
����������
�������

Citation: Camacho, J.D.;

Villaseñor, C.; Lopez-Franco, C.;

Arana-Daniel, N. Neuroplasticity-

Based Pruning Method for Deep

Convolutional Neural Networks.

Appl. Sci. 2022, 12, 4945. https://

doi.org/10.3390/app12104945

Academic Editors: Tan-Hsu Tan,

Mohammad Alkhaleefah

and Yang-Lang Chang

Received: 20 April 2022

Accepted: 11 May 2022

Published: 13 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Neuroplasticity-Based Pruning Method for Deep Convolutional
Neural Networks

Jose David Camacho , Carlos Villaseñor, Carlos Lopez-Franco and Nancy Arana-Daniel *

Department of Computer Science, University of Guadalajara, 1421 Marcelino García Barragán,
Guadalajara 44430, Jalisco, Mexico; camacho.castillo.jdavid@gmail.com (J.D.C.);
carlos.villasenor@academicos.udg.mx (C.V.); carlos.lfranco@academicos.udg.mx (C.L.-F.)
* Correspondence: nancy.arana@academicos.udg.mx

Abstract: In this paper, a new pruning strategy based on the neuroplasticity of biological neural net-
works is presented. The novel pruning algorithm proposed is inspired by the knowledge remapping
ability after injuries in the cerebral cortex. Thus, it is proposed to simulate induced injuries into the
network by pruning full convolutional layers or entire blocks, assuming that the knowledge from the
removed segments of the network may be remapped and compressed during the recovery (retraining)
process. To reconnect the remaining segments of the network, a translator block is introduced. The
translator is composed of a pooling layer and a convolutional layer. The pooling layer is optional and
placed to ensure that the spatial dimension of the feature maps matches across the pruned segments.
After that, a convolutional layer (simulating the intact cortex) is placed to ensure that the depth of
the feature maps matches and is used to remap the removed knowledge. As a result, lightweight,
efficient and accurate sub-networks are created from the base models. Comparison analysis shows
that in our approach is not necessary to define a threshold or metric as the criterion to prune the
network in contrast to other pruning methods. Instead, only the origin and destination of the prune
and reconnection points must be determined for the translator connection.

Keywords: pruning; neuroplasticity; deep learning; convolutional layers; transfer learning

1. Introduction

Deep convolutional neural networks have shown an excellent performance in com-
puter vision tasks such as classification [1,2], object detection [3–6], semantic segmen-
tation [7–9], reconstruction [10], and many others. However, it is well known that the
performance of these models is strongly related to how deep and wide is the architec-
ture [11]; consequently, these models usually require a considerable amount of memory
and specialized hardware for their training and inference steps. Therefore, one of the
key obstacles for convolutional neural networks applications is the overparameterization,
which induces knowledge redundancy over the network layers.

In recent years, network compression techniques [12] have been developed to reduce
the number of parameters and the complexity of networks. Some compression techniques
such as low-rank approximation [13,14], parameter quantization [15,16], and parameter
binarization [17] have shown efficient compression rates and desirable accuracy. On
the other hand, network pruning [18–24] is another popular compression technique that
has achieved excellent compression rates and accuracy. Furthermore, these techniques
usually present a straightforward implementation, and they can be used alongside other
compression techniques.

The network pruning methods are designed to remove those unimportant connections
that generate redundancy and can be removed without drastically affecting the network
performance [25]. Nevertheless, most of these compression techniques establish an iter-
ative process of pruning and retraining as the strategy to compensate for the accuracy
loss. Therefore, the pruning process often requires extensive retraining periods, and the
compression has to be applied gradually to avoid a drastic impact on the performance.

Appl. Sci. 2022, 12, 4945. https://doi.org/10.3390/app12104945 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12104945
https://doi.org/10.3390/app12104945
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7579-746X
https://orcid.org/0000-0002-8803-9502
https://doi.org/10.3390/app12104945
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12104945?type=check_update&version=2

Appl. Sci. 2022, 12, 4945 2 of 27

Neuroplasticity (also known as neural plasticity) is the ability of biological neural
networks to create, modify and reorganize their neural connections. This adaptability
has been studied in different applications [26], such as neural synaptic plasticity, learning
and memory, homeostasis, sensory training, and stroke recovery. In addition, one of the
principal neuroplasticity research is the study of synaptic restructuring as part of the
experience acquired over time, which has shown that through the experience obtained,
neural structures are reorganized to create simple and more efficient connections.

In biological neural networks, knowledge compression is derived from the experience
acquired; for example, the motor cortex produces reorganizations in the neural connections
by dominating motor tasks [27]. Analogous to this, the iterative process of pruning and
retraining may be regarded as the specialization phase for a pre-trained artificial neural
network; thus, a restructuring phase for the neural connections takes place to compress
the network.

After a stroke, a person may present motor functions deficit, visual disabilities, facial
paralysis, or numbness in the extremities. However, there are studies [28,29], on stroke
survivors which suggest that during the recovery process, there is a time interval where the
peri-infarct cortex may play a crucial role in the recovery of motor functions. In this way,
knowledge remapping [30] is possible due to redundancy and the fuzzy neural structures,
which can be removed or relocated in other intact cortex zones.

In the computational neuroscience field, increasing attention has been paid to studying
the role of neural plasticity on the learning performance for accomplishing a machine learn-
ing task. For instance, Chrol-Cannon et al. [31], shares a review of different and important
neural plasticity models designed to understand memory and cognition, learning, and self-
organizing structural mechanisms, aiming to replicate them in artificial neural networks.

On the other hand, in visual neuroscience, object recognition in humans and non-
humans primates is commonly associated with the neural plasticity activated by experience
acquired over time. In this process, it has been hypothesized that specific network regions
tend to present a strong activation with familiar and known objects. Therefore, the visual
experience produces dramatic local changes in the response of the visual cortex. However,
Op de Beeck et al. [32] suggested a different neural plasticity function, where the visual
experience produces moderate and relatively distributed changes in the visual cortex, which
modulate a pre-existing, rich, and flexible set of neural object representations. Extrapolating
the above assumption to the artificial counterpart, moderate and distributed changes to
the network kernels in convolutional neural networks should be applied. Therefore, the
pre-existing object representations (feature maps) will be modulated according to the new
visual experience (recognition task) acquired.

In this paper, a new pruning strategy based on the neuroplasticity of biological neural
networks is presented. The pruning algorithm is inspired by the knowledge remapping
ability after injuries in the cerebral cortex [33]. Thus, it is proposed to simulate induced
injuries into the network by pruning full convolutional layers or entire blocks, assuming
that the knowledge from the removed segments of the network may be remapped and
compressed during the recovery (retraining) process. To reconnect the remaining segments
of the network, a translator block is introduced. The translator is composed of a pooling
layer and a convolutional layer. The pooling layer is optional and placed to ensure that
the spatial dimension of the feature maps matches across the pruned segments. After that,
a convolutional layer (simulating the intact cortex) is placed to ensure that the depth of the
feature maps matches and is used to remap the removed knowledge.

This paper is organized as follows: In Section 2, there is a review of the related state-
of-the-art works from artificial neural network pruning techniques. Then, in Section 3, our
bio-inspired pruning method is presented. After that, in Section 4, the proposed pruning
method is tested over popular pre-trained convolutional architectures. Subsequently, in
Section 5, the experimental results are reported.Finally, in Section 6, conclusions and future
work are discussed.

Appl. Sci. 2022, 12, 4945 3 of 27

2. Related Work

Two different classes of pruning methods can be identified in the state-of-the-art:
unstructured and structured.

Unstructured methods are based on pruning weights within a given threshold, which
successfully reduces the number of parameters. However, they generate sparse models
and often require extensive retraining to regain accuracy. For instance, Han et al. [18,34]
proposed pruning those weights that have small magnitudes on AlexNet [35] and VGG [36]
architectures. It is assumed that weights with small magnitudes do not contribute to
relevant transformations for the generated output. Therefore, after pruning, the network is
lightweight but requires retraining to compensate for the accuracy loss.

On the other hand, structured methods are designed to remove substructures, for
example, kernels, filters, and layers. By removing entire structures, the parameters are
reduced and the computational complexity is decreased. Hu et al. [19], introduced the
average percentage of zeros (APoZ) criterion, which suggests that if most of the activations
from a calculated feature map are zero, then the neuron can be pruned without drastically
affecting the accuracy. This pruning method is data-driven; therefore, the results may
change according to the dataset used.

Li et al. [21] proposed using the L1-norm as the criterion to remove unimportant filters.
Thus, a percentage of filters that can be removed based on their sensitivity is calculated
for each layer. Then the pruning strategy is to remove smaller filters because it is probable
that those filters will generate feature maps with weak activations; in other words, with no
relevant abstractions from the input data.

Wu et al. [24] introduced a pruning method based on the feature extraction measure-
ment ability (FEAM), a combination of both practical and theoretical analysis. First, the
L1-norm is calculated for each kernel, which quantifies the kernels’ abilities to extract
features. This ability is acquired during training, and it is called kernel dispersion. After
that, the feature dispersion is calculated, a data-driven quantifier of the kernel’s ability
to extract relevant features from images. Therefore, the pruning criterion is the FEAM
score, calculated as the product of the measured abilities. Then, the pruning process is
iteratively applied, removing kernels with lower FEAM scores followed by a retraining
phase to compensate for the accuracy loss.

3. Neuroplasticity-Based Pruning Method

The proposed method is designed to compress networks by pruning entire layers
or blocks. Thus, layers/blocks are removed from the network, and the remaining sub-
structures are reconnected by a translator block, where the knowledge will be remapped.

3.1. Pruning

A VGG16 architecture [36] is shown in Figure 1, displaying with blue rectangles the
regular convolutional layers. Meanwhile, the yellow ones are convolutions followed by
pooling layers. These blue and yellow rectangles illustrate those layers that are candidates
to prune. On the other hand, the top of the network is summarized as one green block
because, in this work, it is not considered to prune the fully connected layers but only the
convolutional ones.

C
o
n
v

1
-
1

C
o
n
v

1
-
2

+

P
o
o
l
i
n
g

C
o
n
v

2
-
1

C
o
n
v

2
-
2

+

P
o
o
l
i
n
g

C
o
n
v

3
-
1

C
o
n
v

3
-
2

C
o
n
v

3
-
3

+

P
o
o
l
i
n
g

C
o
n
v

4
-
1

C
o
n
v

4
-
2

C
o
n
v

4
-
3

+

P
o
o
l
i
n
g

C
o
n
v

5
-
1

C
o
n
v

5
-
2

C
o
n
v

5
-
3

+

P
o
o
l
i
n
g

T
o
p

I
n
p
u
t

Figure 1. VGG16 architecture, illustrating the convolutional layers and blocks of the network.

To compress the network by pruning sub-structures, it is proposed to select an ori-
gin layer A and a forward destination layer B. All the layers between A and B will be
pruned, and the remaining sub-structures must be reconnected. For instance, in Figure 2,

Appl. Sci. 2022, 12, 4945 4 of 27

it can be observed all the possible connections addressed to the last convolutional layer
of the network, where each blue dashed arrow stands for a new sub-model generated
after pruning.

C
o
n
v

1
-
1

C
o
n
v

1
-
2

+

P
o
o
l
i
n
g

C
o
n
v

2
-
1

C
o
n
v

2
-
2

+

P
o
o
l
i
n
g

C
o
n
v

3
-
1

C
o
n
v

3
-
2

C
o
n
v

3
-
3

+

P
o
o
l
i
n
g

C
o
n
v

4
-
1

C
o
n
v

4
-
2

C
o
n
v

4
-
3

+

P
o
o
l
i
n
g

C
o
n
v

5
-
1

C
o
n
v

5
-
2

C
o
n
v

5
-
3

+

P
o
o
l
i
n
g

T
o
p

I
n
p
u
t

Figure 2. Example of some sub-models that can be generated using the proposed pruning method on
a VGG16 architecture, considering different layers as the origin (Ai) and the last convolutional layer
as the destination (B).

As it can be seen in Figure 2, the destination layer is fixed; however, by changing
the destination layer, new sub-models can be generated. A heuristic for selecting the
destination layer is deduced in the experiments section. The experimental results suggested
using the last sub-structures from the network as the destination. Thus, the generated
sub-models are lightweight, and the performance is similar to that achieved by base models.

Most of the time, the origin layer’s output dimension will miss-match the destination
layer’s input dimension. Therefore, to successfully reconnect the origin and destination
layers, the output from the origin layer needs a transformation before it passes to the
destination layer. That is the reason for including a translator block presented in the
following sub-section.

3.2. Translator Block

The pruned layers left sub-structures that must be reconnected; therefore, to reconnect
the remaining layers a new block called translator is introduced, which can be observed in
Figure 3.

Translator

P
o
o
l
i
n
g

C
o
n
v

1
×
1

D
e
s
t
i
n
a
t
i
o
n

l
a
y
e
r

O
r
i
g
i
n

(
A
)

O
r
i
g
i
n

l
a
y
e
r

Figure 3. Translator block, designed to reconnect the pruned sub-structures.

First, it is proposed to use a pooling layer to ensure that the spatial dimension matches
across the pruned segments. A pooling layer is preferred over a convolutional one since it
allows projecting feature maps without creating new learnable parameters on the network.
If the pruned sub-structures match the spatial dimensions, thus the pooling layer is not
needed, and the computational complexity is decreased.

If the pooling layer is required, it must be created with an adequate pool size and
stride to project the feature maps between the removed segments.

After the pooling layer, it is proposed to use a 1 × 1 convolutional layer, which is
placed for two reasons. First, this convolutional layer is used to ensure that the number
of features maps generated in layer A fits into the input of layer B. Moreover, even if the
feature maps generated match in the pruned segments, the layer is placed to aggregate
learnable parameters on the network.

Appl. Sci. 2022, 12, 4945 5 of 27

The included parameters in the translator will be used to re-learn the removed knowl-
edge from the pruned layers. Thus, analogous to biological neural networks, this layer can
be regarded as the intact cortex that should compress the knowledge.

In Figure 4, there is an example of a VGG16 [36] pruned architecture, where it can be
observed that blocks 3 and 4 are deleted, then the last layer from block 2 and the first layer
from block 5 are used for the re-connection with the translator block.

T
o
p

I
n
p
u
t

Translator

Block 1

C
o
n
v

1
-
1

C
o
n
v

1
-
2

+

P
o
o
l
i
n
g

Block 2

C
o
n
v

2
-
1

C
o
n
v

2
-
2

+

P
o
o
l
i
n
g

C
o
n
v

3
-
1

C
o
n
v

3
-
2

C
o
n
v

3
-
3

+

P
o
o
l
i
n
g

C
o
n
v

4
-
1

C
o
n
v

4
-
2

C
o
n
v

4
-
3

+

P
o
o
l
i
n
g

C
o
n
v

5
-
1

C
o
n
v

5
-
2

C
o
n
v

5
-
3

+

P
o
o
l
i
n
g

Block 3 Block 4 Block 5

Figure 4. Example of VGG16 pruned architecture. Blocks 3 and 4 are pruned, thus, block 2 and 5 are
reconnected with the translator block.

3.3. Retraining

After pruning sub-structures from the network and reconnecting the remaining ones
with the translator, the network needs to be retrained to compensate for the accuracy loss.

Most state-of-the-art pruning methods apply an iterative pruning-retraining process,
assuming the network connectivity may be harmed if relevant (important) connections are
removed using a one-shot strategy, producing a drastic accuracy drop.

On the one hand, pruning-retraining iteratively reduces the parameters gradually and
monitors the accuracy during the pruning process. On the other hand, the iterative process
may require several pruning-retraining loops to achieve similar results as in the original
models, which implies using more computational resources and time.

This work proposes adopting a one-shot pruning-retraining strategy because our
method’s key objective is not to reduce parameters gradually.

The one-shot process assumes that a group of P consecutive layers (pruned layers)
can be removed and compressed into a new block T (translator) on the network. Thus,
during retraining, the translator block learns a transformation for the feature maps that
is equivalent to all the transformations produced by P, the pruned layers. This can be
observed in Figure 5.

C
o
n
v

1
-
1

C
o
n
v

1
-
2

+

P
o
o
l
i
n
g

C
o
n
v

2
-
1

C
o
n
v

2
-
2

+

P
o
o
l
i
n
g

C
o
n
v

3
-
1

C
o
n
v

3
-
2

C
o
n
v

3
-
3

+

P
o
o
l
i
n
g

C
o
n
v

4
-
1

C
o
n
v

4
-
2

C
o
n
v

4
-
3

+

P
o
o
l
i
n
g

C
o
n
v

5
-
1

C
o
n
v

5
-
2

C
o
n
v

5
-
3

+

P
o
o
l
i
n
g

T
o
p

I
n
p
u
t

C
o
n
v

1
-
1

C
o
n
v

1
-
2

+

P
o
o
l
i
n
g

C
o
n
v

2
-
1

C
o
n
v

2
-
2

+

P
o
o
l
i
n
g

C
o
n
v

5
-
1

C
o
n
v

5
-
2

C
o
n
v

5
-
3

+

P
o
o
l
i
n
g

T
o
p

I
n
p
u
t

T
r
a
n
s
l
a
t
o
r

Block 1 Block 2 Block 3 Block 4 Block 5

Figure 5. Example of replacing a group of layers P (blocks 3 and 4) for the translator block.

The knowledge from the removed sub-structures should be compressed using the
learnable parameters introduced in the convolutional layer of the translator block. Thus,
the layers in the network must be frozen while retraining (i.e., their parameters will not be

Appl. Sci. 2022, 12, 4945 6 of 27

adapted during the retraining phrase), except for the convolutional layer in the translator.
This can be observed in Figure 6.

C
o
n
v

1
-
1

C
o
n
v

1
-
2

+

P
o
o
l
i
n
g

C
o
n
v

2
-
1

C
o
n
v

2
-
2

+

P
o
o
l
i
n
g

C
o
n
v

5
-
1

C
o
n
v

5
-
2

C
o
n
v

5
-
3

+

P
o
o
l
i
n
g

T
o
p

I
n
p
u
t

T
r
a
n
s
l
a
t
o
r

Figure 6. Example of VGG16 pruned architecture and reconnected with the translator block. The
gray rectangles indicate that the layers are frozen, then the translator is the only block active for the
retraining process.

Leaving the translator active during retraining allows recreating the knowledge in
a specific network region. Most of the previously learned tasks will be remapped into
a different (new in this case) region of the neural network. Similar to the biological
counterpart, this process can be seen as the biological neural network recovery process
after injury.

In our method, multiple origin and destination layers can be selected as candidates,
which produce a combination of C possible sub-models where, for each sub-model, a group
of layers Pi (with i = 1, 2, ..., C) will be pruned, and the model will be retrained once.

In contrast to other pruning methods, our pruning-retraining strategy generates
different sub-models that may recover (or even improve) the base model’s performance,
using a single retraining step with a fixed number of epochs. Furthermore, each sub-model
is different and non-dependent from the other generated models. Hence, the one-shot
pruning-retraining process for each sub-model can be computed individually and even in
a parallel model.

Using a one-shot pruning-retraining should be faster than other pruning methods,
which apply the process iteratively until desired results are achieved or a maximum number
of iterations are reached.

4. Experiments

An exhaustive creating-pruning-retraining process of the possible sub-models is car-
ried out to explore the impact of pruning sub-structures in different parts of the networks.
In addition, this exhaustive process allowed us to deduce a heuristic that let us know
the best destination layer for the pruning process, as we will present in Section 4.4. This
workflow is illustrated in Figure 7.

Pre-trained
Network

Dataset
Selection

Transfer
Learning Pruning Retraining

Figure 7. Workflow for the experiments.

The first three steps of the workflow are executed once because they generate the base
models that will be compressed with the proposed pruning method. On the other hand,
the last two steps are executed once for each sub-model that can be generated from the base
models by selecting different layers as the origin and destination of the pruning process.

4.1. Pre-Trained Networks

In the experiments, first, a pre-trained network is selected. VGG16 [36], MobileNet [37],
and MobileNetV2 [38] are used as the base architectures because they allow us to explore the
impact of removing entire convolutional layers, including those with pooling, batch-norm,
and residual connections.

The base networks were pre-trained on ImageNet [39], and they were downloaded
using the TensorFlow [40] framework for Python.

Appl. Sci. 2022, 12, 4945 7 of 27

4.2. Dataset Selection

After selecting the pre-trained networks, it is proposed to use different datasets to
validate the replication of the results over the experiments. Therefore, the datasets used for
this work are: road damage [41], flowers [42], and caltech-101 [43].

The datasets are partitioned into two subsets in the experiments, 70% of the image
samples for training and 30% for testing.

4.3. Transfer Learning

It is proposed to apply transfer learning [44] to reuse the pre-trained networks with
the previously mentioned datasets. The top of the networks are removed, and new ones
are computed using the Hyperband search algorithm [45] included in the keras-tuner [46]
python module.

The new top scheme for the architectures includes four layers: a depth-wise convolu-
tion with dropout (Conv dw + Dropout), a global average pooling (GAP), a dense layer
with dropout, and a dense layer as the final output of the network. This proposed new top
for the networks can be observed in Figure 8.

New Top

C
o
n
v

d
w

+

D
r
o
p
o
u
t

G
A
P

D
e
n
s
e

+

D
r
o
p
o
u
t

D
e
n
s
e

D
e
n
s
e

+

D
r
o
p
o
u
t

Figure 8. Proposed scheme for the new top of the architectures, included when transfer learning
is applied.

The Hyperband’s search space has four parameters: the dropout ratio (from 0 to 0.5)
for the two layers, the number of neurons (from 4 to 64) for the first dense layer, and the
learning rate (from 1 × 10−5 to 1 × 10−2) for training. Thus, each base architecture has the
same layers on top but with different configurations and learning rates.

Only the new top of the network is active during the hyperband execution. Thus, the
network’s backbone is frozen while the top learns to identify key abstractions from the
computed feature maps. Furthermore, the search algorithm is executed with a limit of
30 epochs, looking for the model with the best testing accuracy.

In addition, the optimizer algorithm for training is sKAdam [47], a gradient-based
optimization algorithm presented in a previous work by the authors.

4.4. Pruning

After applying the transfer learning process, three new models are generated for each
selected dataset. These models are used as the base to create multiple sub-models, which
are used to evaluate the compression ratio and performance obtained by skipping and
pruning layers or blocks on the network.

To define the destination layer for re-connecting the remaining sub-structures, it is pro-
posed to skip at least two layers forward from the origin pruning layer on the sub-models.
Hence, the translator’s efficiency is evaluated with the compression ability to recreate the
removed knowledge from small sub-structures up to complex and deep sub-structures.

4.4.1. VGG16

The VGG16 [36] base architecture is presented in Figure 1. However, the top of the
network is replaced with the previously computed according to the dataset.

Figure 2, illustrates an example of the sub-structures connections for the layers of the
network, where each convolutional layer is a candidate to be an origin or destination layer.

Appl. Sci. 2022, 12, 4945 8 of 27

Therefore, the possible re-connections between the layers generate 55 different sub-models
for each dataset.

4.4.2. MobileNet

Figure 9 shows the base architecture for the MobileNet [37]. Each depth-wise separable
convolution (DS-Conv) block is represented by an orange rectangle, which summarizes
both convolutions with their respective batch-norm and activation function.

C
o
n
v

1

D
S
-
C
o
n
v

1

N
e
w

T
o
p

I
n
p
u
t

D
S
-
C
o
n
v

2

D
S
-
C
o
n
v

3

D
S
-
C
o
n
v

4

D
S
-
C
o
n
v

5

D
S
-
C
o
n
v

6

D
S
-
C
o
n
v

7

D
S
-
C
o
n
v

8

D
S
-
C
o
n
v

9

D
S
-
C
o
n
v

1
0

D
S
-
C
o
n
v

1
1

D
S
-
C
o
n
v

1
2

D
S
-
C
o
n
v

1
3

Figure 9. MobileNet architecture, illustrating the depth-wise separable convolutions.

The first convolutional layer and the depth-wise separable convolution are used as
the candidates for the origin and destination layers. Therefore, the possible re-connections
between the layers generate 78 different sub-models for each dataset.

4.4.3. MobileNetV2

Figure 10 shows the base architecture for the MobileNetV2 [38]. As it can be ob-
served, the inverted bottlenecks are represented with orange rectangles as entire blocks.
Furthermore, the adder layers are represented by yellow rectangles.

A
D
D

C
o
n
v

1

B
l
o
c
k

1

N
e
w

T
o
p

I
n
p
u
t

B
l
o
c
k

2

B
l
o
c
k

3

B
l
o
c
k

4

B
l
o
c
k

5

B
l
o
c
k

6

B
l
o
c
k

7

B
l
o
c
k

8

B
l
o
c
k

9

B
l
o
c
k

1
0

B
l
o
c
k

1
1

B
l
o
c
k

1
2

B
l
o
c
k

1
3

B
l
o
c
k

1
4

B
l
o
c
k

1
5

B
l
o
c
k

1
6

C
o
n
v

2

A
D
D

A
D
D

A
D
D + + + + +

+

+ + + +

Figure 10. MobileNetV2 architecture, illustrating the inverted bottlenecks as blocks and their short-
cut connections.

The translator block can be placed on different parts of the network, considering
restrictions for the origin and destination layers due to the shortcut connections. First, the
origin layer must be the first convolutional layer, an inverted bottleneck (if it does not
have an adder layer next), or an adder layer. Then, only inverted bottlenecks and the last
convolutional layer can be candidates for the destination layer.

Therefore, the possible re-connections between the layers generate 136 different sub-
models for each dataset.

4.5. Retraining

This process is one-shot execution as the pruning phase. As mentioned before, during
retraining, it is proposed that only the translator is active, then the other layers are frozen.
Consequently, the acquired knowledge is encapsulated by the kernels of the translator.

The retraining can be interpreted as an extension of the first training, which began in
the parameters search. Thus, the extension marks a transition in the network, from learning
a new task to compressing the knowledge acquired. Therefore, it is proposed to retrain the
sub-models for 50 epochs and use learning rates computed with the hyperband search.

5. Experimental Results

The pruning overall experimental results are reported in this section, illustrating the
compression rates, performance, and best sub-models generated with the proposed pruning
method. Furthermore, comparisons with other popular state-of-the-art pruning methods
are presented.

5.1. VGG16

This section presents the experimental results obtained using our neuroplasticity
pruning method with the base architecture of a VGG16 that has been trained with sev-
eral datasets.

Appl. Sci. 2022, 12, 4945 9 of 27

In Table 1, the performance and information of the architectures computed with the
Hyperband [45] algorithm are presented. For each architecture, we report their num-
ber of parameters, floating-point operations per second (FLOPs), testing accuracy, and
training accuracy.

The FLOPs are calculated using the keras-flops [48] python module.

Table 1. VGG16 architectures, computed using the Hyperband algorithm.

Dataset Params FLOPs Testing Acc. Train Acc.

Road Damage 14.7343 M 30.71 G 0.7929 0.8421
Flowers 14.7302 M 30.71 G 0.8571 0.8964
Caltech 101 14.7518 M 30.71 G 0.8821 0.9513

As it can be observed, the architectures have a similar number of parameters and
FLOPs, and only the accuracy for training and testing varies because of the dataset used.
New sub-models are created from these computed architectures, applying the proposed
pruning method by removing entire network sub-structures.

5.1.1. Road Damage

In this subsection, experimental results for recognition of road damages using the im-
ages of the dataset [41], classified by VGG16 sub-models generated using the neuroplasticity-
based pruning method, are presented.

In Figure 11, a total of 55 scatter points are plotted, where each point on the figure
represents a generated sub-model after the one-shot pruning and retraining process.

Figure 11. VGG16 sub-models trained on the road damage dataset.

In the above figure, the horizontal-axis represents the params ratio, which is calculated
as the relation between the number of params from a generated sub-model and the number
of params from the base model. On the other hand, the vertical-axis represents the testing
accuracy of the model after retraining. It is important to note that a dotted line has been
included to show the accuracy reached using the original model of the VGG16 network
(labeled as original accuracy). In addition, the size of the scatter points changes according
to the parameters ratio (smaller points for smaller parameters ratio, bigger points for higher
parameters ratio), and their color is assigned by the testing accuracy reached.

In Figure 11, it can be observed that different sub-models reached a higher accuracy
than the original network. Most of these sub-models have a params ratio between 0.6 and

Appl. Sci. 2022, 12, 4945 10 of 27

0.4; thus, our proposed pruning method achieves a network compression of 40% up to 60%
without losing accuracy and outperforming the accuracy reached by the base model.

Table 2 shows the performance and information of the top five generated sub-models,
selected according to their accuracy reached and params ratio. In the first column of Table 2,
the names of the models are shown. The first part of the name indicates the origin layer of
the pruning, and the second part of the name stands for the destination layer of the pruning.

Table 2. VGG16 Top-5 Road Damage sub-models.

Re-Connection
(A to B)

Params
Ratio FLOPs (%) Testing

Accuracy
Training
Accuracy

conv4-1 to conv5-3 0.3772 21.57 G (70.24%) 0.7929 0.8113
conv3-2 to conv5-2 0.4083 16.89 G (55.00%) 0.7973 0.7819
conv3-3 to conv5-2 0.4484 20.59 G (67.05%) 0.8073 0.8359
conv4-2 to conv5-3 0.5374 25.27 G (82.29%) 0.8062 0.8502
conv4-1 to conv5-2 0.5374 22.49 G (73.23%) 0.8128 0.8905

As it can be seen in Figure 11 and Table 2, the Top five selected sub-models are those
that presents excellent testing accuracy levels and lower params ratio. However, the
experimental results are achieved by pruning and retraining (only the translator) once.
Thus, if fine-tuning is applied is likely to increase the accuracy reached.

For a better illustration of the experimental results produced by pruning and reconnect-
ing different sub-structures, in Figure 12 two heatmaps are presented. On each heatmap,
there is a grid where the performance of the sub-models is mapped over an indicator.

Figure 12. VGG16 Road Damage sub-models heatmaps.

Figures 11 and 12 shows that most sub-models achieved competitive accuracy values,
which means that even those models with lower accuracy present a suitable performance.
For instance, there is a sub-model with a translator connection between the layers Conv
3-1 and Conv 5-3. This sub-model has an accuracy of 0.7386 and a params ratio of 0.2081.
Hence, when fine-tuning is applied is probable that this model will outperform the original
accuracy, and only using close to 20% of the original params from the base model.

5.1.2. Flowers

In this subsection, experimental results for recognition of flowers using the images of
the dataset [42], classified by VGG16 sub-models generated using the neuroplasticity-based
pruning method, are presented.

In Figure 13, the sub-models generated from the VGG16 trained on the flowers dataset
are displayed.

Appl. Sci. 2022, 12, 4945 11 of 27

Figure 13. VGG16 sub-models trained on the flowers dataset.

Once again, it can be observed that some sub-models achieved higher accuracy than
the original network, which is illustrated by the dotted line in Figure 13.

Table 3 shows the performance and information of the top five generated sub-models,
selected according to their accuracy reached and params ratio. Once more, the models are
named using the first part of the name as the origin layer, and the second part of the name
refers to the destination layer of the pruning.

Table 3. VGG16 Top-5 Flowers sub-models.

Re-Connection
(A to B)

Params
Ratio FLOPs (%) Testing

Accuracy
Training
Accuracy

conv2-2 to conv5-1 0.5038 12.24 G (39.86%) 0.7251 0.6863
conv3-1 to conv5-1 0.5283 14.11 G (45.95%) 0.7815 0.7502
conv3-3 to conv5-1 0.6084 21.52 G (70.07%) 0.7946 0.8120
conv3-1 to conv4-3 0.6885 17.97 G (58.52%) 0.8062 0.8590
conv4-3 to conv5-3 0.6974 28.97 G (94.33%) 0.9035 0.9428

From the top-accuracy generated sub-models, it can be observed that connections
between the last layers of the network are relevant. In fact, from the heatmaps presented
in Figure 14 for this experiment, it is evident that not only the models from the last
two columns are those with low params ratio but also with low accuracy.

In the testing accuracy heatmap, we can observe an accuracy drop from models with
connections to the convolutional layer 5-2, which may suggest that up to the convolutional
layer 5-1, there are substantial feature maps that were pruned from the network. In other
words, relevant transformations to the input volume are lost by pruning specific sub-
structures of the network, which may cause an undesired performance. Furthermore, the
sub-models with connections to the convolutional layer 5-3 present a similar behavior, then
multiple sub-models have an accuracy drop by skipping and pruning some sub-structures
of the network.

In Figures 12 and 14, there is consistent that sub-models with desired performances
(i.e., accuracy values close to or above 0.8) and non-significant accuracy loss are those with
params ratio close to 0.6, as the top-accuracy sub-models reported in Table 3.

Appl. Sci. 2022, 12, 4945 12 of 27

Figure 14. VGG16 Flowers sub-models heatmaps.

The above may suggest that experimentally and for this particular architecture, the
compressed models with params ratio closer to 0.6 may lead to the balance between the
accuracy levels and the compression rates. Furthermore, the models with parameters ratios
lower than 0.6 are those that create connections between the last layers of the network.
Therefore, an experimental criterion to prune networks while using our proposed method is
to generate connections between the latter layers/block of the network, to create lightweight
and efficient networks.

5.1.3. Caltech 101

In this subsection, experimental results for recognition of 101 different objects us-
ing the images of the dataset [43], classified by VGG16 sub-models generated using the
neuroplasticity-based pruning method, are presented.

In Figure 15, the sub-models generated from the VGG16 trained on the caltech-101
dataset are shown.

Figure 15. VGG16 sub-models trained on the caltech-101 dataset.

This time, just a few models achieved accuracy levels close to the accuracy reached by
the original network (represented by the dotted line). Most of these models do not present
the hoped params ratio, and the compression is marginal, which may happen because the

Appl. Sci. 2022, 12, 4945 13 of 27

Caltech-101 dataset is unbalanced [49]. Then, the necessary knowledge to identify a specific
class might be sparse all over the network.

Therefore, by removing sub-structures, it is possible that instead of reducing redun-
dancy, we were deleting sparse significant knowledge. In other words, relevant feature
maps transformations probably were pruned from the sub-structures. Thus, in such a case,
during retraining is complicated to recover the accuracy since only the translator is active
and learning.

Table 4 shows the performance and information on the top five generated sub-models,
selected according to their accuracy reached and params ratio. Once more, the models are
named using the first part of the name as the origin layer, and the second part of the name
refers to the destination layer of the pruning.

Table 4. VGG16 Top-5 Caltech-101 sub-models.

Re-Connection
(A to B)

Params
Ratio FLOPs (%) Testing

Accuracy
Training
Accuracy

conv4-3 to conv5-3 0.6979 28.97 G (94.33%) 0.7514 0.9682
conv3-3 to conv4-3 0.7690 25.37 G (82.61%) 0.5678 0.8042
conv2-2 to conv4-1 0.9022 21.51 G (70.04%) 0.7322 0.7835
conv2-1 to conv3-3 0.9322 21.67 G (70.56%) 0.8029 0.8918
conv2-2 to conv3-3 0.9422 25.37 G (82.61%) 0.8459 0.9672

Even when most of the generated sub-models have an undesired performance, the
translator connection between the convolutional layers 2-2 and 5-1 presents a decent
performance and a parameters compression close to 30%. Thus, that model is a candidate
to recover the accuracy using fine-tuning.

Figure 16 shows the heatmaps from the sub-models trained on the Caltech-101 dataset.
In the heatmaps, it can be observed that some sub-models with connections between the
first layers of the network are those which present the hoped accuracy values. The above
may support that, for this particular dataset and architecture, the key transformations for
the inputs lie in the first layer of the network. Therefore, if these relevant sub-structures
are removed, the accuracy is dropped, and it is difficult for the translator to recover
the performance.

Figure 16. VGG16 Caltech-101 sub-models heatmaps.

From the VGG16 experiments, we observed that excellent params ratios are achieved
most of the time. As well as outperform the accuracy of the original models. In other words,
the sub-models generated by pruning and retraining present efficient performance as in the
original model but using up to 60% to 20% of the number of params from the base model.

Appl. Sci. 2022, 12, 4945 14 of 27

On the one hand, the experimental results are generated by pruning and retraining in
a one-shot strategy. Thus, fine-tuning is likely to increase the accuracy levels reached. On
the other hand, only the translator is active and acquiring knowledge during retraining,
which means that only the translator is trying to re-learn the transformations produced
by the pruned sub-structures. Therefore, our pruning-retraining method is as simple as
retraining when it is used over a sub-structure already identified as redundant.

Furthermore, the undesired performance may be caused by the layered approach
used to prune sub-structures. Therefore, in the following experiments, more complex
sub-structures will be selected as candidates to be pruned.

5.2. MobileNet

This section presents the experimental results obtained using our neuroplasticity
pruning method with the base architecture of a MobileNet that has been trained with
several datasets.

In Table 5, the performance and information of the architectures computed with
the Hyperband [45] algorithm are presented. For each architecture we report on their
number of parameters, floating-point operations per second (FLOPs), testing accuracy, and
training accuracy.

The FLOPs are calculated using the keras-flops [48] python module.

Table 5. MobileNet architectures, computed using the Hyperband algorithm.

Dataset Params FLOPs Testing Acc. Train Acc.

Road Damage 3.2679 M 1.14 G 0.8328 0.8601
Flowers 3.2597 M 1.14 G 0.8973 0.9530
Caltech 101 3.2707 M 1.14 G 0.9266 0.9993

As it can be observed, the architectures have a similar number of parameters and
FLOPs, and only the accuracy for training and testing varies because of the dataset used.
New sub-models are created from these computed architectures, applying the proposed
pruning method by removing entire sub-structures of the network.

5.2.1. Road Damage

In this subsection, experimental results for recognition of road damages using the images
of the dataset [41], classified by MobileNet sub-models generated using the neuroplasticity-
based pruning method, are presented.

For this experiment, instead of using a layered approach as the criterion to select
candidates for pruning, it is proposed to use the depth-wise separable convolution blocks
as the origin and destination sub-structures.

In Figure 17, a total of 78 scatter points are plotted, where each point on the figure
represents a generated sub-model after the one-shot pruning and retraining process.

In the above figure, the horizontal-axis represents the params ratio, which is calculated
as the relation between the number of params from a generated sub-model and the number
of params from the base model. On the other hand, the vertical-axis represents the testing
accuracy of the model after retraining. It is important to note that a dotted line has been
included to show the accuracy reached using the original model of the MobileNet network
(labeled as original accuracy). In addition, the size of the scatter points changes according
to the parameters ratio (smaller points for smaller parameters ratio, bigger points for higher
parameters ratio), and their color is assigned by the testing accuracy reached.

Appl. Sci. 2022, 12, 4945 15 of 27

Similar to the VGG16 Road Damage experiment, most sub-models achieved an ex-
cellent performance. Therefore, even using different base models, our proposed pruning
method shows an efficient way to obtain competitive accuracy levels and compression rates.

Figure 17. MobileNet sub-models trained on the road damage dataset.

Table 6 shows the performance and information on the top five generated sub-models,
selected according to their accuracy reached and params ratio. In the first column of Table 6,
the names of the models are shown. The first part of the name indicates the origin layer of
the pruning, and the second part of the name stands for the destination layer of the pruning.

Table 6. MobileNet Top-5 Road Damage sub-models.

Re-Connection
(A to B)

Params
Ratio FLOPs (%) Testing

Accuracy
Training
Accuracy

DS-Conv 2 to DS-Conv 13 0.3826 0.2547 G (22.34%) 0.8007 0.8028
DS-Conv 3 to DS-Conv 13 0.3883 0.3690 G (32.36%) 0.8040 0.8208
DS-Conv 5 to DS-Conv 13 0.4606 0.5426 G (47.59%) 0.8228 0.8786
DS-Conv 6 to DS-Conv 13 0.5826 0.6208 G (54.45%) 0.8405 0.9061
DS-Conv 6 to DS-Conv 12 0.6660 0.7241 G (63.51%) 0.8549 0.8938

As in the previous experiments, the top-accuracy generated sub-models have connec-
tions to the last sub-structures of the network. Thus, once again, the hypothesis of pruning
networks by connecting the layers/blocks to the final sub-structures is supported. Then,
this hypothesis can be used as a heuristic for determining the destination layers of our
pruning method.

For a better illustration of the experimental results produced by pruning and reconnect-
ing different sub-structures, in Figure 18 two heatmaps are presented. On each heatmap,
there is a grid where the performance of the sub-models is mapped over an indicator.

Appl. Sci. 2022, 12, 4945 16 of 27

Figure 18. MobileNet Road Damage sub-models heatmaps.

To emphasize the compression reported in Figures 17 and 18, one of the top-accuracy
sub-models (see Table 6) from this experiment is presented in Figure 19.

C
o
n
v

1

D
S
-
C
o
n
v

1

N
e
w

T
o
p

I
n
p
u
t

D
S
-
C
o
n
v

2

D
S
-
C
o
n
v

1
3

T
r
a
n
s
l
a
t
o
r

Figure 19. Top sub-model generated from the MobileNet architecture. DS-Conv 3 to DS-Conv 12 are
pruned, thus, DS-Conv 2 and DS-Conv 13 are reconnected by the translator block.

The network presented in Figure 19 looks quite compact in comparison to the base
model illustrated in Figure 9. Even when most of the depth separable convolutions are
removed from the network, the translator block can recover an accuracy level close to the
originally achieved by the base model. Furthermore, this compact model has close to 38%
of the original number of parameters and requires just about 20% of the original FLOPs.

5.2.2. Flowers

In this subsection, experimental results for recognition of flowers using the images of
the dataset [42], classified by MobileNet sub-models generated using the neuroplasticity-
based pruning method, are presented.

In Figure 20, the sub-models generated from the MobileNet trained on the flowers
dataset are displayed.

In contrast to the VGG16 experiment with the flowers dataset, in this experiment,
different sub-models achieved testing accuracy levels equal to or above 0.8 and params
compression up to 2×. The above may suggest that the MobileNet architecture is a robust
feature extractor even when composed of a few blocks. Figure 19 illustrates this behavior.

On the other hand, there are horizontal and vertical patterns on the scatter points of
the figure. These patterns appear over the figures from the other experiments, but they are
slightly visible.

A group of sub-models produces the vertical pattern with a translator connection
to the same destination layer (B fixed) but with a different origin. On the contrary, the
horizontal pattern is produced by a group of sub-models with a translator connection from
the same origin layer (A fixed) but with a different destination.

Appl. Sci. 2022, 12, 4945 17 of 27

Figure 20. MobileNet sub-models trained on the flowers dataset.

To visually identify the horizontal and vertical patterns, Figure 21 illustrates different
groups of sub-models within these conditions. All the scatter points from Figure 21 are
identical to the scatter points from Figure 20 but in gray tone, except for those plotted with
colors to emphasize the relevant patterns.

Figure 21. MobileNet sub-models patterns.

From the above figure, it can be observed that sub-models with connections to the last
blocks of the network are attached to the left side of the horizontal-axis at the beginning,
but then a slope appears as far as the params ratio increases. This dynamic supports that
connections to the last layers/blocks of the network are desired because this creates sub-
models with low params ratio. Furthermore, for this particular architecture, the efficiency
of the DS-Conv blocks as feature extractors allows pruning the network by almost a 30%
without critically affecting the network performance.

Table 7 shows the performance and information of the top five generated sub-models,
selected according to their accuracy reached and params ratio. Once more, the models are
named using the first part of the name as the origin layer, and the second part of the name
refers to the destination layer of the pruning.

Appl. Sci. 2022, 12, 4945 18 of 27

Table 7. MobileNet Top-5 Flowers sub-models.

Re-Connection
(A to B)

Params
Ratio FLOPs (%) Testing

Accuracy
Training
Accuracy

DS-Conv 4 to DS-Conv 13 0.4378 0.4354 G (38.19%) 0.8085 0.8782
DS-Conv 5 to DS-Conv 13 0.4593 0.5426 G (47.60%) 0.8347 0.9560
DS-Conv 5 to DS-Conv 12 0.5831 0.6204 G (54.42%) 0.8456 0.9418
DS-Conv 6 to DS-Conv 13 0.5816 0.6208 G (54.46%) 0.8595 0.9639
DS-Conv 7 to DS-Conv 12 0.6647 0.8291 G (72.73%) 0.8656 0.9649

Figure 22 shows the heatmaps from the sub-models trained on the Flowers dataset.

Figure 22. MobileNet Flowers sub-models heatmaps.

For those models with regular performance but a high compression rate, it should be
easy to increase the accuracy levels because retraining is applied once and only over the
translator block. Therefore, fine-tuning or another training round for all the layers may be
enough to improve the network performance.

5.2.3. Caltech 101

In this subsection, experimental results for recognition of 101 different objects using
the images of the dataset [43], classified by MobileNet sub-models generated using the
neuroplasticity-based pruning method, are presented.

In Figure 23, the sub-models generated from the MobileNet trained on the caltech-101
dataset are shown.

Once again, as in the VGG16 experiment with this architecture, most sub-models do
not present the hoped params ratio and the compression reached is marginal. Therefore,
even when the MobileNet architecture has shown an excellent performance as a feature
extractor to compress the network by pruning most of the blocks, it is difficult to replicate
the result using the unbalanced Caltech-101 dataset.

Table 8 shows the performance and information of the top five generated sub-models,
selected according to their accuracy reached and params ratio. Once more, the models are
named using the first part of the name as the origin layer, and the second part of the name
refers to the destination layer of the pruning.

From the MobileNet experiments, we observed a better compression and performance
compared to the experimental results obtained from the VGG16 sub-models. Thus, using
our proposed pruning method, the base model is compressed into different efficient and
lightweight networks.

Appl. Sci. 2022, 12, 4945 19 of 27

Figure 23. MobileNet sub-models trained on the caltech-101 dataset.

Table 8. MobileNet Top-5 Caltech-101 sub-models.

Re-Connection
(A to B)

Params
Ratio FLOPs (%) Testing

Accuracy
Training
Accuracy

DS-Conv 8 to DS-Conv 13 0.7486 0.8308 G (72.88%) 0.6665 0.7264
DS-Conv 8 to DS-Conv 12 0.8319 0.9341 G (81.94%) 0.6735 0.7272
DS-Conv 9 to DS-Conv 13 0.8314 0.9357 G (82.08%) 0.7557 0.7530
DS-Conv 9 to DS-Conv 12 0.9147 1.0390 G (91.14%) 0.7749 0.7906
DS-Conv 10 to DS-Conv 13 0.9142 1.0410 G (91.32%) 0.8306 0.8197

Figure 24 shows the heatmaps from the sub-models trained on the Caltech-101 dataset.

Figure 24. MobileNet Caltech-101 sub-models heatmaps.

Appl. Sci. 2022, 12, 4945 20 of 27

In addition, the hypothesis of pruning networks by connecting layers/blocks to the
later sub-structures of the network seems solid according to the experimental results
produced. Once again, our pruning-retraining method is as simple as retraining if used
over a sub-structure already identified as redundant. For instance, we assume that most of
the middle layers/blocks of the network have knowledge redundancy, which is removed
by testing connections up to the last sub-structures of the network.

5.3. MobileNetV2

This section presents the experimental results obtained using our neuroplasticity
pruning method with the base architecture of a MobileNetV2 that has been trained with
several datasets.

In Table 9, the performance and information of the architectures computed with
the Hyperband [45] algorithm are presented. For each architecture we report on their
number of parameters, floating-point operations per second (FLOPs), testing accuracy, and
training accuracy.

The FLOPs are calculated using the keras-flops [48] python module.

Table 9. MobileNetV2 architectures, computed using the Hyperband algorithm.

Dataset Params FLOPs Testing Acc. Train Acc.

Road Damage 2.3067 M 0.6134 G 0.8361 0.8876
Flowers 2.2965 M 0.6134 G 0.8927 0.9646
Caltech 101 2.3096 M 0.6134 G 0.9209 0.9974

As it can be observed, the architectures have a similar number of parameters and
FLOPs, and only the accuracy for training and testing varies because of the dataset used.
New sub-models are created from these computed architectures, applying the proposed
pruning method by removing entire sub-structures of the network.

5.3.1. Road Damage

In this subsection, experimental results for recognition of road damages using the
images of the dataset [41], classified by MobileNetV2 sub-models generated using the
neuroplasticity-based pruning method, are presented.

For this experiment, it is proposed to use the inverted bottlenecks as the origin and
destination sub-structures. Therefore, in Figure 25, a total of 136 scatter points are plotted,
where each point on the figure represents a generated sub-model after the one-shot pruning
and retraining process.

In the above figure, the horizontal-axis represents the params ratio, which is calculated
as the relation between the number of params from a generated sub-model and the number
of params from the base model. On the other hand, the vertical-axis represents the testing
accuracy of the model after retraining. It is important to note that a dotted line has been
included to show the accuracy reached using the original model of the MobileNetV2
network (labeled as original accuracy). In addition, the size of the scatter points changes
according to the parameters ratio (smaller points for smaller parameters ratio, bigger points
for higher parameters ratio), and their color is assigned by the testing accuracy reached.

From the experimental results produced, it can be observed that this time the sub-
models did not outperform the accuracy reached by the base model. However, there are
different models with parameters reduction of almost 80% and accuracy levels nearby to
the original from the base model.

Appl. Sci. 2022, 12, 4945 21 of 27

Figure 25. MobileNetV2 sub-models trained on the road damage dataset.

Table 10, shows the performance and information of the top five generated sub-
models, selected according to their accuracy reached and params ratio. In the first column
of Table 10, the names of the models are shown. The first part of the name indicates the
origin layer of the pruning, and the second part of the name stands for the destination layer
of the pruning.

Table 10. MobileNetV2 Top-5 Road Damage sub-models.

Re-Connection
(A to B)

Params
Ratio FLOPs (%) Testing

Accuracy
Training
Accuracy

block6 to conv2 0.2450 0.2948 G (48.06%) 0.8250 0.8592
block7 to conv2 0.2693 0.3158 G (51.48%) 0.8140 0.8568
block8 to conv2 0.2935 0.3367 G (54.89%) 0.8073 0.8587
block9 to conv2 0.3178 0.3577 G (58.31%) 0.8184 0.8596

block10 to conv2 0.3519 0.3845 G (62.68%) 0.8250 0.8559

As it can be seen in Table 10, the MobileNetV2 shows excellent performance as a feature
extractor such as the MobileNet in the previous experiments. Furthermore, one of the
top-accuracy sub-models achieves a remarkable parameters reduction, and their accuracy
is barely different from the original. To visualize the network compression, this sub-model
is displayed in Figure 26.

A
D
D

C
o
n
v

1

B
l
o
c
k

1

N
e
w

T
o
p

I
n
p
u
t

B
l
o
c
k

2

B
l
o
c
k

3

B
l
o
c
k

4

B
l
o
c
k

5

B
l
o
c
k

6

C
o
n
v

2

A
D
D+

+ +

T
r
a
n
s
l
a
t
o
r

Figure 26. Top sub-model generated from the MobileNetV2 architecture. Block 7 to Block 16 are
pruned, thus, Block 6 and Conv 2 (the last layer) are reconnected by the translator block.

For a better illustration of the experimental results produced, in Figure 27 the heatmaps
of the experiment are presented.

Appl. Sci. 2022, 12, 4945 22 of 27

Figure 27. MobileNetv2 Road Damage sub-models heatmaps.

5.3.2. Flowers

In this subsection, experimental results for recognition of flowers using the images of
the dataset [42], classified by MobileNetV2 sub-models generated using the neuroplasticity-
based pruning method, are presented.

In Figure 28, the sub-models generated from the MobileNetV2 trained on the flowers
dataset are displayed.

Figure 28. MobileNetV2 sub-models trained on the flowers dataset.

Table 11 presents the performance and information of the top five generated sub-
models, selected according to their accuracy reached and params ratio. Once more, the
models are named using the first part of the name as the origin layer, and the second part
of the name refers to the destination layer of the pruning.

Appl. Sci. 2022, 12, 4945 23 of 27

Table 11. MobileNetV2 Top-5 Flowers sub-models.

Re-Connection
(A to B)

Params
Ratio FLOPs (%) Testing

Accuracy
Training
Accuracy

block6 to conv2 0.2417 0.2948 G (48.06%) 0.8726 0.9378
block7 to conv2 0.2660 0.3158 G (51.48%) 0.8687 0.9457
block8 to conv2 0.2904 0.3367 G (54.89%) 0.8741 0.9474
block9 to conv2 0.3147 0.3577 G (58.31%) 0.8556 0.9507

block10 to conv2 0.3490 0.3845 G (62.68%) 0.9019 0.9666

For a better illustration of the experimental results produced, in Figure 29 the heatmaps
of the experiment are presented.

Figure 29. MobileNetV2 Flowers sub-models heatmaps.

Figures 28 and 29 shows that, as in the previous experiment, the MobileNetV2 is a ro-
bust feature extractor. Furthermore, Table 11 shows that in this experiment, a compression
of around 80% is achieved again, besides reaching accuracy levels close to or even better
than the originally reported by the base model.

Contrary to the VGG16 and MobileNet experimental results with this dataset, the Mo-
bileNetV2 demonstrates that even with an unbalanced dataset is possible to extract relevant
features transformations and embed them into the translator without losing accuracy.

5.3.3. Caltech 101

In this subsection, experimental results for recognition of 101 different objects using
the images of the dataset [43], classified by MobileNetV2 sub-models generated using the
neuroplasticity-based pruning method, are presented.

For this experiment, only models with connections to later sub-structures are created.
As the experimental results suggest, the models with later connections on the network have
low params ratio, and most of the time, they achieve an excellent performance. Thus, in
Figure 30, the 31 sub-models generated from the MobileNetV2 trained on the Caltech-101
dataset are shown.

Appl. Sci. 2022, 12, 4945 24 of 27

Figure 30. MobileNetV2 sub-models trained on the caltech-101 dataset.

As can be observed in the scatter models from Figure 30 and the top five sub-models
reported in Table 12, once more, the models are named using the first part of the name as the
origin layer, and the second part of the name refers to the destination layer of the pruning.

Table 12. MobileNetV2 Top-5 Caltech-101 sub-models.

Re-Connection
(A to B)

Params
Ratio FLOPs (%) Testing

Accuracy
Training
Accuracy

block10 to conv2 0.3527 0.3845 G (62.68%) 0.7441 0.8500
block11 to conv2 0.4049 0.4304 G (70.17%) 0.7414 0.8861
block12 to conv2 0.4049 0.4763 G (77.65%) 0.7906 0.8861

block11 to block16 0.6054 0.4751 G (77.45%) 0.7783 0.9045
block13 to conv2 0.5345 0.5098 G (83.11%) 0.8963 0.9921

Once again, the experimental results support that the MobileNetV2 architecture is a ro-
bust feature extractor. In this experiment, there is a significant compression achieved com-
pared to the previous experiment with the same dataset, and the accuracy loss is marginal.

In the two previous experiments, the top-accuracy sub-models use up to block 10 as
the origin sub-structure for the network compression. However, for this experiment, it can
be observed in Figure 31 that more blocks were required to match the compression rates
and accuracy levels. The above may suggest that it is possible to identify the optimal origin
and destination sub-structures over the network according to the dataset. For instance,
in the VGG16 experiments, using layers 4-1 and forward as origin, we ensure that the
translator will be able to remap the knowledge and recover the original accuracy levels
after pruning.

From the MobileNetV2 experiments, we observed that this architecture is a power-full
feature extractor because the sub-models almost achieved the original accuracy using only
20% of the number of params from the base model. Therefore, using the proposed one-shot
pruning and retraining method, it is possible to use the network architecture to create
efficient and straightforward sub-models with the proper number of blocks according to
a specific dataset to be used.

Appl. Sci. 2022, 12, 4945 25 of 27

Figure 31. MobileNetV2 Caltech-101 sub-models heatmaps.

6. Conclusions and Future Work

In this work, we presented a novel bio-inspired structured pruning method designed
to remove redundancy and unimportant connections by pruning entire layers or blocks
from the network architecture. As a result, lightweight and efficient sub-networks are
created from the base models.

In contrast to other pruning methods, in our approach, is not necessary to define
a threshold or metric as the criterion to prune the network. Instead, only the origin and
destination sub-structures are defined for the translator connection. Therefore, to test the
impact of removing different sub-structures from the network, all the possible sub-models
within different architectures were created, and their performance was measured.

In our approach, we propose using a one-shot pruning and retraining strategy. In
other words, first, when the origin and destination structures are selected, the network is
pruned and reconnected with the translator. After that, retraining is applied using the same
hyper-parameters as in the regular training, but with all the layers frozen except by the
translator. The above allows keeping intact the knowledge from the previous training phase
and compress the acquired knowledge into the translator block. Furthermore, if we want
to explore the impact of removing different network sub-structures, the pruning-retraining
process may be run out in parallel mode as a grid search algorithm.

Heuristically, we found that models with connections between the middle and last
layers present a low params ratio and excellent performances. Furthermore, according to
the dataset used, a given architecture may require more or fewer layers/blocks to recover
the accuracy level from the base model successfully. Therefore, to achieve competitive
compression rates and performances, the origin and destination structures are strongly
related to the features from the dataset.

After pruning and retraining, in different works it is suggested to apply fine-tuning to
increase the network performance. Besides, multiple works suggest combining pruning
and compression techniques to improve the compression rate if it is necessary. In our
experiments, we did not use any of these techniques. However, our approach is suitable
for all of these methods because the resultant network is a compressed architecture of the
base model. Furthermore, there is not necessary to use extra libraries or tools for sparse or
complex graph computations.

Future Work

To use our proposed method in a practical application, we are designing a metric to
compute the optimal origin and destination structures within a network architecture.

In addition, we are working on a Python module designed to automate the one-shot
pruning and retraining process with our proposed method.

Appl. Sci. 2022, 12, 4945 26 of 27

Author Contributions: Conceptualization, C.V.; Formal analysis, C.L.-F. and N.A.-D.; Funding
acquisition, C.L.-F. and N.A.-D.; Investigation, J.D.C. and C.V.; Methodology, C.V. and N.A.-D.;
Project administration, N.A.-D.; Software, J.D.C.; Supervision, C.V. and N.A.-D.; Validation, C.L.-F.;
Writing—original draft, J.D.C.; Writing—review & editing, C.V. and N.A.-D. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by CONACyT CB-2015-258068.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results

References
1. Hussain, M.; Bird, J.J.; Faria, D.R. A study on cnn transfer learning for image classification. In UK Workshop on Computational

Intelligence; Springer: Cham, Switzerland, 2018; pp. 191–202.
2. Lee, H.; Kwon, H. Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans. Image Process. 2017,

26, 4843–4855. [CrossRef] [PubMed]
3. Zhao, Z.Q.; Zheng, P.; Xu, S.T.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019,

30, 3212–3232. [CrossRef] [PubMed]
4. Dhillon, A.; Verma, G.K. Convolutional neural network: A review of models, methodologies and applications to object detection.

Prog. Artif. Intell. 2020, 9, 85–112. [CrossRef]
5. Zhong, Y.; Gao, J.; Lei, Q.; Zhou, Y. A Vision-Based Counting and Recognition System for Flying Insects in Intelligent Agriculture.

Sensors 2018, 18, 1489. [CrossRef]
6. Zhong, Y.; Chen, X.; Jiang, J.; Ren, F. A cascade reconstruction model with generalization ability evaluation for anomaly detection

in videos. Pattern Recognit. 2022, 122, 108336. [CrossRef]
7. Guo, Y.; Liu, Y.; Georgiou, T.; Lew, M.S. A review of semantic segmentation using deep neural networks. Int. J. Multimed. Inf.

Retr. 2018, 7, 87–93. [CrossRef]
8. Wang, P.; Chen, P.; Yuan, Y.; Liu, D.; Huang, Z.; Hou, X.; Cottrell, G. Understanding convolution for semantic segmentation. In

Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15
March 2018; pp. 1451–1460.

9. Martinez-Soltero, G.; Alanis, A.Y.; Arana-Daniel, N.; Lopez-Franco, C. Semantic Segmentation for Aerial Mapping. Mathematics
2020, 8, 1456. [CrossRef]

10. Schlemper, J.; Caballero, J.; Hajnal, J.V.; Price, A.N.; Rueckert, D. A deep cascade of convolutional neural networks for dynamic
MR image reconstruction. IEEE Trans. Med Imaging 2017, 37, 491–503. [CrossRef]

11. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

12. Cheng, Y.; Wang, D.; Zhou, P.; Zhang, T. A survey of model compression and acceleration for deep neural networks. arXiv 2017,
arXiv:1710.09282. [CrossRef]

13. Lin, S.; Ji, R.; Chen, C.; Tao, D.; Luo, J. Holistic cnn compression via low-rank decomposition with knowledge transfer. IEEE
Trans. Pattern Anal. Mach. Intell. 2018, 41, 2889–2905. [CrossRef]

14. Wen, W.; Xu, C.; Wu, C.; Wang, Y.; Chen, Y.; Li, H. Coordinating filters for faster deep neural networks. In Proceedings of the
IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 658–666.

15. Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; Cheng, J. Quantized convolutional neural networks for mobile devices. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4820–4828.

16. Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and training of neural
networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2704–2713.

17. Lin, X.; Zhao, C.; Pan, W. Towards accurate binary convolutional neural network. In Proceedings of the Advances in Neural
Information Processing Systems: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9
December 2017; Volume 30.

18. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv 2016, arXiv:1510.00149. [CrossRef]

19. Hu, H.; Peng, R.; Tai, Y.W.; Tang, C.K. Network trimming: A data-driven neuron pruning approach towards efficient deep
architectures. arXiv 2016, arXiv:1607.03250. [CrossRef]

20. Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning convolutional neural networks for resource efficient inference.
arXiv 2016, arXiv:1611.06440. [CrossRef]

21. Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; Graf, H.P. Pruning filters for efficient convnets. arXiv 2016, arXiv:1608.08710.
[CrossRef]

http://doi.org/10.1109/TIP.2017.2725580
http://www.ncbi.nlm.nih.gov/pubmed/28708555
http://dx.doi.org/10.1109/TNNLS.2018.2876865
http://www.ncbi.nlm.nih.gov/pubmed/30703038
http://dx.doi.org/10.1007/s13748-019-00203-0
http://dx.doi.org/10.3390/s18051489
http://dx.doi.org/10.1016/j.patcog.2021.108336
http://dx.doi.org/10.1007/s13735-017-0141-z
http://dx.doi.org/10.3390/math8091456
http://dx.doi.org/10.1109/TMI.2017.2760978
https://doi.org/10.48550/arXiv.1710.09282
http://dx.doi.org/10.1109/TPAMI.2018.2873305
https://doi.org/10.48550/arXiv.1510.00149
https://doi.org/10.48550/arXiv.1607.03250
https://doi.org/10.48550/arXiv.1611.06440
https://doi.org/10.48550/arXiv.1608.08710

Appl. Sci. 2022, 12, 4945 27 of 27

22. Guo, Y.; Yao, A.; Chen, Y. Dynamic network surgery for efficient dnns. In Proceedings of the Advances in Neural Information
Processing Systems: Annual Conference on Neural Information Processing Systems 2016, Barcelona, Spain, 5–10 December 2016;
Volume 29.

23. Luo, J.H.; Wu, J. An entropy-based pruning method for cnn compression. arXiv 2017, arXiv:1706.05791. [CrossRef]
24. Wu, H.; Tang, Y.; Zhang, X. A pruning method based on the measurement of feature extraction ability. Mach. Vis. Appl. 2021,

32, 20. [CrossRef]
25. French, R.M. Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 1999, 3, 128–135. [CrossRef]
26. Mateos-Aparicio, P.; Rodríguez-Moreno, A. The impact of studying brain plasticity. Front. Cell. Neurosci. 2019, 13, 66. [CrossRef]
27. Carlson, R.A. Restructuring in Learning. In Encyclopedia of the Sciences of Learning; Seel, N.M., Ed.; Springer: Boston, MA, USA,

2012; pp. 2853–2856. [CrossRef]
28. Cramer, S.C.; Nelles, G.; Benson, R.R.; Kaplan, J.D.; Parker, R.A.; Kwong, K.K.; Kennedy, D.N.; Finklestein, S.P.; Rosen, B.R.

A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 1997, 28, 2518–2527. [CrossRef]
29. Teasell, R.; Bayona, N.A.; Bitensky, J. Plasticity and reorganization of the brain post stroke. Top. Stroke Rehabil. 2005, 12, 11–26.

[CrossRef]
30. Murphy, T.H.; Corbett, D. Plasticity during stroke recovery: From synapse to behaviour. Nat. Rev. Neurosci. 2009, 10, 861–872.

[CrossRef] [PubMed]
31. Chrol-Cannon, J.; Jin, Y. Computational modeling of neural plasticity for self-organization of neural networks. Biosystems 2014,

125, 43–54. [CrossRef] [PubMed]
32. Op de Beeck, H.P.; Baker, C.I. The neural basis of visual object learning. Trends Cogn. Sci. 2010, 14, 22–30. [CrossRef] [PubMed]
33. Nudo, R.J. Recovery after brain injury: Mechanisms and principles. Front. Hum. Neurosci. 2013, 7, 887. [CrossRef]
34. Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient neural network. In Proceedings of

the Advances in Neural Information Processing Systems: Annual Conference on Neural Information Processing Systems 2015,
Montreal, QC, Canada, 7–12 December 2015; Volume 28.

35. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of
the Advances in Neural Information Processing Systems: 26th Annual Conference on Neural Information Processing Systems
2012, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25.

36. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
[CrossRef]

37. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [CrossRef]

38. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520.

39. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. (IJCV) 2015, 115, 211–252. [CrossRef]

40. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems. Available online: https://www.tensorflow.org (accessed on 10
May 2022).

41. Angulo, A.; Vega-Fernández, J.A.; Aguilar-Lobo, L.M.; Natraj, S.; Ochoa-Ruiz, G. Road damage detection acquisition system
based on deep neural networks for physical asset management. In Proceedings of the Mexican International Conference on
Artificial Intelligence, Xalapa, Mexico, 27 October–2 November 2019; Springer: Cham, Switzerland, 2019; pp. 3–14.

42. Mamaev, A. Flowers Recognition. Dataset Retrived from kaggle.com. 2018. Available online: https://www.kaggle.com/
alxmamaev/flowers-recognition/version/2 (accessed on 10 May 2022).

43. Li, F.-F.; Fergus, R.; Perona, P. Learning generative visual models from few training examples: An incremental bayesian approach
tested on 101 object categories. In Proceedings of the 2004 Conference on Computer Vision and Pattern Recognition Workshop,
Washington, DC, USA, 27 June–2 July 2004; p. 178.

44. Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [CrossRef]
45. Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A novel bandit-based approach to hyperparameter

optimization. J. Mach. Learn. Res. 2017, 18, 6765–6816.
46. O’Malley, T.; Bursztein, E.; Long, J.; Chollet, F.; Jin, H.; Invernizzi, L. KerasTuner. 2019. Available online: https://github.com/

keras-team/keras-tuner (accessed on 10 May 2022).
47. Camacho, J.D.; Villaseñor, C.; Alanis, A.Y.; Lopez-Franco, C.; Arana-Daniel, N. sKAdam: An improved scalar extension of KAdam

for function optimization. Intell. Data Anal. 2020, 24, 87–104. [CrossRef]
48. Tokusumi, T. KerasFlops. 2020. Available online: https://github.com/tokusumi/keras-flops (accessed on 10 May 2022).
49. Scheidegger, F.; Istrate, R.; Mariani, G.; Benini, L.; Bekas, C.; Malossi, C. Efficient image dataset classification difficulty estimation

for predicting deep-learning accuracy. Vis. Comput. 2021, 37, 1593–1610. [CrossRef]

https://doi.org/10.48550/arXiv.1706.05791
http://dx.doi.org/10.1007/s00138-020-01148-4
http://dx.doi.org/10.1016/S1364-6613(99)01294-2
http://dx.doi.org/10.3389/fncel.2019.00066
http://dx.doi.org/10.1007/978-1-4419-1428-6_897
http://dx.doi.org/10.1161/01.STR.28.12.2518
http://dx.doi.org/10.1310/6AUM-ETYW-Q8XV-8XAC
http://dx.doi.org/10.1038/nrn2735
http://www.ncbi.nlm.nih.gov/pubmed/19888284
http://dx.doi.org/10.1016/j.biosystems.2014.04.003
http://www.ncbi.nlm.nih.gov/pubmed/24769242
http://dx.doi.org/10.1016/j.tics.2009.11.002
http://www.ncbi.nlm.nih.gov/pubmed/19945336
http://dx.doi.org/10.3389/fnhum.2013.00887
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1704.04861
http://dx.doi.org/10.1007/s11263-015-0816-y
https://www.tensorflow.org
https://www.kaggle.com/alxmamaev/flowers-recognition/version/2
https://www.kaggle.com/alxmamaev/flowers-recognition/version/2
http://dx.doi.org/10.1186/s40537-016-0043-6
https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner
http://dx.doi.org/10.3233/IDA-200010
https://github.com/tokusumi/keras-flops
http://dx.doi.org/10.1007/s00371-020-01922-5

	Introduction
	Related Work
	Neuroplasticity-Based Pruning Method
	Pruning
	Translator Block
	Retraining

	Experiments
	Pre-Trained Networks
	Dataset Selection
	Transfer Learning
	Pruning
	VGG16
	MobileNet
	MobileNetV2

	Retraining

	Experimental Results
	VGG16
	Road Damage
	Flowers
	Caltech 101

	MobileNet
	Road Damage
	Flowers
	Caltech 101

	MobileNetV2
	Road Damage
	Flowers
	Caltech 101

	Conclusions and Future Work
	References

