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Abstract: No reference image quality assessment (NR IQA) aims to develop quantitative measures to
automatically and accurately estimate perceptual image quality without any prior information about
the reference image. In this paper, we introduce two low-level feature distributions (TLLFD) based
method for NR IQA. Different from the deep learning method, the proposed method characterizes
image quality with the distributions of low-level features, thus it has few parameters, simple model,
high efficiency, and strong robustness. First, the texture change of distorted image is extracted by
the weighted histogram of generalized local binary pattern. Second, the Weibull distribution of
gradient is extracted to represent the structural change of the distorted image. Furthermore, support
vector regression is adopted to model the complex nonlinear relationship between feature space
and quality measure. Finally, numerical tests are performed on LIVE, CISQ, MICT, and TID2008
standard databases for five different distortion categories JPEG2000 (JP2K), JPEG, White Noise (WN),
Gaussian Blur (GB), and Fast Fading (FF). The experimental results indicate that TLLFD method
achieves superior performance and strong generalization for image quality prediction as compared
to state-of-the-art full-reference, no reference, and even deep learning IQA methods.

Keywords: no reference image quality assessment; low-level feature; generalized local binary pattern;
gradient; deep learning

1. Introduction

With the rapid development of information and communication technology, end-users
continuously propose higher requirements for high-quality experience [1]. The main target
of image quality assessment (IQA) is to design an objective image quality evaluation model,
which is consistent with human subjective visual perception. Usually IQA methods include
two categories: subjective assessment by humans and objective assessment by algorithms
designed. Furthermore, objective IQA indices can be classified as full reference (FR), no-
reference (NR), and reduced-reference (RR). Especially, NR IQA methods estimate image
quality via computer simulation of human vision system (HVS) only from the distorted
image, without any information access to the reference images [2,3], therefore NR IQA is
more meaningful in image processing and applications.

Nowadays, deep learning has become one of the most attractive fields in the study
of artificial intelligence and machine learning. Among them, the convolutional neural
network (CNN) is probably one of the most popular, as a special multilayer perception.
With the development of deep learning, CNN has not only produced a large number
of variant models, but also made great success in various applications, particularly in
tasks involving visual, image, and natural language information [4]. Though deep neural
networks are powerful in some certain tasks, they have some apparent deficiencies. First, it
is well-known that a large amount of training data are usually required in training. Second,
deep neural networks, as a complicated black-box model, theoretically, make it so difficult
to analyze the deep structure, and powerful computational facilities are usually required in
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the training process. More importantly, the learning performance of deep neural networks
depends on careful streamline tuning of huge hyper-parameters, seriously. Recently, a
series of deep networks and corresponding combination methods have been proposed to
improve training speed and theoretical analysis. In [5], Chen et al. proposed an incremental
learning system in the form of flat network without the need for deep architecture, named
Broad Learning System (BLS). BLS has been demonstrated to have higher learning accuracy
with much faster learning speed. In [6], Zhou et al. proposed a multi-grained cascade Forest
(gcForest) method. This method generates a deep forest ensemble, with a cascade structure
which enables gcForest to do representation learning. The gcForest has much fewer hyper-
parameters and quite robust to hyper-parameter settings than deep neural networks.

Deep network directly provides the original image into the learning algorithm, there is
no need to extract hand-crafted features in advance. But it often depends on a lot of training
data and GPU, and spends a lot of time and experience on training parameters and network
structure, such as [7,8]. In fact, deep neural networks are not the best choice for some
tasks at the certain condition. By contrast, classical machine learning methods require the
design of a set of features to describe the input information, such as scale invariant feature
transform (SIFT), local binary patterns (LBP), histogram of oriented gradient (HOG), then
input these features into the shallow classifiers, which have simple and efficient recognition
effect, such as support vector machine (SVM), random forest (RF), logistic regression (LR).

Good feature description can effectively improve the performance of pattern recog-
nition system. For images, features can be divided into low-level features and high-level
semantic features. Low-level features mainly include: color, texture edge, and shape. High-
level semantic features need to identify and interpret objects. How to extract effective
features is very important in IQA as well as many other vision tasks. Due to the limitation
of computer recognition and image understanding technology, it is impossible to accurately
analyze and interpret the semantic features of images. Therefore, researchers often adopt
some stable low-level features which are easy to extract by machine, so that well reflection
of the human visual perception’s characteristics and obtaining objective scores for IQA are
consistent with subjective evaluation.

2. Related Work

The NR IQA method based on low-level features and the methods closely related to
our work are introduced in this section. The LBP feature proposed by Ojala et al., in [9–11]
is an effective texture local description feature, which encodes the relative intensity values
between the central pixel and surrounding pixels, and has been successfully applied in
texture classification, face recognition image retrieval, and other fields. Compared with
other local texture descriptors, LBP can capture the local texture features simply and quickly.
Only in the past decade LBP has been widely used in NR IQA, and become an active
research topic. A novel NR IQA method based on structure and luminance information
was proposed in [12], which is obtained by extracting LBP to reflect the structural features
of the distorted image and extracting the distribution of normalized luminance values to
express the brightness characteristics. In [13], Dai et al. used the LBP operator to extract
the structural information from the gradient map and the contrast normalization graph
respectively. In [14], Yue et al. proposed a fuzzy NR IQA based on the LBP histogram
feature. In [15], Zhang et al. used a Gaussian Laplacian filter to decompose the image
into multi-scale sub-images, and explored the weighted LBP histogram as the quality-
aware feature to input into the support vector regression (SVR) system for obtaining the
quality score.

LBP has been extensively and deeply studied in many fields, but the method of
feature extraction is sensitive to image noise, and the recognition effect is susceptible to the
environment, which makes the local structure description limited. This still needs to be
discussed in theory and algorithm.

Wang et al. [16] proposed structural similarity (SSIM) method, which is a milestone
in the field of IQA research. The core idea of SSIM is that the change of the image local
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structure can effectively reflect the degradation of image quality. The disadvantage of
SSIM for severely distorted or unstructured distorted images is inconsistent with subjective
evaluation especially. For this problem, Zhang et al. proposed the feature similarity
(FSIM) index by using two low-level features of phase consistency and gradient magnitude
to replace the statistical features in SSIM [17]. Liu et al. [18] implemented a gradient
similarity method by combining gradient features and pixel difference features, which
emphasized the gradient can effectively capture structural and contrast changes. In [19],
Xue et al. proposed the gradient magnitude similarity deviation (GMSD) method by using
the gradient as the feature and the standard deviation instead of the previous mean as
the pooling. As it is well-known that the image gradient is sensitive to image distortion
and can well characterize the degree of quality degradation of different local structures
in the distorted image. Liu et al. [20] considered that gradient direction feature plays an
important role in image quality evaluation. They used relative gradient direction and
relative gradient amplitude feature to evaluate image quality by using AdaBoosting back
propagation neural network.

In [12–15], the authors used LBP for feature extraction and quality evaluation. LBP
has good local description, but poor global performance. Since the gradient can reflect
the overall structure information of the image, Refs. [18,19] both used different forms of
gradient information for quality evaluation. Inspired by the above methods, we propose an
NR IQA method based on two low-level feature distributions (TLLFD). The model extracts
two types of complementary low-level feature distributions, which not only enhances
computational efficiency, but also improves the description and discrimination of the image.
The implementation details of TLLFD include three steps: (1) Using the generalized LBP to
obtain the difference between the symbol feature and the amplitude feature respectively,
then analyzing the histogram of the two features to describe the image texture change;
(2) fitting the probability distribution of the gradient amplitude and using the parameters of
the distribution to describe the structural changes of the distorted image; (3) the nonlinear
regression model is established by SVR. The effectiveness of the method is verified by a large
number of contrast experiments with different methods on four standard IQA databases.

3. TLLFD for NR IQA

In this section, the local normalization coefficient is first described as image prepro-
cessing, and then the two low-level feature distributions are introduced. Finally, SVR is
used as our nonlinear regression model.

3.1. Local Normalization

In applications of image processing, given a distorted color image, the color image is
transformed to gray scale first.

I(i, j) = 0.2989× R(i, j) + 0.5870× G(i, j) + 0.1140× B(i, j) (1)

where R(i, j), G(i, j), B(i, j) represent the three color components of the color image re-
spectively. Then, using the same processing model as [21,22], I(i, j) is normalized lo-
cally to obtain the mean subtracted contrast normalized (MSCN) coefficient of the image
brightness Î(i, j).

Î(i, j) = I(i,j)−µ(i,j)
σ(i,j)+C (2)

where i and j represent the spatial index of the image respectively, i = 1, 2, . . . , M,
j = 1, 2, . . . , N,M× N represents the size of the image.

µ(i, j) =
K
∑

k=−K

L
∑

l=−L
ωk,l Ik,l(i, j)

σ(i, j) =

√
K
∑

k=−K

L
∑

l=−L
ωk,l(Ik,l(i, j)− µ(i, j))2

(3)



Appl. Sci. 2022, 12, 4975 4 of 17

where ω =
{

ωk,l |k = −K, . . . , K, l = −L, . . . , L} , (2K + 1)× (2L + 1) is the size of Gaus-
sian window. Take K = L = 3, µ and σ are the mean and standard deviation of the local
block of the image. C is a normal number to avoid the denominator to take 0 which selected
C = (αL)2, L = 255. α is a small constant.

Taking the above local normalization method as the image preprocessing step, the
normalized result has a good statistical feature change analysis for the distorted image and
test image. At the same time, quantifying these changes will make it possible to predict the
distortion type affecting the image and its perceived quality.

3.2. Low-Level Feature Distribution
3.2.1. Local Binary Pattern

The traditional rotation invariant uniform local binary pattern (LBP) operator [9–11]
can be defined as:

LBPriu2
P,R =


P−1
∑

i=0
S(gi − gc), U(LBPP,R) ≤ 2

P + 1, others
(4)

U(LBPP,R) = |S(gP−1 − gc)− S(g0 − gc)|+
P−1

∑
i=1
|S(gi − gc)− S(gi−1 − gc)| (5)

S(x) =
{

1, x ≥ 0
0, x < 0

(6)

where LBP superscript “riu2” denotes the rotation invariant “uniform” patterns, and U
value represents the number of transitions from 0 to 1 or from 1 to 0 with U value less than
or equal to 2. R is the neighborhood radius, gc is the gray value of the central pixel point, P
represents the number of neighborhood pixels around the central pixel point (xc, yc), and
gi represents the gray value of the neighborhood pixel point i,i = 0, 1, . . . , P− 1.

The rotation invariant uniform LBP pattern eventually generates only P + 2 dimen-
sional texture features, which include p + 1 uniform pattern and 1 non-uniform pattern. So,
the dimension is significantly lower than traditional LBP. In the specific application, the
rotation invariant uniform LBP method still has some limitations in scale size and image
noise. Different from the traditional LBP, the preprocessing method of formula (2) is used
to extract the LBP features of different scales, which is more expressive and discriminative.
For solving the sensitivity of LBP to image noise, Guo et al. [23] investigated completed LBP
(CLBP). This method analyzes the LBP algorithm from the perspective of local difference
sign-magnitude transform. Therefore, the CLBP method will be explored at each position
in the texture image to extract texture features, which is defined as [23]:

CLBPriu2
P,R =


P−1
∑

i=0
S(gi − gc, T), U(CLBPP,R) ≤ 2

P + 1, others
(7)

S′(x, T) =
{

1, x ≥ T
0, x < T

(8)

where T is a threshold parameter to be determined adaptively. If the T value is large,
CLBP tends to describe the characteristics of image texture which changes dramatically.
Conversely, if the T value is small, CLBP tends to describe the details of image texture
information. When T = 0, namely CLBP− Sriu2

P,R , similar to LBPriu2
P,R . When T 6= 0, namely

CLBP−Mriu2
P,R . Here, T in the image is set to 1

P

P−1
∑

i=1
|gi − gc|.
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After applying CLBP operator, local CLBP− S and CLBP−M map can be obtained.
Then, the global structural features are extracted from CLBP− S and CLBP−M map as the
visibility weighted HGTLBP−S and HGTLBP−M histogram, which are presented as following:

HGTLBP−SP,R,T (k) =
M
∑

i=1

N
∑

j=1

∣∣ Î(i, j)
∣∣ f(CLBPSriu2

P,R (i, j), k
)

HGTLBP−MP,R,T (k) =
M
∑

i=1

N
∑

j=1

∣∣ Î(i, j)
∣∣ f(CLBPMriu2

P,R (i, j), k
) (9)

Here

f (x, y) =
{

1, x = y
0.others

(10)

where k ∈ [0, K], K = 9 is the maximum value of GTLBP model, M× N denotes the image
size, and Î(i, j) is MSCN coefficients.

Although LBP method is widely used in many fields, it still needs further research and
improvement. Some researchers have begun to study multi-feature fusion, which combines
LBP with other features more effectively. Generally, features should be complementary to
each other for different types of image databases and different fields. Compared with LBP,
the gradient has better ability to describe the edge information of the image.

3.2.2. Gradient

The edges often appear in the position where the content of target and background
changes, and often represent the contours of target in the images. Therefore, image edge
extraction plays a key role in the processing of computer vision systems.

Gradient is usually calculated by convolving the image with a linear filter, such as the
classic Prewitt [24] and Scharr [25] filters or other filters for specific tasks. The simplest
Prewitt filter is used to calculate the gradient. With Prewitt gradient [24] operator, the partial
derivatives Gx(x, y) and Gy(x, y) of the distorted image f (x, y) are calculated as follows:

Gx(x, y) = 1
3

 1 1 1
0 0 0
−1 −1 −1

 ∗ f (x, y)

Gy(x, y) = 1
3

 1 0 −1
1 0 −1
1 0 −1

 ∗ f (x, y)

(11)

where the symbol “*” denotes a convolution operation and then the gradient magnitude
G(x, y) of the image f (x, y) is computed as:

G(x, y) =
√
(Gx(x, y))2 +

(
Gy(x, y)

)2 (12)

Statistical information is an effective and robust way to characterize local features. For
example, researchers tend to use probability distributions to fit wavelet coefficients, and
use the histogram techniques to capture the distribution of features of LBP output, etc. The
Weibull probability density function can be written as:

p(x) =
γ

β

(
x
β

)γ−1
exp

(
−
(

x
β

)γ)
(13)

where x is the image gradient magnitude, γ > 0 is the parameter of shape, and β > 0 is the
parameter of ratio.

Figure 1 shows a reference image in LIVE database and its five distorted images:
JPEG2000 (JP2K) compression, JPEG, White Noise (WN), Gauss Blur (GB), and Fast Fading
(FF). Figure 2 shows the gradient amplitude distribution of the six images in Figure 1.
Among them, the distribution of WN is more uniform and the peak value of FF is the
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highest. This is because image quality degradation arises from distortion and the gradient
distribution level is also affected by the distortion amount. The scatter plot of Figure 3
shows the Weibull parameter distribution of the six image in Figure 1. In the longitudinal
observation, the separation of FF, GB, and WN is obvious. From the horizontal observation,
JPEG is distinguished from the reference image clearly. They are different because image
with different distortion types may have drastically different parameter. This illustrates
that adopting the sensitivity of the shape and proportional parameters of the Weibull
distribution to describe different distortion types is effective. It can be observed from
Figure 3 that the gradient size of the distorted image follows a two-parameter Weibull
distribution, and the human brain response is strongly correlated with the Weibull image
for visual perception [26].
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3.2.3. Nonlinear Regression Model

In the next step of feature extraction, the regression function is used to establish the
complex nonlinear relationship between feature space and quality evaluation. In [27],
Vapnik et al. proposed SVM, which can be regarded as a special type of single hidden
layer feed forward network, i.e., support vector network. SVM is a machine learning
method based on statistical theory and can transform low-dimensional original feature
space into high-dimensional feature space by using kernel function. SVM is generally
noted for being able to handle small sample, non-linear, and high-dimensional data. In
our implementation, LIBSVM [28] package is used to implement a nonlinear regression
model SVR with a radial basis function (RBF) kernel. Considering a set of training data
{(x1, y1) , (x2, y2), . . . , (xl , yl)}, where xi ∈ Rn is the extracted quality aware feature and yi
is the corresponding difference mean opinion score (DMOS). Given regularization constant
parameters C and constant deviation parameters ε, the standard form of SVR can be
represented as [29]:

min
ω,b,ξ,ξ∗

1
2‖ω‖

2 + C
{

l
∑

i=1
ξi +

l
∑

i=1
ξ∗i

}
s.t.


ωTφ(xi) + b− yi ≤ ε + ξi
yi −ωTφ(xi)− b ≤ ε + ξ∗i

ξi ≥ 0, ξ∗i ≥ 0, i = 1, 2, . . . , l.

(14)

where ξi and ξ∗i are the relaxation variable. ω and b are the weights and biases, respectively.
The parameters C and ε > 0 are found by searching the optimal values from the sets(

2−3, 2−2, . . . , 210) and
(
2−10, 2−9, . . . , 26).

3.3. TllFD Flow Chart and Feature Comparison

In order to further explain the TLLFD method, Figure 4 shows the flow chart.
In this paper, an NR IQA method is proposed. First, the distorted image is downscaled

to obtain the scale reduced image; second, the distorted image and the scale down image
are locally normalized to obtain the normalized image, and the texture features is extracted
from the normalized image. The gradient features are statistically analyzed by Weibull
distribution, and two statistical parameters are obtained: γ = 0.2796 and β = 0.9625. (γ is
the parameter of shape, and β is the parameter of ratio. In Figure 4, γ and β only represent).
Finally, the extracted features are pooled by SVR to obtain the quality score.
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In order to further compare the features, this method is analyzed with the four classical
methods (NIQE [22], BIQI [30], DIIVINE [31], BRISQUE [21]), as shown in Table 1.

Table 1. Feature extraction and regression analysis of different methods.

Method Feature Extraction Regression Method

NIQE
The normalized information is fitted with the
generalized Gaussian distribution to obtain the
statistical characteristics

MVG

BIQI

Wavelet decomposition is used for feature
extraction, and the statistical features are
obtained by fitting the generalized Gaussian
distribution

SVR

DIIVINE

The pyramid wavelet decomposition is used for
feature extraction, and the generalized Gaussian
distribution is fitted to obtain the
statistical features

SVR

BRISQUE

(1) MSCN coefficient histogram is fitted with
generalized Gaussian distribution;

(2) The four direction histograms of MSCN
coefficients are distributed by asymmetric
generalized Gaussian distribution.

SVR

TLLFD

(1) The input image is normalized and
preprocessed, extracted CLBP weighted
histogram;

(2) The gradient features are fitted by Weibull
distribution to obtain the
statistical features.

SVR

4. Experiments

In this section, the experimental setup is described, including IQA databases, evalu-
ation criteria, and extract feature dimension. Then, TLLFD is compared with classic and
state-of-the-art NR IQA models.

4.1. Experimental Setups
4.1.1. IQA Databases

TLLFD and state-of-the-art NR IQA models are compared on four standard IQA
databases: LIVE [32], TID2008 [33], CSIQ [34], and MICT [35], respectively. The basic



Appl. Sci. 2022, 12, 4975 9 of 17

information is listed in Table 2. For CSIQ and TID2008 databases, we only consider the four
common distortion types (JP2K, JPEG, WN, GB). In addition, we exclude the 25th synthetic
reference image with its distorted versions from TID2008 database.

Table 2. Benchmark database for IQA performance validation.

Database Source
Images

Distortion
Types

Distortion
Images

Subjects
Number

Subjective
Scores

LIVE 29 5 779 161 0–100
TID2008 25 17 1700 838 0–9

CSIQ 30 6 866 35 0–1
MICT 14 2 168 16 1–5

4.1.2. Evaluation Criteria

In order to explain the consistency between objective evaluation and HVS, it is mainly
evaluated from the following two aspects: first, accuracy, that is, there is little difference
between the results obtained by objective quality evaluation method and subjective judg-
ment. The second is monotonicity. Judging the quality of an image subjectively is consistent
with the quality evaluation results obtained by objective methods. The following four
evaluation indexes are used for objective quality assessment [36]. Spearman rank order
correlation coefficient (SROCC) and Kendall rank order correlation coefficient (KRCC) are
used to measure the prediction monotonicity, Pearson linear correlation coefficient (PLCC),
and root mean squared error (RMSE) are calculated after the suggested monotonic logistic
mapping to measure the prediction accuracy.

For the calculation of PLCC and RMSE, regression analysis is used to provide a non-
linear mapping between the objective scores and the subjective mean opinion scores (MOS).
For the nonlinear regression, the following mapping function suggested by Sheikh et al. [37]
is used.

f (x) = β1

(
1
2
− 1

1 + eβ2(x−β3)
+ β4x + β5

)
(15)

where x denotes the original objective score, and βi(i = 1, 2, 3, 4, 5) are regression model
parameters to be fitted. A good objective evaluation algorithm has higher SROCC, KROCC,
and PLCC, and lower RMSE.

4.1.3. Feature Dimension

For GTLBP calculation, the number of neighbors P is 8 and the radius of the neigh-
borhood R is 1. Different SROCC, KROCC, PLCC, and RMSE indices are obtained by
extracting the characteristics of different scales on LIVE. It can be observed from Table 3
that extracting features from two scales is the best, and the performance of our method
is relatively stable at different scales. Thus, given a 512 × 512 distorted color image, the
extracted features are 44 dimensions in total.

4.2. Experimental Results and Analysis
4.2.1. Performance on Individual Databases

In this section, the overall performance of the various IQA models will be tested
on each individual database. Each database is divided into training sets and test sets;
random selection of 80% of the database constitutes the training set and the remaining 20%
makes the test set. Then through 1000 times of cross-validation and the median SROCC
and PLCC values are recorded as shown in Table 4. The competing algorithms including
four classic ones FR IQA: PSNR, SSIM [16], FSIM [17], VSI [38], eight classic ones NR
IQA: NIQE [22], ILNIQE [39], BIQI [30], DIIVINE [31], BLIINDS2 [40], BRISQUE [21],
GMLOG [41], NFERM [42], and five state-of-the-art ones deep learning: Dip IQA [43], OG
IQA [20], Deep IQA [7], MEON [8], CNN [44].



Appl. Sci. 2022, 12, 4975 10 of 17

Table 3. Image scale influence on quality assessment.

IQA Model
Live (799)

SROCC KROCC PLCC RMSE Dimensions

512× 512 0.949 0.811 0.951 8.358 22

512× 512
256× 256 0.958 0.828 0.960 7.577 44

512× 512
256× 256
128× 128

0.956 0.825 0.959 7.739 66

Table 4. SROCC and PLCC comparison of 15 IQA models on four benchmark databases (the two
best models indexes are shown in bold).

IQA
LIVE (779) TID2008 (384) CSIQ (600) MICT (168)

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

PSNR 0.885 0.883 0.879 0.860 0.929 0.854 0.659 0.679
SSIM 0.948 0.945 0.910 0.941 0.924 0.933 0.915 0.920
FSIM 0.963 0.960 0.953 0.929 0.924 0.912 0.906 0.800
VSI 0.952 0.948 0.940 0.923 0.942 0.928 0.866 0.736

BIQI 0.852 0.866 0.802 0.852 0.820 0.874 0.574 0.599
DIIVINE 0.909 0.909 0.897 0.903 0.880 0.899 0.641 0.680
BLINDS2 0.931 0.937 0.866 0.906 0.869 0.912 0.851 0.875
CORNIA 0.945 0.947 0.897 0.931 0.893 0.929 0.901 0.918
BRISQUE 0.944 0.948 0.905 0.926 0.914 0.940 0.883 0.902
GMLOG 0.950 0.954 0.937 0.945 0.923 0.951 0.885 0.888
NFERM 0.944 0.949 0.940 0.951 0.929 0.953 0.887 0.892

OG IQA 0.951 0.955 0.937 0.941 0.924 0.946 - -
CNN 0.956 0.953 - - - - - -

Dip IQA - - - - 0.930 0.949 - -
Deep IQA - - - - 0.871 0.891 - -

MEON - - - - 0.932 0.944 - -

TLLFD 0.958 0.960 0.940 0.944 0.939 0.953 0.919 0.925

For each criteria, the best two IQA metrics are highlighted in bold. The main observa-
tions are as follows. First, TLLFD is closer to the human subjective evaluation of difference
mean opinion score (DMOS) on all four databases. Second, TLLFD significantly outper-
forms PSNR and SSIM. Unfortunately, only CNN evaluation results on LIVE database as
well as Dip IQA and Deep IQA evaluation results on CSIQ database are available. Third,
compared with other deep learning methods, TLLFD has better quality prediction perfor-
mance. On LIVE, the SROCC and PLCC values of TLLFD method reach 0.96. On TID2008,
the value of SROCC and PLCC are close to 0.94. On MICT, the value of SROCC and PLCC
are close to 0.92.

4.2.2. Performance on Individual Distortion Types

This section evaluates the performance of NR IQA models on individual distortion
types. For NR IQA models, 80% of the five distorted images are used to train the NR
IQA model, and 20% of the distorted images with specific distortion types are tested. The
SROCC comparison for the 12 NR IQA models in the four benchmark databases is listed in
Table 4; the best two NR IQA models for each distortion group are shown in boldface.

In Table 5, we can find that from the results of single distortion type, TLLFD method
is better than most methods. For example, according to the experimental results of GB
distortion type in CSIQ database, TLLFD method is better than all methods; however, in
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other databases, it is not the optimal value, but it is also the suboptimal value. Finally,
from the overall weighted average, TLLFD method maintains the optimal value. It should
be noted that similar results can be obtained for KROCC, PLCC, and RMSE indicators;
only SROCC indicators are listed here. Moreover, the last row of Table 4 lists the weighted
average SROCC values of all distortion types, where the weights are the number of images
in each distortion group. The quality prediction accuracy of TLLFD is high under indi-
vidual distortion types on LIVE, TID2008, CSIQ, MICT. For the JPEG2000, JPEG, and FF
distortion, it performs slightly worse. For the WN, GB distortion, it outperforms all other
NR IQA methods. To sum up, there are the three main reasons for the improvement of
performance. First, different distortion types have different CLBP maps, it can effectively
measure the influence of different distortion types on image structure change. Second, the
global structural feature GTLBP is obtained by weighted histogram, which is an effective
descriptor reflecting the effects of different distortion types. Third, JPEG2000, JPEG, FF
will cause different degrees of blurring of the image. Blurring reduces the details of image
leading to lower performance.

Table 5. SROCC comparisons of 12 NR IQA models on individual distortion types (the two best NR
IQA models indexes are shown in bold).

Database D-TY NIQE ILN-
IQE BIQI DIIV-

INE
BLIN-
DSII

GM
LOG

OG
IQA

Dip
IQA

Deep
IQA MEON TLLFD

LIVE

JP2K 0.924 0.900 0.824 0.906 0.931 0.926 0.937 - - - 0.950
JPEG 0.942 0.944 0.884 0.897 0.950 0.963 0.964 - - - 0.962
WN 0.972 0.979 0.965 0.982 0.946 0.983 0.987 - - - 0.987
GB 0.940 0.924 0.856 0.934 0.915 0.920 0.961 - - - 0.958
FF 0.862 0.844 0.743 0.854 0.875 0.901 0.899 - - - 0.907

TID2008

JP2K 0.902 0.937 0.855 0.895 0.902 0.935 0.926 - - - 0.935
JPEG 0.887 0.887 0.887 0.887 0.887 0.884 0.934 - - - 0.931
WN 0.817 0.883 0.756 0.840 0.685 0.891 0.907 - - - 0.904
GB 0.847 0.860 0.899 0.890 0.857 0.886 0.881 - - - 0.929

CSIQ

JP2K 0.911 0.796 0.818 0.871 0.879 0.918 0.917 0.944 0.907 0.898 0.925
JPEG 0.913 0.828 0.859 0.883 0.895 0.917 0.933 0.936 0.929 0.948 0.942
WN 0.925 0.924 0.850 0.901 0.868 0.946 0.941 0.904 0.933 0.951 0.949
GB 0.883 0.905 0.844 0.895 0.883 0.915 0.907 0.932 0.890 0.918 0.936

MICT
JP2K 0.836 0.868 0.660 0.851 0.894 0.887 - - - - 0.988
JPEG 0.906 0.868 0.690 0.755 0.873 0.941 - - - - 0.986

Weighted average 0.902 0.894 0.838 0.891 0.886 0.923 0.852 0.929 0.915 0.929 0.944

4.3. Ablation Experiment
4.3.1. Cross-Database Validation and Hypothesis Testing

At the same time, in order to illustrate the generalization capability of TLLFD method
and prevent interference from over-fitting experiments, cross database verification exper-
iments are carried out. In order to make a fair comparison, in Table 5, all models are
validated on the full LIVE (779) database and tested on TID2008, CSIQ, and MICT. In
Table 6, the NR IQA model was trained for image from CSIQ (600) database and tested on
three other databases. The two best NR IQA models indexes are shown in bold.

Table 6. SROCC comparison on cross-database validation when NR IQA models are trained on LIVE
(the two best models indexes are shown in bold).

Database NIQE ILNIQE BIQI DIIVINE BLINDS2 BRISQUE GMLOG NFERM TLLFD

TID2008 0.795 0.870 0.813 0.867 0.864 0.894 0.911 0.914 0.915
MICT 0.811 0.711 0.663 0.798 0.810 0.857 0.835 0.851 0.889
CSIQ 0.869 0.880 0.785 0.877 0.902 0.890 0.899 0.907 0.928
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Tables 6 and 7 show the cross database experiment results respectively. Table 6 is the
result of taking the LIVE data as the training set and carrying out the experiment in other
databases. Table 7 shows the results of experiments with CSIQ data as training set and
other databases. From Table 6, we can find that the model trained by LIVE database has
better results for other databases, and the TLLFD method is due to the comparison method
in the other three databases. From Table 7, we can find that the model trained by CSIQ
database has more general results for other databases, but the overall results are good.
Except that TLLFD method is slightly worse than nferm method in TID2008 database, it
has better results in the three databases when compared with other methods.

Table 7. SROCC comparison on cross-database validation when NR IQA models are trained on CSIQ
(the two best models indexes are shown in bold).

Database NIQE ILNIQE BIQI DIIVINE BLINDS2 BRISQUE GMLOG NFERM TLLFD

TID2008 0.795 0.870 0.796 0.852 0.775 0.889 0.865 0.904 0.893
MICT 0.811 0.711 0.560 0.567 0.654 0.601 0.778 0.834 0.836
LIVE 0.905 0.897 0.755 0.773 0.888 0.895 0.905 0.870 0.931

Next, to further demonstrate the superiority of TLFFD, we calculated the statistical
significance by two sample t-tests between SROCC obtained by competing NR IQA meth-
ods. The null hypothesis is that the mean correlation of the row is equal to the mean
correlation of the column at the 95% confidence level. The alternate hypothesis is that the
mean correlation of row is greater than or lesser than the mean correlation of the column.

In Table 8, 1 or −1 indicates that the method is statistically superior or lower than
the comparison method, and 0 means has the same effect as the comparison method in
statistics. It can be clearly seen from Table 7 that in LIVE database, TID2008 database,
and MICT database, the comparison method is shown as 1 in the table, which shows that
TLLFD is better than the comparison method. In CSIQ database, TLLFD method has the
same experimental results as nferm method, and is better than the other methods.

Table 8. Statistical significance t-test (1(−1) indicates our method is better (worse) than the method
in the column; 0 indicates our method is statistically equivalent to the method in the column).

t-Test NIQE ILNIQE BIQI DIIVINE BLINDS2 BRISQUE GMLOG NFERM

LIVE 1 1 1 1 1 1 1 1
CSIQ 1 1 1 1 1 1 1 0
TID08 1 1 1 1 1 1 1 1
MICT 1 1 1 1 1 1 1 1

4.3.2. Performance Comparison between LIVEWC and CID2013 Databases

In order to distinguish it from traditional databases, this paper compares the perfor-
mance of real distortion database and contrast distortion database: LIVEWC, CID2013. The
experimental results are shown in Table 9. The results of NR IQA methods with the best
evaluation performance are marked in bold. In LIVEWC database, the SROCC value of the
proposed method is slightly lower than that of NFERM method, and the PLCC value is
higher than that of other NR IQA methods. In CID2013 database, the values of SROCC and
PLCC are 0.7786 and 0.7987 respectively, which are obviously superior to other methods.
This indicates that TLLFD method has stronger competitiveness compared with other NR
IQA methods in LIVEWC and CID2013 databases.



Appl. Sci. 2022, 12, 4975 13 of 17

Table 9. Performance comparison of two databases with different evaluation algorithms (the two
best models indexes are shown in bold).

IQA Methods
LIVEWC CID2013

SROCC PLCC SROCC PLCC

BIQI 0.5324 0.5479 0.6569 0.6757
DIIVINE 0.5148 0.5283 0.4972 0.5124
BRISQUE 0.5685 0.5864 0.4309 0.4783
NIQE 0.4292 0.4848 0.6007 0.6136
BLIINDS2 0.4885 0.5064 0.4766 0.4987
NFERM 0.6055 0.5908 0.6281 0.6322
ILNIQE 0.5033 0.5127 0.4540 0.4634
TLLFD 0.6053 0.6201 0.7786 0.7987

Two groups of features, texture feature and gradient feature, are extracted from the pro-
posed TLLFD method. In order to explore the contribution of these two groups of features
to the final evaluation result, the performance of each group of features on five databases
is evaluated respectively. It can be seen from Table 10 that among the five databases, the
contribution of texture features is higher than that of gradient features, but the evaluation
performance of using one group of features alone is worse than that of using two groups of
features simultaneously. This indicates that both sets of characteristics are necessary in the
TLLFD method, and they are complementary to the overall evaluation performance.

Table 10. Comparison of contributions of the two groups of characteristics (the two best models
indexes are shown in bold).

Database Evaluation Index Texture Gradient Texture + Gradient

LIVE
SROCC 0.9343 0.7836 0.958
PLCC 0.9350 0.8063 0.960

CSIQ
SROCC 0.9122 0.7230 0.939
PLCC 0.9213 0.7765 0.953

TID2008
SROCC 0.9263 0.7234 0.940
PLCC 0.9335 0.7568 0.944

LIVEWC
SROCC 0.4976 0.4346 0.6053
PLCC 0.5601 0.5321 0.6201

CID2013
SROCC 0.7327 0.5234 0.7786
PLCC 0.7561 0.5679 0.7987

4.4. Computational Complexity Analysis

In many practical applications it is desired to estimate the quality of an input image
online. Therefore, the computational complexity is also an important factor when evaluat-
ing a NR IQA model. The model complexity of the NR IQA model is shown in Figure 5.
Our experiments run in Intel Core (TM) i5-3210M CPU @ 2.50 GHz and 4 GB RAM of ASUS
A45V laptop. The MATLAB is R2012a (7.14) in the Windows. The 2D scatter plot shows
the weighted average SROCC of four standard databases and running time of different
methods for feature extraction of a 512 × 512 image.
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The computational complexity of TLFFD is significantly lower than NIQE, ILNIQE,
DIIVINE, and BLINDS2, and worse than BIQI and G-MLOG, which can be easily discerned
in Figure 5. The main reasons are as follows. First, BIQI has only two features and extraction
time is short. However, its performance is the worst among all the competing models.
Second, GMLOG extracts 40 statistical features which combine gradient amplitude and
Laplacian features. So, simple extraction process and high operation efficiency are obtained.
Third, NIQE has 36 features and a higher computational complexity, leading to less quality
prediction performance and slower running speed. Fourth, ILNIQE extracts five types
of NSS features and uses them to learn the multivariate Gaussian model and predict the
image quality. It has many parameters, which show performance is less competitive. Fifth,
the dimension of DIIVINE features is up to 88, thus this model has long running time and
low efficiency. Sixth, BLINDS2 using a natural scene statistics model of discrete cosine
transform coefficients. The model process is complicated and requires a long running time.
Overall, the calculation of TLLFD has low complexity and high efficiency.

5. Conclusions

In this paper, we propose a novel framework for NR IQA method, namely TLLFD.
First, the normalized information is used as the image preprocessing, which is conducive
to the statistical analysis of subsequent features. Then, two low-level feature distributions
with unique regression function are extracted, and finally the quality regression analysis is
carried out by using nonlinear regression method.

The feature extraction is carried out in two stages. One stage is the weight CLBP
histogram coefficients are taken as an image texture feature, and the other stage is the
parameters of the Weibull distribution fitting gradient map are used as an image gra-
dien feature.

Verified by the experimental results, the TLLFD method can be compared with the
state-of-the-art NR IQA method even when compared with the state-of-the-art FR IQA
method. Compared with deep learning-based methods, the TLLFD method also achieves
superior performance and strong generalization.

The disadvantage of this method is that some experimental parameters are not adap-
tively chosen, and knowledge of classical features is needed for deep understanding.

The follow-up work will further study the basic features of the image, and analyze it
using the method proposed in this paper. The combination of classical features can have a
certain comparative power with the deep learning method, so as to obtain more consistent
results with the real MOS.
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Abbreviations

NR No reference
TLLFD Two low-level feature distributions
JP2K JPEG2000
WN White Noise
GB Gaussian Blur
FF Fast Fading
IQA Image quality assessment
FR Full Reference
RR Reduced-Reference
HVS Human Vision System
CNN Convolutional Neural Network
BLS Broad Learning System
SIFT Scale Invariant Feature Transform
LBP Local Binary Patterns
HOG Histogram of Oriented Gradient
SVM Support Vector Machine
RF Random Forest
LR Logistic Regression
SVR Support Vector Regression
SSIM Structural SIMilarity
FSIM Feature SIMilarity
GMSD Gradient Magnitude Similarity Deviation
CLBP Completed LBP
DMOS Difference Mean Opinion Score
SROCC Spearman Rank Order Correlation Coefficient
KROCC Kendall Rank Order Correlation Coefficient
PLCC Pearson Linear Correlation Coefficient
RMSE Root mean Squared Error
MOS Mean Opinion Scores
NIQE Natural Image Quality Evaluator
ILNIQE Integrated Local NIQE
BIQI Blind Image Quality Indices
DIIVINE Distortion Identification-based Image Verity and INtegrity Evaluation
BLIINDS2 Blind Image Integrity Notator Using DCT Statistics
BRISQUE Blind/Referenceless Image Spatial QUality Evaluator
GMLOG Gradient Magnitude Map and the Laplacian Of Gaussian
NFERM NR Free Energy-Based Robust Metric

https://github.com/Yazhen1/TLLFD
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Dip IQA Discriminable Image Pairs Image quality assessment
OG IQA Oriented Gradients Image Quality Assessment
Deep IQA Deep Image quality assessment
MEON Multi-task End-to-End Optimized Deep Neural Network
PSNR Peak Signal to Noise Ratio
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