 1: For n = 1 to Nj + 1

For each τ = 1 to Π + 1
Create a node with number v(n−1)(Π+1)+τ

Vj = Vj ∪
{

v(n−1)Π+τ

}
End For

End For
Step 2: Create arc a(sj, 1) from node sj to the node v1

Aj ← Aj ∪
{

a(sj, 1)
}

Set arc cost λ
(

a(sj, 1)
)
← 0

Step 3: For n = 1 to Nj
For each τ = 1 to Π

Create an arc a(v(n−1)Π+τ , v(n−1)Π+τ+1)
Aj ← Aj ∪ {a}
Set arc cost λ

(
a
(

v(n−1)Π+τ , v(n−1)Π+τ+1)
)

to 0
End For

End For
Step 4: For n = 1 to Nj

For each τ = 1 to Π
If τ + µ(tn) ≤ Π + 1

Create arc a(v(n−1)(Π+1)+τ , vn(Π+1)+τ+µ(tn))

Aj ← Aj ∪
{

a(v(n−1)(Π+1)+τ , vn(Π+1)+τ+µ(tn))
}

Set arc cost λ(a(v(n−1)(Π+1)+τ , vn(Π+1)+τ+µ(tn))))← 0
Find the resource type r for processing operation n

Ajrt ← Ajrt ∪
{

a(v(n−1)(Π+1)+τ , vn(Π+1)+τ+µ(tn))
}

, the set of arcs in the
spatial–temporal network of type-j task involved in the use of type-r resource

in period τ

End If
End For

End For
Step 5: For each τ = 1 to Π + 1
Create arc a(vNjΠ+τ , ej) from node vNjΠ+τ to node ej

Aj ← Aj ∪
{

a(vNjΠ+τ , ej)
}

If τ > Φ
Set arc cost λ(a(vNjΠ+τ , ej))← h(τ)
Else
Set arc cost λ(a(vNjΠ+τ , ej))← g(τ)
End If
End For

The Joint Spatial–Temporal Network Construction Algorithm in Algorithm 2 first iter-
atively invokes Algorithm 1 to construct the Spatial-Temporal Network (STN) STNj(Vj, Aj)
for each type of task subnet and then construct JSTN(V, A) with V = ∪

j∈J
Vj and A = ∪

j∈J
Aj.

Algorithm 2 finally merges all start node sj for all j ∈ J into one source node s to obtain the
JSTN. Algorithm 2 in shows the Joint Spatial–Temporal Network Construction Algorithm.
Note that the structure of a JSTN is different from that of a STN in [10] as JSTN represents
the spatial–temporal relation of multiple types of tasks whereas a STN represents only the
spatial–temporal relation of a single type of tasks.
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Figure 5 shows the structure of a JSTN.
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Algorithm 2: Joint Spatial–Temporal Network Construction Algorithm

Input:
Task subnets: GJj, j ∈ J,
Time horizon: Π,
Deadline: Φ
Output: Joint Spatial–Temporal Network: JSTN(V, A), where V denotes the set of nodes and Aj
denotes the set of arcs
For each j ∈ J

Construct STNj(Vj, Aj) by applying Algorithm 1, where Vj is the set of nodes and Aj is the
set of arcs created.

Let sj, ej ∈ Vj be the start node and end node of STNj(Vj, Aj), respectively.
Construct JSTN(V, A) with
V ← V ∪Vj
A← A ∪ Aj

End For
Merge all start node sj, j ∈ J, in JSTN(V, A) into one start node s.
Return JSTN(V, A)
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The STN of type-j task subnet in G is denoted as STNj(Vj, Aj). We define the subset
of arcs in Aj that require type-r resources in period t below.

Definition 13. Ajrτ is the set of arcs requiring the type-r resources in period t.

Note that the states across the time horizon of the CPPS model G can be represented
in the corresponding STNs. Therefore, we propose an optimization problem formulation
to determine whether there exists a control policy that can bring G(m0) to G(m f ) without
visiting undesirable states by the deadline.

The following Nominal Optimization Problem (NOP) is formulated based on the Joint
Spatial–Temporal Network to find a solution. The NOP aims to complete the production
activities for the given order by the deadline. Therefore, the objective function is the
overdue cost described in (1) under the capacity constraints of different types of resources
in (2), the flow balance constraints in (3), the product requirements of the order in (4), (5)
and the decision variables must be nonnegative integers as described in (6).

Nominal Optimization Problem (NOP) based on the Joint Spatial–Temporal Network

min
f

∑
j∈J

∑
r∈R

∑
t∈∏

∑
a(v,w)∈Ajrτ

λ(a(v, w)) f (a(v, w)) (1)

∑
j∈J

∑
a(v,w)∈Ajrτ

f (a(v, w)) ≤ Crτ∀r ∈ R ∀τ ∈∏ = {1, 2, ..., Π} (2)

∑
w∈V(v)

f (a(v, w)) = 0 ∀v ∈ V\{s}\{ej∀j ∈ J} (3)

∑
w∈Vj(s)

f (a(s, w)) = Dj ∀j ∈ J (4)

∑
w∈Vj(ej)

f (a(w, ej)) = Dj ∀j ∈ J (5)

f (a(v, w)) ∈ Z ∀a(v, w) ∈ A, (6)

where Z is the set of nonnegative integers.
A solution of NOP can be used to define the control actions to bring Gc from m0 to

m f without visiting undesirable states. Whether the deadline can be met depends on the
solution found for NOP. Theorem 1 states a condition for ensuring the liveness of Gc(m0, u).
In the proof of this theorem, we first define the control actions based on a solution of
NOP. We then prove that the control actions will bring Gc from m0 to m f without visiting
undesirable states.

Theorem 1. There exists a solution to the Nominal Optimization Problem if and only if there exists
a control policy under which Gc(m0, u) is live and can reach m f under u.

Proof.
Proof of “only if part”:
We prove by constructing a control policy under which Gc(m0, u) is live given the

precondition that there exists a solution f to NOP. To construct a control policy under which
Gc(m0, u) is live, we first define the control actions for the given solution f based on the
following definitions of control actions. The set of arcs in STN STNj(Vj, Aj) can be divided
into three subsets, Wj, the set of arcs corresponding to waiting states, Bj, the set of arcs
corresponding to busy (processing) states. There is a transition t ∈ Tj corresponding to an
arc a ∈ Bj. Suppose the time horizon is divided into Π period. Let {1, 2, ..., Π} denote the
set of time period. A control action for time period τ ∈ {1, 2, ..., Π} is denoted by cτ and
cτ(t) denotes the control action to be applied to transition t ∈ Tj in period τ ∈ {1, 2, ..., Π}.
For each arc a ∈ Bj, j ∈ J , starting with period τ ∈ {1, 2, ..., Π}, let ta be the transition
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associated with arc a. We define the control action cτ(ta) = f (a), which will be applied
to fire transition t ∈ Tj corresponding to an arc a ∈ Bj in period τ for f (a) times. These
control actions cτ , τ ∈ {1, 2, ..., Π}, define a control policy u associated with the solution
f . Based on the above definitions, we show that the control actions cτ , τ ∈ {1, 2, ..., Π}
defined above can be executed. That is, for each t ∈ Tj, t can be fired cτ(ta) = f (a) times
in period τ. We prove by showing that under the marking mτ reached after applying the
control actions c1, c2, c3, . . . , cτ , there exists a control policy u′ under which Gc(mτ , u′)
is live.

For τ = 1, we prove that the control action applied to all relevant transitions in period
1 can be executed. Note that the number of type-r resources required to fire transitions in
type-j subnet in period 1 is ∑

a∈Ajr1

c1(ta) = ∑
a∈Ajr1

f (a). The total number of type-r resources

required to fire transitions in type-j subnet in period 1 is ∑
j∈J

∑
a∈Ajr1

c1(ta), which is equal

to ∑
j∈J

∑
a∈Ajr1

f (a). The total number of type-r resources required to fire transitions in type-

j subnet in period 1 is Cr1. As constraint (2) holds for each r ∈ R and each period
τ ∈ {1, 2, ..., Π}, Cr1 is greater than or equal to ∑

j∈J
∑

a∈Ajr1

f (a) and ∑
j∈J

∑
a∈Ajr1

f (a) is equal to

∑
j∈J

∑
a∈Ajr1

c1(ta), all relevant transitions allowed to be fired under control action c1 can be

executed in period 1. Similarly, for period τ = 2, the number of type-r resources required
to fire transitions in type-j subnet in period 2 is ∑

a∈Ajr2

c2(ta), which is equal to ∑
a∈Ajr2

f (a).

The total number of type-r resources required to fire transitions in type-j subnet in period
2 is ∑

j∈J
∑

a∈Ajr2

c2(ta), which is equal to = ∑
j∈J

∑
a∈Ajr2

f (a). As Cr2 is greater than or equal to

∑
j∈J

∑
a∈Ajr2

f (a) and ∑
j∈J

∑
a∈Ajr2

f (a) is equal to ∑
j∈J

∑
a∈Ajr2

c2(ta), Cr2 is greater than or equal to

∑
j∈J

∑
a∈Ajr2

c2(ta). All relevant transitions under control action c2 can be executed in period 2.

As the above reasoning holds for all τ ∈ {1, 2, ..., Π}, the sequence of control actions
cτ , τ ∈ {1, 2, ..., Π}, can be executed. After executing all these control actions, the final
marking m f will be reached. Under m f , all resources are returned to an idle state. Hence,
the set of resources m f is the same as m0. As m0 ≥ m∗, m f ≥ m∗.

Proof of “if part”:
If there is a control policy under which Gc(m0, u) is live and can reach m f under u, we

need to show that there exists a solution to the Nominal Optimization Problem.
If Gc(m0, u) is live under a control policy u, the initial marking m0 must satisfy the

minimal resource requirements: m0 ≥ m∗ and there must be sufficient resources to fire
the transitions in each type of task subnets separately. We construct a sequence of control
actions to bring Gc from m0 to m f as follows. First, we construct a sequence of control
actions to bring Gc from m0 to m1 under which the number of tokens in the last place p1

N1+1

of type-1 subnet is m1

(
p1

N1+1

)
= D1. Let c1, c2, . . . , cτ1 be the sequence of control actions

that repeatedly fire transitions t11, t12, ..., t1N1 in T1 sequentially for D1 times from m0. At

period τ1, the number of tokens in the last place p1
N1+1 of type-1 subnet is m1

(
p1

N1+1

)
= D1

and all the resource tokens are returned to an idle state. Therefore, under m1 the set of
resources n idle state is the same as the set of resources under m0. Then, we construct a
sequence of control actions cτ1+1, cτ1+2, . . . , cτ1+τ2 to bring Gc from m1 to m2 under which

the number of tokens in the last place p2
N2+1 of type-2 subnet is m2

(
p2

N2+1

)
= D2 and

the number of tokens in the last place p1
N1+1 of type-1 subnet is m1

(
p1

N1+1

)
= D1. All the

resource tokens are returned to an idle state under m2. Therefore, under m2 the set of
resources n idle state is the same as the set of resources under m0. By following a similar
procedure, we can construct a sequence of control actions c1, c2, . . . , cτ1 , cτ1+1, cτ1+2, . . . ,
cτ1+τ2 , . . . , cτJ−1+1, cτJ−1+2, . . . , cτ1+τ2+...+τJ−1+τJ to bring Gc from m0 to mJ under which
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the number of tokens in the last place pj
Nj+1 of type-j subnet is mJ

(
pj

Nj+1

)
= Dj ∀j ∈ J and

all the resources are returned to an idle state.
As all resources are returned to an idle state under, m f , the sequence of control actions

c1, c2, . . . , cτ1 , cτ1+1, cτ1+2, . . . , cτ1+τ2 , . . . , cτJ−1+1, cτJ−1+2, . . . , cτ1+τ2+...+τJ−1+τJ brings Gc
from m0 to m f . As f is a solution of the Nominal Optimization Problem, conservation of
flows due to constraints (3), (4) and (5) must be satisfied. Therefore, mJ= m f . So m f can
be reached after executing the sequence of control actions c1, c2, . . . , cτ1 , cτ1+1, cτ1+2, . . . ,
cτ1+τ2 , . . . , cτJ−1+1, cτJ−1+2, . . . , cτ1+τ2+...+τJ−1+τJ . The sequence of control actions c1, c2, . . . ,
cτ1 , cτ1+1, cτ1+2, . . . , cτ1+τ2 , . . . , cτJ−1+1, cτJ−1+2, . . . , cτ1+τ2+...+τJ−1+τJ is a control policy to
reach m f .

This completes the proof. �

5.3. Situation-Aware Context Generation Algorithm

In this subsection, we first present Theorem 2 for deadline awareness and future states
awareness and then a context generation algorithm for CPPS. Based on Theorem 1, we have
the following result.

Theorem 2. Assume that g(τ) = 0 for τ ≤ Φ and h(τ) > 0 for τ > Φ. If there exists a solution
to the Nominal Optimization Problem, there exists a control policy u under which Gc(m0, u) can
reach m f without visiting any undesirable states. If the objective function value of the solution
to the Nominal Optimization Problem is zero, Gc(m0, u) can reach m f by the deadline Φ under
control policy u.

Proof.
Let f be a solution to the NOP. It follows from Theorem 1 that there exists a control

policy under which Gc(m0, u) is live and can reach m f under u. Hence, undesirable states
will not be visited under u. If the objective function value of the solution to the Nominal
Optimization Problem is zero, ∑

j∈J
∑

r∈R
∑

t∈∏
∑

a(v,w)∈Ajrt

λ(a(v, w)) f (a(v, w)) must be 0.

Let Aje =
{

a(vNjΠ+t, ej), t ∈ {1, 2, ..., Π}
}

denote the set of arcs in the type-j task sub-
net directly connecting to the end node ej. Note that each term ∑

a(v,w)∈Ajrt

λ(a(v, w)) f (a(v, w))

in ∑
j∈J

∑
r∈R

∑
t∈∏

∑
a(v,w)∈Ajrt

λ(a(v, w)) f (a(v, w)) can be broken down into two terms,

∑
a(v,w)∈Ajrt\Aje

λ(a(v, w)) f (a(v, w) and ∑
a(v,w)∈Aje

λ(a(v, w)) f (a(v, w)).

As λ(a(v, w)) is equal to zero for all arcs with the exception of the arcs that connect to
the end nodes, the following holds:

λ(a(v, w)) = 0 for each a(v, w) ∈ Ajrt\Aje.
Therefore, the term ∑

a(v,w))∈Ajrt

λ(a(v, w)) f (a(v, w)) is reduced to

∑
a(v,w)∈Aje

λ(a(v, w)) f (a(v, w)), which is equal to ∑
τ∈{1,2,...,Π}

λ(a(vNjΠ+τ , ej)) f (a(vNjΠ+τ , ej)).

As g(τ) = 0 for τ ≤ Φ, λ(a(vNjΠ+τ , ej)) is equal to zero for each τ ∈ {1, 2, ..., Φ} and
∑

τ∈{1,2,...,Π}
λ(a(vNjΠ+τ , ej)) f (a(vNjΠ+τ , ej)) is reduced to

∑
τ∈{Φ+1,Φ+2,...,Π}

λ(a(vNjΠ+τ , ej)) f (a(vNjΠ+τ , ej)).

Hence ∑
τ∈{Φ+1,Φ+2,...,Π}

λ(a(vNjΠ+τ , ej)) f (a(vNjΠ+τ , ej)) is equal to 0.

As h(τ) > 0 for, λ(a(vNjΠ+t, ej)) > 0 for each τ ∈ {Φ + 1, Φ + 2, ..., Π}.
As f (a(vNjΠ+t, ej)) is nonnegative, f (a(vNjΠ+τ , ej)) must be zero for each

τ ∈ {Φ + 1, Φ + 2, ..., Π}.
Therefore, the deadline Φ can be met. �
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Based on the theorem presented above, we propose Algorithm 3 to generate the
contextual information (control actions) for Future States-Aware systems. The following
algorithm first constructs JSTN(V, A) for the model G of a CPPS with an initial marking
m0 and formulates NOP next. Finally, the NOP is solved to find a solution. If a solution can
be found by solving the NOP, the proposed algorithm will generate the Future States-Aware
Context. Otherwise, it will exit.

Algorithm 3: Context Generation Algorithm for CPPS

Step 1: Construct JSTN(V, A) for the model G of a CPPS with an initial marking m0
Step 2: Formulate the nominal optimization problem

Formulate NOP according to JSTN(V, A)
Step 3: Solve the nominal optimization problem

Find the solution of NOP
If there is a solution f

if ∑
j∈J

∑
r∈R

∑
t∈∏

∑
a(v,w)∈Ajrt

λ(a(v, w)) f (a(v, w)) = 0

The deadline Φ can be met.
Else

The deadline Φ cannot be met.
End If
Go to Step 4

Else
Exit

End If
Step 4: Construct the control actions based on the solution found

For j ∈ J
For each t ∈ Tj

For each τ ∈ {1, 2, ..., Π}
Find the arc a(v, w) associated with transition t and period τ

cτ(ta) = f (a(v, w))
End For

End For
End For

In Property 2, we analyze the complexity of constructing the Joint Spatial-Temporal
Network.

Property 2. The complexity of constructing the Joint Spatial-Temporal Network JSTN(V, A) by
applying the Joint Spatial–Temporal Network Construction Algorithm is O(KΠ|J|).

Proof.
As a CPPS consists of a number of task subnets, the Joint Spatial–Temporal Network

Construction Algorithm constructs JSTN(V, A) by applying Algorithm 1 to construct
STNj(Vj, Aj). As the number of transitions in different task subnets may not be the same,
to analyze the complexity of constructing JSTN(V, A), let K = max

j∈J

∣∣Tj
∣∣ denote the number

of transitions in the task subnet with the maximum number of transitions. The number
operations to create nodes in STNj(Vj, Aj) is less than or equal to KΠ for each j ∈ J. The
number operations to create arcs in STNj(Vj, Aj) is less than or equal to 2KΠ for each j ∈ J.
Hence, the total number of operations to create STNj(Vj, Aj) is less than or equal to 3KΠ.
As there are |J| types of task subnets, the total number of operations to create STNj(Vj, Aj)
for each j ∈ J is less than or equal to 3KΠ|J|. The number of operations to merge all start
nodes is |J| and the number of operations to merge all start nodes is |J|. Therefore, the
total number of operations to construct JSTN(V, A) is less than or equal to 3KΠ|J|+ 2|J|.
Therefore, the complexity of constructing JSTN(V, A) is O(KΠ|J|). �

We establish a lower bound on the complexity of solving NOP in Property 3.
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Property 3. A lower bound on the complexity of solving NOP is O(KΠ|J|).

Proof.
As the Nominal Optimization Problem is formulated based on the Joint Spatial–

Temporal Network, it is similar to the classical minimum cost flow problem in the literature
as the flow balance constraints must be satisfied. However, the Nominal Optimization
Problem is different from the classical minimum cost flow problem in that the additional
capacity constraints must be satisfied. Therefore, the complexity of solving the Nominal
Optimization Problem is expected to be different from that of the classical minimum cost
flow problem. Despite this difference, the complexity of the classical minimum cost flow
problem provides a lower bound on the complexity of the Nominal Optimization Problem.
As the number of nodes in the Joint Spatial–Temporal Network is proportional to KΠ|J|,
O(K2Π2|J|2 ∑

j∈J
Dj). �

6. Results

The theory and algorithm presented in the previous sections are illustrated by a small
example. In addition, we conducted a series of experiments to assess the computational
efficiency of the proposed methods and to illustrate the potential to solve real problems.
The test data for the small example is described in details in the text. The test data for large
examples can be downloaded from the following link:

https://drive.google.com/drive/folders/1SCcf-VWkrSy_iwUoUw0Ky-xxZCrdKtBo?
usp=sharing (accessed on 27 February 2021).

All the experiments were conducted on a personal computer with Intel CoreTM i7-4720
HQ CPU, 2.6 G Hz, and 16 GB of onboard memory.

6.1. An Example

In this subsection, we illustrate the proposed method with an example.

Example 1. Consider a CPPS with two production processes to produce two types of products. The
two production processes are modeled by two task subnets. There are two types of resources in the
CPPS. The two task subnets share the two types of resources. The model of the CPPS is depicted
in Figure 3a. The firing time of each transition is listed in Table 2. Suppose an order is received
and is to be released to the CPPS for processing the products. The requirements of the order are
shown in Table 3. The product demands of the order include three type-1 products and one type-2
product. The deadline of the order is the eighth period. For this example, J = 2, D1 = 3, D2 = 1,
Φ = 8, R = 2. We set the time horizon Π = 9. Therefore, J = {1, 2} and R = {1, 2}. The nominal
capacity of type-r resources in period τ is Crτ = 2 for each r ∈ R and τ ∈ {1, 2, ..., Π}. The total
number of type-r resources in each period τ is listed in Table 4. The initial marking mj0(pj0) = Dj
for j ∈ {1, 2}. In this example, we use set the function g(τ) = 0 for τ ≤ Φ and h(τ) > 0 for
τ > Φ to penalize overdue. As Φ = 8, λ(40, e1) = 1 , λ(80, e1) = 1 and λ(a(v, w)) = 0 for all
the other arc a(v, w). For this example, Ajrτ is listed in Table 5.

The NOP for this example is as follows, where (7) is the objective function, (8) is the
capacity constraints, (9) is the flow balance constraints, (10), (11) are the demand constraints,
(12) and (13) are the final product constraints.

min
f

∑
j∈J

∑
r∈R

∑
t∈∏

∑
a(v,w)∈Ajrτ

λ(a(v, w)) f (a(v, w)) (7)

∑
j∈J={1,2}

∑
a(v,w)∈Ajrτ

f (a(v, w)) ≤ Crτ∀r ∈ R ∀τ ∈∏ = {1, 2, ..., Π} (8)

∑
w∈V(v)

f (a(v, w)) = 0 ∀v ∈ V\{s, e1, e2} (9)

f (a(s, 1)) = D1 (10)

https://drive.google.com/drive/folders/1SCcf-VWkrSy_iwUoUw0Ky-xxZCrdKtBo?usp=sharing
https://drive.google.com/drive/folders/1SCcf-VWkrSy_iwUoUw0Ky-xxZCrdKtBo?usp=sharing
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f (a(s, 41)) = D2 (11)

40

∑
v=31

f (a(v + 11, e1)) = D1 (12)

80

∑
v=71

f (a(v, e1)) = D2 (13)

f (a(v, w)) ∈ Z∀(a(v, w)) ∈ A, (14)

where Z is the set of nonnegative integers.

Table 2. Firing time of each transition in Figure 3a.

Task Type Transition Firing time

1 t1 µ(t1) = 1
1 t2 µ(t2) = 2
1 t3 µ(t3) = 1
1 t4 µ(t4) = 0
2 t5 µ(t5) = 2
2 t6 µ(t6) = 2
2 t7 µ(t7) = 2
2 t8 µ(t8) = 0

Table 3. Requirements of an order.

Product (Task) Type Quantity Deadline

1 D1 = 3 8

2 D2 = 1 8

Table 4. The nominal capacity of each type of resources in each period.

Resource Type (r) Period (t) Crt

1 1 2
1 2 2
1 3 2
1 4 2
1 5 2
1 6 2
1 7 2
1 8 2
1 9 2
2 1 2
2 2 2
2 3 2
2 4 2
2 5 2
2 6 2
2 7 2
2 8 2
2 9 2

We apply the CPLEX problem solver [56] to solve the NOP in the Context-Generation
Algorithm. By solving the NOP, we find the solution in Table 6, which can be represented in
the Joint Spatial-Temporal Network in Figure 6. The objective function value is 0. Therefore,
the deadline can be met.
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Table 5. The data of Ajrτ .

Task Type (j) Resource Type (r) Period (τ) Ajrτ

1 1 1 {(1,12),(21,32)}
1 1 2 {(2,13),(22,33)}
1 1 3 {(3,14),(23,34)}
1 1 4 {(4,15),(24,35)}
1 1 5 {(5,16),(25,36)}
1 1 6 {(6,17),(26,37)}
1 1 7 {(7,18),(27,38)}
1 1 8 {(8,19)(28,39)}
1 1 9 {(9,20),(29,40)}
1 2 1 {(11,23)}
1 2 2 {(11,23),(12,24)}
1 2 3 {(12,24),(13,25)}
1 2 4 {(13,25),(14,26)}
1 2 5 {(14,26),(15,27)}
1 2 6 {(15,27),(16,28)}
1 2 7 {(16,28),(17,29)}
1 2 8 {(17,29)}
2 1 1 {(41,53),(61,73)}
2 1 2 {(41,53),(61,73),(42,54),(62,74)}
2 1 3 {(42,54),(62,74),(43,55),(63,75) }
2 1 4 {(43,55),(63,75),(44,56),(64,76)}
2 1 5 {(44,56),(64,76),(45,57),(65,77)}
2 1 6 {(45,57),(65,77),(46,58),(66,78)}
2 1 7 {(46,58),(66,78),(47,59),(67,79)}
2 1 8 {(47,59),(67,79),(48,60),(68,80)}
2 2 1 {(51,63)}
2 2 2 {(51,63), (52,64)}
2 2 3 {(52,64),(53,65)}
2 2 4 {(53,65),(54,66)}
2 2 5 {(54,66),(55,67)}
2 2 6 {(55,67),(56,68)}
2 1 7 {(56,68),(57,69))}
2 1 8 {(57,69), (58,70)}

Table 6. The solution obtained by solving NOP.

Decision Variable Value Decision Variable Value

f (s, 1) 3 f (24, 35) 1
f (1, 2) 2 f (28, 39) 2
f (2, 3) 2 f (35, e1) 1
f (3, 4) 1 f (39, e1) 2
f (4, 5) 1 f (41, 53) 1
f (1, 12) 1 f (53, 65) 1
f (4, 15) 1 f (65, 66) 1
f (5, 16) 1 f (66, 78) 1

f (12, 24) 1 f (78, e2) 1
f (16, 28) 2

The sequence of control actions constructed based on the solution in Figure 6 is listed
in Table 7.

Table 7. The sequence of control actions.

Period (τ) Control Action cτ

1 1 0 0 1 0 0
2 0 1 0 0 0 0
3 0 0 0 0 1 0
4 1 0 1 0 0 0
5 1 0 0 0 0 0
6 0 2 0 0 0 1
7 0 0 0 0 0 0
8 0 0 2 0 0 0
9 0 0 0 0 0 0



Appl. Sci. 2022, 12, 5129 24 of 30

Appl. Sci. 2022, 12, x FOR PEER REVIEW 27 of 34 
 

Table 6. The solution obtained by solving NOP. 

Decision Variable Value Decision Variable Value 
)1,(sf  3 )35,24(f  1 

)2,1(f  2 )39,28(f  2 

)3,2(f  2 )1,35( ef  1 

)4,3(f  1 )1,39( ef  2 

)5,4(f  1 )53,41(f  1 

)12,1(f  1 )65,53(f  1 

)15,4(f  1 )66,65(f  1 

)16,5(f  1 )78,66(f  1 

)24,12(f  1 )2,78( ef  1 

)28,16(f  2   

1=τ 2=τ 3=τ 4=τ 5=τ 6=τ 7=τ 8=τ 9=τ

 
Figure 6. A solution of NOP represented in JSTN. Figure 6. A solution of NOP represented in JSTN.

Following is an explanation of the control actions generated for the first period and
the second period. For the first period (τ = 1), the control action c1 = [1 0 0 1 0 0] represents
that transition t1 and transition t5 will be fired. This means that the two transitions will
be fired concurrently. For the second period (τ = 2), the control action c2 = [0 1 0 0 0 0]
represents that transition t2 will be fired. Note that all the constraints are satisfied for the
generated control actions.

6.2. Computational Experience

In this section, we study how the CPU time grows with the scale of the problems. The
data of test cases (Problem 1 through Problem 15) are available for downloading from the
following link:

https://drive.google.com/drive/folders/1SCcf-VWkrSy_iwUoUw0Ky-xxZCrdKtBo?
usp=sharing (accessed on 27 February 2021).

In CPPS, the problem size parameters include the maximal number of operations
in the task subnets, the time horizon and the number of task types. These problem size
parameters correspond to the parameters K = max

j∈J

∣∣Tj
∣∣, Π and |J| in this paper. To study the

influence of each parameter on the CPU time, we perform many experiments by changing
each parameter and recording the results. We illustrate the consistency between the results
and our expectations.

https://drive.google.com/drive/folders/1SCcf-VWkrSy_iwUoUw0Ky-xxZCrdKtBo?usp=sharing
https://drive.google.com/drive/folders/1SCcf-VWkrSy_iwUoUw0Ky-xxZCrdKtBo?usp=sharing
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First, we perform several experiments by changing the parameter K = max
j∈J

∣∣Tj
∣∣ from

10 to 50 while keeping other parameters unchanged (|J| = 4 and Π = 200). To be specific,
we set K to be 10, 20, 30, 40 and 50, respectively. The results are shown in Figure 7. The
results indicate that the CPU time grows approximately linearly with K. This result is better
than the projection of the polynomial lower bound O(K2Π2|J|2 ∑

j∈J
Dj) on the complexity of

solving NOP.
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To study the growth of CPU time with respect to the time horizon, we perform several
experiments by changing the parameter Π from 100 to 500 while keeping other parameters
unchanged (|J|= 4 and K = 10). To be specific, we set Π to be 100, 200, 300, 400 and 500,
respectively. The results are shown in Figure 8. The results indicate that the CPU time
grows polynominally with Π. This result is consistent with the projection of polynomial
lower bound O(K2Π2|J|2 ∑

j∈J
Dj) on the complexity of solving NOP.
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Figure 8. CPU time with respect to time horizon (Problems 11~15).

To study the growth of CPU time with regards to the number of task types, we
perform several experiments by changing the parameter |J| from 4 to 20 while keeping
other parameters unchanged (Π = 100 and K = 10). To be specific, we set |J| to be 4, 8, 12,
16 and 20, respectively. The results are shown in Figure 9. The results indicate that the
CPU time grows polynominally with |J|. This result is consistent with the projection of
polynomial lower bound O(K2Π2|J|2 ∑

j∈J
Dj) on the complexity of solving NOP.
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7. Discussion

In this paper, we propose the theory to lay a foundation for developing context-aware
applications in CPPS. Two context awareness properties are crucial for the development
of context-aware applications in CPPS. One is deadline awareness and the other is future
states awareness. We develop a theory to pave the way for deadline-aware and future
states-aware applications in CPPS based on Discrete Timed Petri Nets. The theory and
algorithms developed in this paper provide an approach to determining whether the
deadline of an order can be met without visiting any undesirable states. Accompanying
the theory presented in this paper is an example to illustrate the application of the theory.

As computational feasibility is an important factor in the development of context-
aware applications for CPPS, analysis of computational complexity and verification by
experiments are important steps to illustrate the practicality of the theory for solving
real problems. Therefore, we conduct an analysis of the decision problem and conduct
experiments to study the computational feasibility of the proposed method. We study how
the CPU time grows with the scale of the problem. In CPPS, the problem size parameters
include the maximal number of operations in the task subnets, the time horizon and
the number of task types. These problem size parameters correspond to the parameters
K = max

j∈J

∣∣Tj
∣∣, Π and |J| in this paper.

The algorithm to construct JSTN is of polynomial complexity (according to Property 2:
The complexity to construct the Joint Spatial–Temporal Network JSTN(V, A) by applying
the Joint Spatial–Temporal Network Construction Algorithm is O(KΠ|J|). A lower bound
on the complexity of solving NOP, which is defined on JSTN, is O(KΠ|J|) according to
Property 3. Overall, a lower bound on the complexity of constructing JSTN and solving
NOP is of polynomial complexity.

To study the influence of each parameter on the CPU time, we perform many exper-
iments by changing each parameter and recording the results. Our experimental results
show that the CPU time grows approximately linearly with K and grows polynominally
with Π and |J|. These results are consistent with the projection of the polynomial lower
bound O(K2Π2|J|2 ∑

j∈J
Dj) on the complexity of solving NOP. Based on our experimental

results, we illustrate the consistency between the results and our expectations. This also
indicates the practicality of the proposed theory in solving real problems in CPPS. Figure 7
through Figure 9 includes the construction of JSTN and solving of NOP. Note that markings
of CPPS are neither embedded nor included in the construction process of JSTN. This
avoids the state explosion problem.

In the literature, different approaches were proposed to tackle the complexity issue of
time Petri nets and timed Petri nets. Berthomieu et al. [46–48] and Klai et al. [49] proposed
different methods to reduce complexity in the analysis of time Petri nets. Lefebvre et al.
proposed different methods to reduce complexity in the analysis of time Petri nets [50,51].
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In terms of the models used, the nets considered by all the works mentioned above were
general, whereas a subclass of nets is considered in our paper. Even though only a subclass
of nets is considered, the subclass of nets considered in this paper can be used to model
the production processes commonly used in the manufacturing sector. As the net structure
considered in the works mentioned above is general, a variety of approaches such as the
construction of a State Class Graph, Timed Aggregate Graph, Timed Extended Reachability
Graph and Approximated Timed Reachability Graph were proposed to reduce complexity.
However, all these methods suffer from state explosion problems as the complexity of
constructing and exploring variants of reachability graphs grows exponentially with the
problem size. As the models used in this paper belong to a subclass of nets, we developed
a more efficient algorithm based on the proposed JSTN based method by exploiting the net
structure. The proposed JSTN based method does not rely on the explicit construction of
reachability graphs, State Class Graphs or Timed Extended Reachability Graphs or their
variants. As a result, we can identify a lower bound on the complexity of constructing JSTN
and solving NOP, which is of polynomial complexity.

The problems addressed in this study are different from the ones in the literature.
Although there are many approaches to context-aware workflow systems in [57], there
are only a few studies on the development of context-aware applications and services
based on different variants of Petri nets, e.g., [58–60]. In particular, existing studies on
modeling, analyzing and generating time-relevant contextual information for context-aware
applications and systems are limited, e.g., [9,13,15,61]. Issues regarding the achievement of
situation awareness, including deadline awareness and future states awareness in Cyber-
Physical Production Systems is less explored. This paper attempts to bridge this gap by
expanding the preliminary results reported in [62] through developing relevant theory and
algorithms to address situation awareness problems of CPPS, and conducting experiments
to study the feasibility of the proposed approach. The results of this study confirm the
feasibility of the proposed method.

8. Conclusions

The complex workflows and heterogeneous entities in CPPS pose several challenges
in the development of context-aware applications for CPPS. Due to contention and sharing
of resources among different workflows and production processes in CPPS, a state that
is seemingly not undesirable at one point in time may evolve to another state that is
undesirable in the future. Therefore, development of context-aware applications for CPPS
should consider not only the current state but also future states of the system. In other
words, situation awareness is an important factor that must be considered in context-aware
applications for CPPS. However, relevant studies are still lacking on situation awareness for
CPPS. This situation awareness requirement raises an important research issue in CPPS. For
this reason, we focus on the development of a theory for the analysis of situation awareness
property for CPPS to pave the way for the development of context-aware applications
for CPPS. In this paper, we study problems relevant to identifying situations of CPPS.
These include the Deadline Awareness Problem and Future States Awareness Problem.
The Deadline Awareness Problem aims to determine whether the deadline can be met
in the future, whereas the Future States Awareness Problem aims to determine whether
the undesirable states can be avoided in the process to evolve to the target state from
the current state in CPPS. We develop the theory and relevant algorithms to address the
above problems and support analysis of the situation of CPPS. We illustrate the application
of the theory to an application scenario through the use of an example. To assess the
computational efficiency of the proposed algorithms, we analyze the complexity and
conduct experiments to verify the CPU time for applying the proposed algorithm to many
test cases. The results show that the CPU time grows polynominally with the scale of the
problem and are consistent with the expected lower bound of computational complexity.
This study provides an alternative approach to the analysis of a class of timed Petri nets
without relying on the exploration of graphs that are defined in the literature based on
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the State Class of general time Petri nets, such as the State Class Graph, Timed Aggregate
Graph, Timed Extended Reachability Graph and Approximated Timed Reachability Graph.
This study sheds light on a promising approach to the development of efficient algorithms
for analyzing subclasses of Petri nets by exploiting their structures. The development of
relevant theory to analyze situation awareness properties in other problem domains is one
interesting direction of future research.
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