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Abstract: An analytical study is reported that highlights the physical aspects for a heated non-
Newtonian Jeffrey liquid in a duct possessing sinusoidally moving ciliated walls. A comprehensive
and specific convection analysis is conveyed for this ciliated elliptic duct problem by considering
the viscous dissipation effects. The dimensional mathematical problem under consideration is trans-
formed into its dimensionless form by means of appropriate and useful transformations. Then,
velocity and temperature equations are exactly evaluated with given boundary conditions. The veloc-
ity profile is integrated over the elliptic cross-section and exact mathematical solution is obtained for
the pressure gradient. Moreover, the distinct physical flow properties combined with the convection
heat transfer phenomenon are discussed in detail through graphical outcomes. The illustrative
streamline description shows an enhancing closed contour size with increasing Q (dimensionless
flow rate).

Keywords: ciliated duct; elliptic cross section; peristaltic flow; Jeffrey fluid; heat transfer

1. Introduction

The computational interpretation of convection in elliptic conduits is an important
and worthy topic of recent interest for many researchers. A huge mathematical literature
exists on the distinct flow characteristics and heat convection problems for elliptic ducts.
Abdel-Wahed [1] disclosed the experimental model of convection in elliptic conduits.
Maia et al. [2] reported the heat flux for a heated liquid in an elliptic domain geometry.
Ragueb et al. [3] presented the mathematical interpretation of non-Newtonian forced
convection flow in an elliptic duct. Our main intention, in this work, is to analyse the
convection phenomenon in an elliptic domain having heated deformable walls.

Peristalsis mainly deals with the flow problems that involve the movement of channel
walls to propagate the flow. Its comprehensive and broad range of practical applications in
engineering problems make it a worthy topic of interest. Barton and Raynor [4] disclosed
the mathematical study of peristaltic flow and it is basically propagated in the tube due
to deformation of the tube’s walls. Bohme and Friedrich [5] reported the mathematical
analysis that deals with the non-Newtonian peristaltic flow problem. The peristaltic flow
phenomenon, due to its practical field applications, is not just confined to cylindrical
geometries. Many researchers reported recent research on peristaltic flow in view of
multiple liquids and geometry domain models, such as non-uniform tubes [6,7], diverging
tube [8,9], curved tube [10,11], rectangular ducts [12–14] and elliptic duct [15].
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The metachronal wave effect on peristaltic flow is also mathematically investigated
by many researchers. This metachronal wave is mainly generated due to rhythmic and
sequential beating of cilia (hair-like tiny structures). The development of metachronal wave
due to cilia also plays a key role in the flow propagation. Akbar and Butt [16] disclosed the
mathematical interpretation of the cilia-driven peristaltic flow of non-Newtonian fluids.
Akbar et al. [17] scrutinized the transportation in a sinusoidal passage with cilia beating.
Saleem et al. [18] disclosed the flow in a bent tube with effects of cilia beating and distinct
physical properties of peristalsis. Butt et al. [19] mathematically modelled the propulsion
of Phan Thien Tanner non-Newtonian fluid in a sinusoidal pipe with the combined effects
of cilia beating. Some recent studies on polymeric flow problems with weak form solution
approaches are provided [20–22].

The current assessment is done to mathematically interpret the peristaltic flow with
convection for a non-Newtonian Jeffrey fluid in a ciliated elliptical conduit. The viscous
dissipation effect is also integrated in the heat equation to provide a comprehensive in-
terpretation of heat transfer for this convection heat transfer problem. A set of useful
transformations and dimensionless parameters are employed to avail the dimensionless
form of the mathematical problem. We developed exact results for pressure gradient,
temperature and velocity. The distinct physical properties and heat convection aspects of
this developed problem are analysed in detail through graphical outcomes. The increasing
value of Q results in an enhanced contour size but a decline is observed in number of
contours, as shown in streamline graphs.

2. Mathematical Model

An innovative model is presented to interpret the convection analysis for a ciliated
duct flow and the geometry is presented here, through Figure 1.
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The envelope representation of cilia tips is incorporated mathematically by the follow-
ing equations [23].

Y = b0 + b0φCos
( 2π

λ

(
Z− ct

))
= f
(
Z, t

)
,

Z = Z0 + b0φαSin
( 2π

λ

(
Z− ct

))
= g

(
Z, Z0, t

)
,

(1)



Appl. Sci. 2022, 12, 5065 3 of 12

The velocity (i.e., axial and radial velocity) of cilia tips is provided by these equations

W = ∂Z
∂t

∣∣∣
Z0

=
∂g
∂t +

∂g
∂Z

∂Z
∂t =

∂g
∂t +

∂g
∂Z

W,

V = ∂Y
∂t

∣∣∣
Z0

= ∂f
∂t +

∂f
∂Z

∂Z
∂t = ∂f

∂t +
∂f
∂Z

W,
(2)

The combination of Equations (1) and (2) gives

W =
−( 2π

λ )[φαb0cCos( 2π
λ (Z−ct))]

[1−( 2π
λ ){φαb0Cos( 2π

λ (Z−ct))}] ,

V =
( 2π

λ )[φb0cSin( 2π
λ (Z−ct))]

[1−( 2π
λ ){φαb0Cos( 2π

λ (Z−ct))}] ,
(3)

The two velocities provided here basically differentiate between cilia’s productive and
recouping hit. That is W and V, respectively.

The dimensional mathematical equations that model this problem for an incompress-
ible Jeffrey fluid are provided as [24]

Ux + Vy + Wz = 0, (4)

ρ
(
Ut + UUx + VUy + WUz

)
= −Px + (SXX)x +

(
SYX

)
y + (SZX)z, (5)

ρ
(
Vt + UVx + VVy + WVz

)
= −Py + (SXY)x +

(
SYY

)
y + (SZY)z, (6)

ρ
(
Wt + UWx + VWy + WWz

)
= −Pz + (SXZ)x +

(
SYZ

)
y + (SZZ)z, (7)

ρCp
(
Tt + UTx + VTy + WTz

)
= k

(
Txx + Tyy + Tzz

)
+ SXXUx + SXYUy + SXZUz + SYXVx + SYYVy + SYZVz

+ SZXWx + SZYWy + SZZWz,
(8)

The mathematical description of boundary conditions is conveyed in dimensional
form, as follows

W =
−( 2π

λ )[φαb0cCos( 2π
λ (Z−ct))]

[1−( 2π
λ ){φαb0Cos( 2π

λ (Z−ct))}] for x2

a2 +
y2

b
2 = 1.

T = Tw for x2

a2 +
y2

b
2 = 1.

(9)

The non-Newtonian Jeffrey fluid is incorporated in the present analysis by using the
following relation of extra stress tensor [25–27].

S =
µ

1 + λ1

( .
γ+ λ2

..
γ
)
, (10)

The mathematical relation between the two frames is provided by

x = X, y = Y, z = Z− ct, p = P, u = U, v = V, w = W− c, (11)

The functional dimensionless quantities used here are

x = x
Dh

, t = ct
λ , w = w

c , z = z
λ , p =

D2
hp

µλc , y =
y

Dh
, θ = T−Tw

Tb−Tw
, δ = b0

a0
,

φ = d
b0

, Br =
µc2

k(Tb−Tw)
, u = λu

Dhc , v = λv
Dhc , S = DhS

cµ , a = a
Dh

, b = b
Dh

, β = b0
λ ,

(12)

The ellipse has the following hydraulic diameter

Dh =
πb0

E(e)
, (13)
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Now, e =
√

1− δ2, presents E(e) i.e., eccentricity, provided as [28].

E(e) =

π
2∫

0

√
1− e2Sin2α1dα1, (14)

The above formulated computational problem is transformed into its non-dimensional
mathematical form and the final simplified form is achieved by using the approximation
( λ→ ∞ ).

∂p
∂x

= 0, (15)

∂p
∂y

= 0, (16)

dp
dz

=

(
1

1 + λ1

)(
∂2w
∂x2 +

∂2w
∂y2

)
, (17)

∂2θ

∂x2 +
∂2θ

∂y2 + Br

(
1

1 + λ1

)[(
∂w
∂x

)2
+

(
∂w
∂y

)2
]
= 0, (18)

The associated conditions on boundaries are

w = −1− 2πφαβCos(2πz)
1− 2πφαβCos(2πz)

, for
x2

a2 +
y2

b2 = 1. (19)

θ = 0, for
x2

a2 +
y2

b2 = 1, (20)

Moreover, a = E(e)
π

[
1
δ +φSin(2πz)

]
, and b = E(e)

π [1 +φSin(2πz)].

3. Exact Solution

Consider a solution of velocity in the form of the following polynomial expression [29]

w(x, y) = K1x4 + K2y4 + K3x2y2 + K4x2 + K5y2 + K6, (21)

The solution of velocity can be written in this polynomial form, since the following
polynomial, when used in momentum equation and corresponding boundary conditions, gives
an exact solution of flow profile that exactly satisfies the equation and boundary conditions.

Substituting Equation (21) in Equation (17) and making comparison of x2, y2, x0, y0

coefficients on both sides of the Equation, we utilize the three Equations

12K1 + 2K3 = 0, (i)

2K3 + 12K2 = 0, (ii)

2K4 + 2K5 =
dp
dz

(1 + λ1), (iii)

Also, we avail three more Equations by using Equation (21) in (19) and coefficients
balancing of x4, x2, x0 gives

K1a4 + K2b4 − K3a2b2 = 0, (iv)

− 2K2b4 + K3a2b2 + K4a2 − K5b2 = 0, (v)

K2b4 + K5b2 + K6 = −1− 2πφαβCos(2πz)
1− 2πφαβCos(2πz)

, (vi)
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We can solve these six Equations (i)–(vi) and have

K1 = 0, K2 = 0, K3 = 0, K4 =
b2 dp

dz (1+λ1)

2(a2+b2)
,

K5 =
a2 dp

dz (1+λ1)

2(a2+b2)
, K6 = − a2b2 dp

dz (1+λ1)

2(a2+b2)
+ 1

2πφαβCos(2πz)−1 ,

The values of these constants are utilized in Equation (21) and this provides an exact
velocity solution given as

w(x, y) = −1− 2πφαβCos(2πz)
1− 2πφαβCos(2πz)

+
1
2

a2b2(1 + λ1)

(a2 + b2)

dp
dz

(
x2

a2 +
y2

b2 − 1
)

, (22)

The exact value of q(z) is computed by integration of (22)

q(z) = −
a3b3 dp

dzπ(1 + λ1)

4
(

a2 + b2
) +

abπ
−1 + 2πφαβCos(2πz)

, (23)

From Equation (23), dp
dz is computed as

dp
dz

=
4
(

a2 + b2
)[
−
∫ 1

0 abdz + abπ+ Q + 2π
(∫ 1

0 abdz−Q
)
αβφCos(2πz)

]
a3b3π(1 + λ1)(−1 + 2πφαβCos(2πz))

, (24)

The mathematical relation that is used to evaluate the pressure rise for a single wave-
length is given as

∆P =

1∫
0

∂p
∂z

dz, (25)

The exact mathematical result of temperature is computed as

θ(x, y) =
−Br

(
dp
dz

)2
a2b2

(
x2

a2 +
y2

b2 − 1
)[

b6x2 + a2b4(b2 + 6x2 − y2)+ a6(b2 + y2)+ a4b2(4b2 − x2 + 6y2)](1 + λ1)

12(a2 + b2)
2(a4 + 6a2b2 + b4

) , (26)

4. Results and Discussion

The graphical outcomes presented in this section provide comprehensive detail about
the distinct characteristics of peristaltic flow in this ciliated duct with elliptic cross section.
Figures 2–4 provide the graphical outcomes of velocity, subject to the impact of distinct
physical parameters. These graphs include the 2D and 3D plots of velocity profile. An
increase is observed in velocity as Q increases, revealed by Figure 2a. Figure 2b provides
the 3D graphical plot of velocity, which reveals flow dependency on x in addition to y. The
velocity has inflative value in the middle of the conduit and a parabolic velocity profile is
noted. Figure 3a,b reveal an increment in the flow profile for increasing β. The enhancing β
results in an increased flow profile in the middle of the duct but it declines with increasing β
near the ciliated boundaries. An axial symmetry and parabolic velocity profile is observed.
Figure 4a,b provide the 2D and 3D velocity plots for enhancing α. An increase in the
velocity is seen for incrementing α. The flow profile attains high magnitude in the central
region of the conduit but it shows an opposite behaviour near the ciliated boundaries with
an increasing value of α. The increasing behaviour of velocity at the centre changes to a
declining one near the ciliated walls. All the velocity graphs reveal that the flow behaviour
is axially symmetric and a parabolic velocity profile is observed. Figures 5–9 provide
the graphical solutions of temperature profile and its dependence on various parameters.
Figure 5a,b provide the temperature plots for various numerical values of Q. Temperature
attains high values for increasing Q. An axially symmetrical temperature behaviour is
also observed in these temperature graphs. The convection rate is highest at the middle
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and minimum, near the ciliated boundaries. Figure 6a,b reveal the numerical solution of
temperature for the uprising value of λ1. A decline in the temperature profile is observed
for increasing values of λ1. If we set λ1 = 0 then the problem is simply a Newtonian
flow problem. The increase in the value of λ1 changes the problem to a non-Newtonian
flow problem. It reveals that the temperature reduces if the problem is transformed from
analysis of a Newtonian to non-Newtonian flow problem. Figure 7a,b give the temperature
solution for rising β. A rise in the temperature profile is observed for upsurging β. The
convection is highest at the middle section of the conduit and then starts reducing on the
way to the ciliated boundaries of the duct. Figure 8a,b provide the 2D and 3D plot of
temperature for upsurging Br. The temperature rapidly increases for an increasing value of
Br. An axially balanced temperature profile is revealed for the incrementing value of Br.
The highest temperature in the middle of the conduit starts declining towards the ciliated
boundaries and eventually becomes zero. Figure 9a,b depict the 2D and 3D plot of heat
flux for distinct numerical entities of α. An increase in the convection rate is noted for
upsurging α. The maximum temperature is noted at the centre and zero at the ciliated
walls. In Figure 10a–d, dp

dz is plotted against the axial coordinate and its dependence on

various parameters is noted. Figure 10a depicts that dp
dz gains higher values with increasing

the value of δ. Figure 10b reveals an increment in dp
dz for uprising λ1. Figure 10c shows that

dp
dz increases in the crest region of the peristaltic wave but it diminishes in the trough region

of the peristaltic wave for the incrementing value of φ. Figure 10d depicts a decline in dp
dz

for increasing Q. In Figure 11a–c ∆P against Q is drawn for distinct uprising values of the
physical parameters. Figure 11a depicts the outcome of ∆P against Q for increasing δ. A
rise in ∆P is revealed in the section ∆P > 0 but a decline is noted in the section ∆P < 0.
Figure 11b conveys the numerical result of ∆P against Q for enhancing λ1. A declining
numerical value of ∆P is noted in the segment ∆P > 0 but an increment is observed in
segment ∆P < 0. Figure 11c reveals that ∆P against Q gains higher value in the region
∆P > 0 but its value declines in the region ∆P < 0 for increasing φ. The streamline plots
are also added for incrementing Q, displayed in Figure 12a–d. The trapped closed contours
show an increase in size with incrementing Q. The graphical picture of flow is conveyed
through these streamline outcomes.
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5. Conclusions

The current research was carried out to analyse the convection analysis of heated
Jeffrey fluid in a conduit having elliptic domain and ciliated boundaries. The key outcomes
are given below. The velocity gains its highest magnitude in the middle region of the
conduit and a parabolic velocity profile is seen. The velocity gains magnitude with the
increasing value of β in the middle of the duct but it declines with increasing β near the
ciliated boundaries. An axial symmetry and parabolic velocity profile is observed. An
axially symmetrical temperature behaviour is also observed in these temperature graphs.
The temperature has high magnitude in the middle and low sections near the ciliated
boundaries. A decline in the temperature profile is observed for increasing values of λ1.
If we set λ1 = 0 then the problem is simply a Newtonian flow problem. The increase in
the value of λ1 changes the problem to a non-Newtonian flow problem. It is observed
that the temperature reduces if the problem is transformed from Newtonian analysis to a
non-Newtonian one. The temperature rapidly increases for the increasing value of Br. The
trapped close contours show an increase in size for rising Q.
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Nomenclature(
X, Y, Z

)
Cartesian coordinates

d Wave amplitude
a0, b0 Ellipse half axes
Tb Bulk temperature
Tw Tube’s wall temperature
Br Brinkman number
δ Aspect ratio
.
γ Rate of shear
k Thermal conductivity
β Wave number for metachronal wave(
U, V, W

)
Components of velocity

λ Wavelength
c Velocity of propagation
e Eccentricity of ellipse
φ Occlusion
Dh Hydraulic diameter of ellipse
λ2 Time retardation parameter
λ1 Relaxation to retardation times ratio
Cp Heat capacity
α Cilia elliptic movement eccentricity
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