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Abstract: The recent developments in the machine-learning domain have enabled the development
of complex multivariate probabilistic forecasting models. To evaluate the predictive power of these
complex methods, it is pivotal to have a precise evaluation method to gauge the performance and
predictability power of these complex methods. To do so, several evaluation metrics have been
proposed in the past (such as the energy score, Dawid–Sebastiani score, and variogram score);
however, these cannot reliably measure the performance of a probabilistic forecaster. Recently, CRPS-
Sum has gained a lot of prominence as a reliable metric for multivariate probabilistic forecasting.
This paper presents a systematic evaluation of CRPS-Sum to understand its discrimination ability.
We show that the statistical properties of target data affect the discrimination ability of CRPS-Sum.
Furthermore, we highlight that CRPS-Sum calculation overlooks the performance of the model on
each dimension. These flaws can lead us to an incorrect assessment of model performance. Finally,
with experiments on real-world datasets, we demonstrate that the shortcomings of CRPS-Sum provide
a misleading indication of the probabilistic forecasting performance method. We illustrate that it is
easily possible to have a better CRPS-Sum for a dummy model, which looks like random noise, in
comparison to the state-of-the-art method.

Keywords: time-series analysis; probabilistic forecasting; assessment

1. Introduction

In the last decades, probabilistic forecasting has drawn a lot of attention in the scien-
tific community, which has led to the fast-paced development of new methods as well as
applications in a wide variety of domains, including renewable energies [1–3], weather
forecasting [4–6], seismic hazard prediction [7,8], and health care [9]. Autoregressive
conditional heteroscedasticity (ARCH) [10] and generalized autoregressive conditional
heteroscedasticity (GARCH) [11] are two of the pioneer models for probabilistic forecasting.
These methods try to model the variance in future value alongside forecasting the mean of
future outcomes. Many other models have been proposed based on the ARCH method,
and they have been utilized in various domains, especially in the finance domain [12–14].
Furthermore, researchers have proposed probabilistic forecasting models based on Gaus-
sian processes [15,16]. These models have higher resistance against overfitting and can
capture highly nonlinear relationships without increasing model complexity.

Recently, several approaches for probabilistic forecasting based on neural networks
have been proposed. These models can efficiently incorporate a large amount of data and
do not require manual feature engineering. Explicit models assume the type of uncer-
tainty in data explicitly and learn the parameters of the assumed distribution accordingly.
DeepAR [17] is one of the successful examples of the explicit modeling of the predictive
future distribution of data. On the other hand, implicit models employ generative models
for probabilistic forecasting. Implicit models do not make any assumption about data

Appl. Sci. 2022, 12, 5104. https://doi.org/10.3390/app12105104 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12105104
https://doi.org/10.3390/app12105104
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7370-9369
https://orcid.org/0000-0002-7634-4964
https://orcid.org/0000-0002-6100-8255
https://orcid.org/0000-0002-4239-6520
https://doi.org/10.3390/app12105104
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12105104?type=check_update&version=1


Appl. Sci. 2022, 12, 5104 2 of 13

uncertainty and learn the data distribution from given samples, i.e., a dataset. Hence, they
do not have direct access to the probability distribution of the model over future values
and provide future values by forecasting through Monte-Carlo sampling. Some prominent
neural-network-based implicit probabilistic forecast models are low-rank Gaussian copula
processes [18], conditioned normalizing flows [19], normalizing kalman filters [20], the
denoising diffusion model [21], models based on variational auto-encoders (VEAs) [22–24]
and conditional generative adversarial networks (CGANs) [25,26]. The assessment of
these forecasting models poses a special challenge, and it is important to have evaluation
methods that can be used to gauge their performance.

Garthwaite et al. [27] coined the concept of scoring rules for summarizing the quality
of a probabilistic forecaster with a numerical score [28]. A scoring rule is expected to make a
careful assessment and be honest [27]. Gneiting et al. [28] proposed the continuous ranked
rrobability score (CRPS) for univariate and energy score (ES) for multivariate time series
as strictly proper scoring rules. While CRPS presents a robust and reliable assessment
method for univariate time-series forecasting, ES’s discrimination ability diminishes in
higher dimensionalities [29]. Several other multivariate metrics [29,30] have been proposed
to address probabilistic forecaster assessment in higher dimensions, however, each of them
has a flaw that makes them unsuitable for the assessment task. For instance, variogram
score [30] is a proper scoring rule which can reflect the misalignment in correlation very
well, but it lacks the strictness property. The Dawid–Sebastiani score [31] employs only
the first two moments of distribution for evaluation, which is not sufficient for many
applications. A thorough analysis of these metrics is provided in [32].

Recently, Salinas et al. [18] suggested CRPS-Sum as a new proper multivariate-scoring
rule. This scoring rule has been well-received in the scientific community [18–21]. The
properties of CRPS-Sum have not been studied so far.

In this paper, our goal is to discuss the discrimination ability of CRPS-Sum. We con-
ducted several experiments on artificial and real datasets to investigate the quantification
power of CRPS-Sum for the performance of a probabilistic forecaster. Based on the experi-
ments’ results, we point out the loopholes in this metric and discuss how CRPS-Sum can
mislead us in interpreting a model’s performance.

2. Problem Specification

The forecasting task deals with predicting the future given historical information of
a time series. A time series can have multiple dimensions. The notation xi

t indicates the
value of a time series at the time-step t in the i-th dimension. If a time series has only one
dimension, it is called a univariate time series; otherwise, it is a multivariate time series.

In the forecasting task, given x0:T as historical information, we are interested in pre-
dicting values for xT+1:T+h, where h stands for the horizon of forecast. In probabilistic
forecasting, the target is to acquire the range of possible outcomes with their correspond-
ing probabilities. In more concrete terms, we aim to model the following conditional
probability distribution:

P(xT+1:T+h|x0:T). (1)

For the assessment of a probabilistic forecasting model, the goal is to measure how
well a model is aligned with the probability distribution of the data. In other words, we
want to calculate the divergence between Pmodel and Pdata.

3. Evaluation Metrics for Probabilistic Forecasting Models

Our first challenge in assessing a probabilistic model is that, in real-world scenarios,
we do not have access to the true generative process distribution, i.e., Pdata. We only have
access to the observations from Pdata. A scoring rule provides a general framework for
evaluating the alignment of Pdata with Pmodel. A scoring rule is any real-valued function
that provides a numerical score based on a predictive distribution (i.e., Pmodel) and a set of
observations X.

S(Pmodel, X) (2)
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The scoring can be defined as positively or negatively orientated. In this paper, we
consider the negative orientation, since it can be interpreted as the model error and as a
result, it is more popular in the scientific community. Hence, a lower score indicates a better
probabilistic model.

A scoring rule is proper if the following inequality holds:

S(Pmodel, X) ≥ S(Pdata, X) (3)

A scoring rule is strictly proper if the equality in Equation (3) holds if and only if
Pmodel = Pdata [28]. Therefore, only the model that is perfectly aligned with the data
generative process can acquire the lowest strictly proper score. Various realizations of
scoring rules have been proposed to evaluate the performance of a probabilistic forecaster.
Below, we review three scoring rules that are commonly used for the assessment of a
probabilistic foresting model.

3.1. Continuous Ranked Probability Score (CRPS)

CRPS is a univariate strictly proper scoring rule which measures the compatibility of a
cumulative distribution function F with an observation x ∈ R as

CRPS(F, x) =
∫
R
(F(y)− 1{x ≤ y})2 dy , (4)

where 1{x ≤ y} is the indicator function, which is one if x ≤ y and zero otherwise.
The predictive distributions are often expressed in terms of samples, possibly through

Monte-Carlo sampling [28]. Fortunately, there are several methods to estimate CRPS given
only samples from a predictive distribution. The precision of these approximation methods
depends on the number of samples we use for estimation. Below you can find a list of the
most used techniques.

Empirical CDF:
In this technique, we approximate the CDF of a predictive model using its samples.

F̂(y) =
1
n

n

∑
i=1

1{xi ≤ y} . (5)

Then, we can use F̂(y) in conjunction with Equation (4) to approximate CRPS.
Quantile based:
The pinball loss or quantile loss at a quantile level α ∈ [0, 1] and with a predicted αth

quantile q is defined as
Λα(q, x) = (α− 1{x < q})(x− q). (6)

The CRPS has an intuitive definition as the pinball loss integrates over all quantile
levels α ∈ [0, 1],

CRPS
(

F−1, x
)
=
∫ 1

0
2Λα

(
F−1(α), x

)
dα , (7)

where F−1 represents the quantile function. In practice, we approximate quantiles based
on the samples we have. Therefore, Equation (7) can be approximated as a summation over
N quantiles. The precision of our approximation depends on the number of quantiles as
well as the number of samples we have.

Sample Estimation:
Using lemma 2.2 of [33] or identity 17 of [34], we can approximate CRPS by

CRPS(F, x) = EF|X− x| − 1
2

EF
∣∣X− X′

∣∣ , (8)

where X and X′ are independent copies of a random variable with distribution function F
and a finite first moment [28].
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To investigate the significance of sample size on the accuracy of different approxi-
mation methods, we ran a simple experiment. In this experiment, we assumed that the
probabilistic model follows a Gaussian distribution with µ = 0 and σ = 1. Then, we
approximated CRPS(F, x) where x = 0 with various sample sizes in range [200, 5000].
Since we know the probabilistic model distribution, we can calculate the value of CRPS
analytically, i.e., CRPS(F, x) ≈ 0.2337.

From Figure 1a,b, we can perceive that the empirical CDF method and sample estima-
tion method can converge to the close vicinity of the true value efficiently. However, the
empirical CDF method has less variance in comparison to sample estimation. The method
based on pinball loss depends on sample size and the number of quantiles. Figure 1c
portrays how these two factors affect the approximation. We can see that with a number of
quantiles greater than 20, the pinball loss method can produce a very good approximation
using only a few samples (circa 500 samples).

0 1000 2000 3000 4000 5000
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0.30
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(a)

200 1000 2000 3000 4000 5000
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0.2300

0.2337
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Figure 1. The effect of sample size on precision of CRPS approximation using different methods:
(a) Empirical CDF. (b) Sample estimation. (c) Quantile based. We can see that all approximation
methods can provide us with close estimation, however, the sample estimation method has more
variance in estimation.

3.2. Energy Score (ES)

Energy Score (ES) is a strictly proper scoring rule for multivariate time series. For an
m-dimensional observation x in Rm and a predictive cumulative distribution function F,
the energy score (ES) [28] is defined as

ES(F, x) = EF‖X− x‖β − 1
2

EF
∥∥X− X′

∥∥β , (9)

where ‖ . ‖ denotes Euclidean distance and β ∈ (0, 2). We can see here that CRPS is a
special case of ES, where β = 1 and m = 1. While ES is a strictly proper scoring rule for all
choices of β, the standard choice in application is normally β = 1 [28].

ES provides a method for probabilistic forecast model assessment which works well
on multivariate time series. Unfortunately, ES suffers from the curse of dimensionality [29]
and its discrimination power decreases with increasing numbers of data dimensions. Still,
the performance of ES in lower dimensionalities complies with the expected behavior of an
honest and careful assessor. Hence, we can use its behavior in lower dimensionalities as
the reference for comparison with newly suggested assessment methods.

3.3. CRPS-Sum

To address the limitation of ES in multidimensional data, Salinas et al. [18] introduced
CRPS-Sum for evaluating a multivariate probabilistic forecasting model. CRPS-Sum is a
proper scoring rule, and it is not strictly proper. CRPS-Sum extends CRPS to multivariate
time series with a simple modification. It is defined as

CRPS-Sum = Et

[
CRPS

(
F−1

sum, ∑
i

xi
t)

)]
, (10)
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where F−1
sum is calculated by summing samples across dimensions and then sorting to obtain

quantiles. Equation (10) calculates CRPS based on the quantile-based method (Equation (7)).
In a more general sense, one can calculate the CRPS-Sum by summing both samples and
observations across the dimensions. This way, we would acquire a univariate vector of
samples and observation. Then, we can apply any aforementioned approximating methods
to calculate CRPS-Sum.

4. Investigating CRPS-Sum Properties

CRPS-Sum has been widely welcomed by the scientific community, and many re-
searchers have used it to report the performance of their models [18–21]. However, the
capabilities of CRPS-Sum have not been investigated thoroughly, unlike the vast studies
dedicated to the properties of ES and CRPS [28,29,32]. To evaluate the discrimination ability
of CRPS-Sum, we conducted several experiments on a toy dataset and outline the results in
this section.

4.1. CRPS-Sum Sensitivity Study

In this study, we inspected the sensitiveness of CRPS-Sum concerning the changes
in the covariance matrix. This study extends the sensitivity study that was previously
conducted by [29,32] for various scoring rules, including CRPS and ES. For easier inter-
pretation of the scoring-rule response to changes in a model or data, we defined relative
changes in the scoring rule ∆rel.

We ran our experiment N times, where CSi denotes the obtained CRPS-Sum from the
i-th experiment. We define

CS =
1
N

N

∑
i=1

CSi , (11)

as the mean value of CRPS-Sum for the N experiments. Furthermore, let CS∗ signify the
CRPS-Sum for a model that is identical to the true data distribution. Now, the relative
changes [29] in CRPS-Sum is defined as

∆rel(CS) =
CS−CS

∗

CS
∗ . (12)

This metric frames the relative changes in the CRPS-Sum of a forecasting modeling
across our experiments as the differences between the predicted and actual density of the
stochastic process. The main idea is to determine the sensitivity of the scores with respect
to some biased non-optimal forecast in a relative manner.

In this study, we have a true data distribution that follows a bivariate normal distribu-

tion with µ =

(
0
0

)
and Σ =

(
1 ρ
ρ 1

)
where ρ ∈ [−1,−0.8, . . . , 0.8, 1]. Furthermore, we

specified a forecasting model f that follows the same distribution; however, this time the
off-diagonal element of the covariance matrix is $ ∈ [−1,−0.9,−0.8, . . . , 0.8, 0.9, 1]. In our
study, we sampled n = 214 windows of size w = 29, as suggested in [32].

Figure 2 illustrates the relative change in CRPS-Sum and ES with respect to changes
in correlation ρ of the data-generating process as a function of the correlation coefficient
$ of the family of models we studied. We can observe that ES behavior is unbiased with
regard to ρ and its figure is symmetric. This is the expected behavior from a scoring rule in
this scenario. In contrast, the response of CRPS-Sum to change in ρ is not symmetric. It is
more sensitive to the changes when the covariance ρ of the data is negative, and it is almost
indifferent to the changes when the covariance ρ of the data is positive.

Hence, the sensitivity of CRPS-Sum to changes in covariance is dependent on the
dependency structure of true data. In real-world scenarios, where we do not have access to
the covariance matrix of the data-generative process, we cannot reliably interpret CRPS-
Sum and compare various models based on CRPS-Sum.
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Figure 2. The relative change in CRPS-Sum (a) and ES (b) with respect to ρ and $. The correlation of
forecast ($) is presented on the x axis, and the correlation of data (ρ) is depicted with different lines.
Unlike ES, the CRPS-Sum figure is not symmetric, which indicates that it is biased with regard to the
ρ value.

4.2. The Effect of Summation on CRPS-Sum

To calculate CRPS-Sum, first, we summed the time-series over the dimensions [18].
Although this aggregation let us turn a multivariate time series into a univariate one, we
lost important information concerning the performance of the model in each dimension.
Furthermore, the values of dimensions that are negatively correlated negate each other and,
consequently, those dimensions will not be presented in aggregated time series.

For instance, assume we have a multivariate time series x with two dimensions. Our

data follow a bivariate Gaussian distribution with µ =

(
0
0

)
and Σ =

(
1 −1
−1 1

)
. Hence,

the following relation holds between dimensions:

x0 = −x1. (13)

By summing over dimensions, we have:

∑
i

xi = 0 . (14)

Clearly, after summation, we acquire a signal with constant zero, and all the informa-
tion regarding the variability of the original time series is lost.

To acquire information regarding the performance of the model on each dimension, we
can calculated CRPS first. Once the CRPS was validated, we could calculate the CRPS-Sum
to check how well the model learned the relationship between the dimensions, and even, at
this point, we should not forget the flaws of CRPS-Sum that we witnessed, e.g., sensitivity
toward data covariance and loss of information during summation. Unfortunately, the
importance of CRPS is ignored in most of the recent papers in the probabilistic forecast
domain. In these papers, the CRPS is either not reported at all [20,21], or the argument about
the performance of the model is made solely based on CRPS-Sum [18,19]. Considering
the flaws of CRPS-Sum, this trend can put the assessment results of these recent models
in jeopardy.

5. Closer Look into CRPS-Sum in Practice

In the previous section, we discussed the properties of CRPS-Sum and indicated its
shortcomings in hypothetical scenarios using toy data settings. In this section, we aim to
investigate CRPS-Sum capabilities with real datasets. To do so, we conducted experiments
by constructing simple models that are based on random noise and investigate their



Appl. Sci. 2022, 12, 5104 7 of 13

performance using CRPS-Sum. In our first experiment, we employed the exchange-rate
dataset [35]. The exchange-rate dataset is a multivariate time series dataset which contains
the daily exchange rate of eight countries, namely, Australia, British, Canada, Switzerland,
China, Japan, New Zealand, and Singapore, which was collected between 1990 and 2016.
This dataset has few dimensions, which lets us use ES alongside CRPS and CRPS-Sum.
Additionally, it is easier to perform qualitative assessment on lower dimensionalities. We
used the dataset in the same setting that is proposed in [18].

We also utilized the low-rank Gaussian copula processes method (GP-copula) from [18].
GP-copula combines an RNN-based time-series model with a Gaussian copula process
output model for probabilistic forecasting. Furthermore, the model employs a low-rank
covariance structure to reduce the computational complexity and handle non-Gaussian
marginal distributions. We selected this model since the model performance has been
reported in CRPS-Sum.

Our first model is a dummy univariate model which follows a Gaussian distribution.
The mean of the Gaussian distribution is µ = µlast where µlast is the mean of the last values
in the input vector over the dimensions, i.e.,

µlast =
1
D

D

∑
i=1

xi
T . (15)

We used σ = 10−4 as the standard deviation of the dummy univariate model in our
experiments; however, the results are not dependent on the σ value (more discussion on
σ values can be found in Appendix B). We used this model to generate the forecast for
every dimension.

For the second model, we employed a multivariate Gaussian distribution to build
a dummy multivariate forecaster. The mean of the i-th dimension of the multivariate
Gaussian distribution is the value of the last time step in the input window, i.e., µi = xi

T .
The covariance matrix is zero everywhere except on its main diagonal, which is filled
with 10−4. In other words, we extended the last observation of the input window as the
prediction and apply a small perturbation from a Gaussian distribution.

Table 1 presents the CRPS-Sum, CRPS, and ES of the two dummy models and the
result of the GP-copula model from [18] on the exchange-rate dataset. Note that all values
in this paper were calculated using the sampling method. We calculated these metrics
based on the quantile method as well, which yielded almost similar results. While the
CRPS-Sum suggests that the dummy univariate model is much better than GP-copula,
the CRPS and ES indicate that the performance of the dummy univariate model is worse
than GP-copula. The results reported by CRPS and ES are aligned with our expectations;
however, the CRPS-Sum reports a misleading assessment.

Table 1. This table illustrates the results from dummy models on the exchange-rate dataset and
compares their performance with GP-copula based on CRPS-Sum, CRPS, and ES. It shows that
CRPS-Sum dummy models have better performance in comparison to GP-copula.

GP-copula Dummy Univariate Dummy Multivariate

CRPS-Sum 0.0070 0.0049 0.0048
CRPS 0.0092 0.4425 0.0077

ES 0.0043 0.2037 0.0032

On the other hand, the quantitative results for the dummy multivariate model are
quite surprising. All three assessment methods denote that the dummy multivariate has a
superior performance in comparison to GP-copula. To provide further explanation for this
unexpected result, we analyzed the performance of these models qualitatively.
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Figure 3a depicts the forecasts from GP-copula for the first dimension of the exchange-
rate dataset (the rest of the dimensions are visualized in Appendix A) and Figure 3b
presents samples from the dummy multivariate model.

0 20 40 60 80 100 120 140
Test set

1.02

1.04

1.06

1.08
ground truth
gp-copula

(a)

0 20 40 60 80 100 120 140
Test set

1.02

1.04

1.06

1.08
ground truth
dummy mv

(b)

Figure 3. These figures illustrate the 400 forecast samples from GP-copula and dummy multivariate
model for the first dimension of the exchange-rate dataset, alongside the expected ground truth.
While dummy multivariate model forecasts look like random noise as expected, it is hard to spot any
meaningful pattern in GP-copula forecasts in comparison to the expected value. (a) Visualization of
GP-copula samples. (b) Visualization of forecast samples from dummy multivariate model.

This experiment shows us that the border between a dummy model and a genuine
model can become very blurry if we rely solely on CRPS-Sum. Furthermore, we learn that
CRPS and visualization can help us to acquire a better understanding of model performance.

In the second experiment, we performed a similar experiment on the taxi dataset [36].
The taxi dataset contains the spatio-temporal traffic time-series of New York taxi rides taken
at 1214 locations every 30 min in the months of January 2015 (training set) and January
2016 (test set). This dataset consists of 1214 dimensions. Table 2 presents results for the
experiment on the taxi dataset. In contrast to the previous experiment on the exchange-rate
dataset, we cannot examine the discrimination ability of CRPS-Sum by comparing it to
other metrics in higher dimensionalities. As mentioned in Section 3.2, the ES is not a
reliable indicator of model performance in higher dimensionalities. CRPS cannot reflect
the dependency structure learned by the model. Furthermore, we cannot crosscheck the
CRPS-Sum discrimination ability with the qualitative performance of the model, since it
is not possible to investigate the model’s performance intuitively due to the size of data
and the unintuitive nature of time-series data. For instance, Figure 4a,b illustrates the
performance of GP-copula on the dimensions where the model has the best and the worst
performance based on CRPS. By comparing these two figures, we can perceive clearly
that the qualitative analysis of model performance is not feasible and straightforward.
This experiment emphasizes again the importance of a strictly proper scoring rule for
probabilistic multivariate time-series forecasting, which is sound in its definition and
analyzed carefully with real-world datasets with low dimensionalities.
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Figure 4. These figures illustrate the 400 forecast samples from the GP-copula model on the taxi
dataset. (a) Visualization of the GP-copula model on four dimensions of the taxi dataset with the best
performance based on CRPS. (b) Visualization of the GP-copula model on four dimensions of the taxi
dataset with the worst performance based on CRPS.
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Table 2. This table illustrates the results from dummy models on the taxi dataset and compares their
performance with GP-copula based on CRPS-Sum, CRPS, and ES. In contrast to the exchange-rate
dataset, it is not feasible to cross-check these quantities in higher dimensionalities.

GP-copula Dummy Univariate Dummy Multivariate

CRPS-Sum 0.1703 0.4685 0.4705
CRPS 0.3336 0.6778 0.7543

ES 0.0138 0.0284 0.0318

6. Conclusions

In this paper, we reviewed various existing methods for the assessment of probabilistic
forecast models and discussed their advantages and disadvantages. While CRPS is only
applicable to univariate models and ES suffers from the curse of dimensionality, CRPS-Sum
was introduced to help us with assessing multivariate probabilistic forecast models. Unlike
CRPS and ES, the properties of CRPS-Sum have not been studied in the past. Our sensitivity
study illustrates that the CRPS-Sum behavior is not symmetric concerning the covariance
of data distribution. CRPS-Sum is more sensitive to changes in the covariance of the model
when the covariance of the data is negative. This is an undesirable behavior and makes
result interpretation difficult.

Furthermore, CRPS-Sum cannot reflect the performance of a model on each dimension
due to the loss of information caused by summation during its calculation. We demon-
strated this problem with simple examples and experiments on the exchange-rate dataset,
where a dummy model based on random noise achieved better CRPS-Sum than the state-
of-the-art model. Additionally, with the experiment on the taxi dataset, we portrayed that
the study of the CRPS-Sum discrimination ability in higher dimensionalities is not feasible.

To conclude, CRPS-Sum cannot provide an unbiased and accurate assessment for
multivariate probabilistic forecasters. Thus, we suggest avoiding CRPS-Sum if possible.
For data with low dimensionality, we can use ES. In higher dimensions, the assessment of
the probabilistic forecast model is still an open problem. In the current state, it is difficult
to rely solely on any existing metric and manual qualitative analysis should be used to
evaluate the performance as well.

7. Future Works

Considering the shortcomings of CRPS-Sum, there is an urgent need for an assess-
ment metric for multivariate probabilistic forecast models. A desirable metric would be
a strictly proper scoring rule that summarizes the model performance in a single value
using a reasonable number of samples. Furthermore, it should be capable of reflecting the
precision of the model in learning the probability distribution of each dimension, as well as
model accuracy in capturing cross-dimension dependencies. Additionally, it is desirable to
investigate the discrimination ability of such metrics using various probabilistic forecasting
methods on multiple real-world datasets.
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Appendix A. Visualization of Forecasts from GP-copula on Exchange-Rate Dataset
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Figure A1. This figure presents the sample forecasts from GP-copula for exchange-rate dataset test
set. The dataset has eight dimensions and the test set consists of five batches with 30 time steps. Each
subfigure corresponds to one of the data dimensions, presented in original order from the top to
bottom. We used 400 samples for visualization of each forecast batch.
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Appendix B. The Standard Deviation of Dummy Models

For our discussions on dummy models performance, we used σ = 10−4 to define
Gaussian distribution. Nevertheless, as shown in Figures A2 and A3, we can acquire
consistent result with σ ≤ 10−3. Furthermore, we can see that that values of our scoring
rules converge when σ ≤ 10−5.
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Figure A2. The assessment of univariate dummy model with σ ∈ {10−1, 10−2, . . . , 10−20} using
CRPS-Sum, CRPS and ES. The plot is depicted on logarithmic scale. (a) CRPS-Sum. (b) CRPS. (c) ES.
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Figure A3. The assessment of multivariate dummy model with σ ∈ {10−1, 10−2, . . . , 10−20} using
CRPS-Sum, CRPS and ES. The plot is depicted on logarithmic scale. (a) CRPS-Sum. (b) CRPS. (c) ES.

References
1. Pinson, P. Wind energy: Forecasting challenges for its operational management. Stat. Sci. 2013, 28, 564–585. [CrossRef]
2. Bacher, P.; Madsen, H.; Nielsen, H.A. Online short-term solar power forecasting. Sol. Energy 2009, 83, 1772–1783. [CrossRef]
3. Chen, Y.; Wang, Y.; Kirschen, D.; Zhang, B. Model-free renewable scenario generation using generative adversarial networks.

IEEE Trans. Power Syst. 2018, 33, 3265–3275. [CrossRef]
4. Cloke, H.; Pappenberger, F. Ensemble flood forecasting: A review. J. Hydrol. 2009, 375, 613–626. [CrossRef]
5. Racah, E.; Beckham, C.; Maharaj, T.; Kahou, S.E.; Pal, C. ExtremeWeather: A large-scale climate dataset for semi-supervised

detection, localization, and understanding of extreme weather events. arXiv 2016, arXiv:1612.02095
6. Rodrigues, E.R.; Oliveira, I.; Cunha, R.; Netto, M. DeepDownscale: A deep learning strategy for high-resolution weather

forecast. In Proceedings of the 2018 IEEE 14th International Conference on e-Science (e-Science), Amsterdam, The Netherlands,
29 October–1 November 2018; pp. 415–422.

7. Mousavi, S.M.; Zhu, W.; Sheng, Y.; Beroza, G.C. CRED: A deep residual network of convolutional and recurrent units for
earthquake signal detection. Sci. Rep. 2019, 9, 1–14. [CrossRef]

8. Ross, Z.E.; Yue, Y.; Meier, M.A.; Hauksson, E.; Heaton, T.H. PhaseLink: A deep learning approach to seismic phase association.
J. Geophys. Res. Solid Earth 2019, 124, 856–869. [CrossRef]

9. Avati, A.; Jung, K.; Harman, S.; Downing, L.; Ng, A.; Shah, N.H. Improving palliative care with deep learning. BMC Med. Inform.
Decis. Mak. 2018, 18, 55–64. [CrossRef]

10. Engle, R.F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econom. J.
Econom. Soc. 1982, 50, 987–1007. [CrossRef]

11. Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econom. 1986, 31, 307–327. [CrossRef]

http://doi.org/10.1214/13-STS445
http://dx.doi.org/10.1016/j.solener.2009.05.016
http://dx.doi.org/10.1109/TPWRS.2018.2794541
http://dx.doi.org/10.1016/j.jhydrol.2009.06.005
http://dx.doi.org/10.1038/s41598-019-45748-1
http://dx.doi.org/10.1029/2018JB016674
http://dx.doi.org/10.1186/s12911-018-0677-8
http://dx.doi.org/10.2307/1912773
http://dx.doi.org/10.1016/0304-4076(86)90063-1


Appl. Sci. 2022, 12, 5104 13 of 13

12. Nelson, D.B. Conditional heteroskedasticity in asset returns: A new approach. Econom. J. Econom. Soc. 1991, 59, 347–370.
[CrossRef]

13. Zakoian, J.M. Threshold heteroskedastic models. J. Econ. Dyn. Control 1994, 18, 931–955. [CrossRef]
14. Glosten, L.R.; Jagannathan, R.; Runkle, D.E. On the relation between the expected value and the volatility of the nominal excess

return on stocks. J. Financ. 1993, 48, 1779–1801. [CrossRef]
15. Kou, P.; Gao, F.; Guan, X. Sparse online warped Gaussian process for wind power probabilistic forecasting. Appl. Energy 2013,

108, 410–428. [CrossRef]
16. Platanios, E.A.; Chatzis, S.P. Gaussian process-mixture conditional heteroscedasticity. IEEE Trans. Pattern Anal. Mach. Intell. 2013,

36, 888–900. [CrossRef]
17. Salinas, D.; Flunkert, V.; Gasthaus, J.; Januschowski, T. DeepAR: Probabilistic forecasting with autoregressive recurrent networks.

Int. J. Forecast. 2020, 36, 1181–1191. [CrossRef]
18. Salinas, D.; Bohlke-Schneider, M.; Callot, L.; Medico, R.; Gasthaus, J. High-dimensional multivariate forecasting with low-rank

gaussian copula processes. arXiv 2019, arXiv:1910.03002.
19. Rasul, K.; Sheikh, A.S.; Schuster, I.; Bergmann, U.; Vollgraf, R. Multi-variate probabilistic time series forecasting via conditioned

normalizing flows. arXiv 2020, arXiv:2002.06103.
20. de Bézenac, E.; Rangapuram, S.S.; Benidis, K.; Bohlke-Schneider, M.; Kurle, R.; Stella, L.; Hasson, H.; Gallinari, P.; Januschowski,

T. Normalizing Kalman Filters for Multivariate Time Series Analysis. Adv. Neural Inf. Process. Syst. 2020, 33, 2995–3007.
21. Rasul, K.; Seward, C.; Schuster, I.; Vollgraf, R. Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time

Series Forecasting. arXiv 2021, arXiv:2101.12072.
22. Habibie, I.; Holden, D.; Schwarz, J.; Yearsley, J.; Komura, T. A recurrent variational autoencoder for human motion synthesis. In

Proceedings of the 28th British Machine Vision Conference, London, UK, 4–7 September 2017.
23. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
24. Yan, X.; Rastogi, A.; Villegas, R.; Sunkavalli, K.; Shechtman, E.; Hadap, S.; Yumer, E.; Lee, H. Mt-vae: Learning motion

transformations to generate multimodal human dynamics. In Proceedings of the European conference on computer vision
(ECCV), Munich, Germany, 8–14 September 2018; pp. 265–281.

25. Koochali, A.; Schichtel, P.; Dengel, A.; Ahmed, S. Probabilistic forecasting of sensory data with generative adversarial networks–
forgan. IEEE Access 2019, 7, 63868–63880. [CrossRef]

26. Koochali, A.; Dengel, A.; Ahmed, S. If you like it, gan it. probabilistic multivariate times series forecast with gan. arXiv 2020,
arXiv:2005.01181.

27. Garthwaite, P.H.; Kadane, J.B.; O’Hagan, A. Statistical methods for eliciting probability distributions. J. Am. Stat. Assoc. 2005,
100, 680–701. [CrossRef]

28. Gneiting, T.; Raftery, A.E. Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 2007, 102, 359–378.
[CrossRef]

29. Pinson, P.; Tastu, J. Discrimination Ability of the Energy Score; DTU Informatics; Technical University of Denmark: Kongens Lyngby,
Denmark, 2013.

30. Scheuerer, M.; Hamill, T.M. Variogram-based proper scoring rules for probabilistic forecasts of multivariate quantities. Mon.
Weather. Rev. 2015, 143, 1321–1334. [CrossRef]

31. Dawid, A.P.; Sebastiani, P. Coherent dispersion criteria for optimal experimental design. Ann. Stat. 1999, 27, 65–81. [CrossRef]
32. Ziel, F.; Berk, K. Multivariate forecasting evaluation: On sensitive and strictly proper scoring rules. arXiv 2019, arXiv:1910.07325.
33. Baringhaus, L.; Franz, C. On a new multivariate two-sample test. J. Multivar. Anal. 2004, 88, 190–206. [CrossRef]
34. Székely, G.J.; Rizzo, M.L. A new test for multivariate normality. J. Multivar. Anal. 2005, 93, 58–80. [CrossRef]
35. Lai, G.; Chang, W.C.; Yang, Y.; Liu, H. Modeling long-and short-term temporal patterns with deep neural networks. In

Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor,
MI, USA, 8–12 June 2018; pp. 95–104.

36. NYC Taxi and Limousine Commission. TLC Trip Record Data. 2015. Available online: https://www1.nyc.gov/site/tlc/about/
tlc-trip-record-data.page (accessed on 26 April 2022).

http://dx.doi.org/10.2307/2938260
http://dx.doi.org/10.1016/0165-1889(94)90039-6
http://dx.doi.org/10.1111/j.1540-6261.1993.tb05128.x
http://dx.doi.org/10.1016/j.apenergy.2013.03.038
http://dx.doi.org/10.1109/TPAMI.2013.183
http://dx.doi.org/10.1016/j.ijforecast.2019.07.001
http://dx.doi.org/10.1109/ACCESS.2019.2915544
http://dx.doi.org/10.1198/016214505000000105
http://dx.doi.org/10.1198/016214506000001437
http://dx.doi.org/10.1175/MWR-D-14-00269.1
http://dx.doi.org/10.1214/aos/1018031101
http://dx.doi.org/10.1016/S0047-259X(03)00079-4
http://dx.doi.org/10.1016/j.jmva.2003.12.002
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

	Introduction
	Problem Specification
	Evaluation Metrics for Probabilistic Forecasting Models
	Continuous Ranked Probability Score (CRPS) 
	Energy Score (ES)
	CRPS-Sum

	Investigating CRPS-Sum Properties
	CRPS-Sum Sensitivity Study
	The Effect of Summation on CRPS-Sum

	Closer Look into CRPS-Sum in Practice
	Conclusions
	Future Works
	Appendix A
	Appendix B
	References

