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Abstract: Dynamic and accurate identification of pilot intention is an important prerequisite for more
accurate identification of control behavior, automatic flight early warning, and human–aircraft shared
autonomy. Meanwhile, it is also the basic requirement of microscopic research on flight safety. In
response to these demands, the airfield traffic pattern flight simulation experiment was carried out
to obtain the pilot’s physiological data, such as electrocardiogram, respiration, and skin electricity,
under different intentions. The extended symbol aggregation approximation theory (ESAX) and
the intelligent icon method were utilized to analyze and extract the characteristics of the pilot’s
intention. Furthermore, combined with the crow search algorithm (CSA) and extreme learning
machine (ELM), a CSA-ELM pilot intention identification model was constructed and it is applied
to climb, descend, level flight, and other situations in airfield traffic pattern missions to effectively
identify whether the pilot has an intention. The rationality and validity of the identification model
were verified through experiments with interactive computer simulations. In addition, compared
with the traditional machine learning method, the accuracy of the identification method proposed in
this paper is improved by about 10%. The above shows that the research results in this paper can
provide support for improving the flight safety early-warning system and the pilot’s micro-behavior
evaluation system.

Keywords: flight safety; flight simulation; pilot’s intention; feature extraction; identification

1. Introduction

With the rapid development of global civil air-transport enterprises and the growing
popularization of general aviation, the overall air-transport accident rate has shown a
decreasing trend and stabilized gradually. However, aviation accidents continue to oc-
cur with the increase of flight sorties [1]. Therefore, controlling a pilot’s behavior is an
important means to improve aviation safety [2,3]. The pilots’ intentions determine their
behavior at the next moment [4]. The intention is the reflection of the human brain on
the objective material world (it is also a kind of thinking activity produced in the human
brain). It is the result of the pilot’s perception, judgment, and decision-making based on
external information (containing environment, aircraft, and other state information) [5,6].
If a person’s behavior is predicted, intention is often a more accurate measure [7]. The
intention is also a psychological variable closest to people’s actual behavior in the future [8].
Therefore, the pilot’s intention is accurately identified, which is of great significance for
improving the early-warning system of flight safety, realizing the intelligent control of the
aircraft cockpit, improving the control behavior of pilots, and maintaining flight safety.
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With the rapid development of artificial intelligence and computer technology, schol-
ars have been paying more and more attention to the study of a pilot’s intention. Some
scholars have studied the psychological variables that may affect pilots’ intentions, such
as workload, personality, age, emotion, etc. [9–12]. These psychological variables can
directly or indirectly affect the cognitive process, which in turn affects the generation of
pilot intentions. These studies are mainly based on subjective evaluation methods, such
as questionnaires to study the cognitive processes of pilots. Some scholars have explored
a pilot’s intention identification using different types of physiological data [13,14]. Then,
they use pattern recognition algorithms to classify abstract objects, such as physiology, into
categories that describe specific behaviors or intentions [13,14]. The internal micro mecha-
nism and the generation mechanism of a pilot’s intention have been explored respectively,
which is an effective means to improve the accuracy of a pilot’s intention identification
and flight safety. Degani A. [15,16] and Oishi M. [17,18] established a discrete pilot deci-
sion identification model to solve the problem of mode confusion between the pilot and
automation system, based on discrete flight mode information in the process of modeling
and analysis. They did not consider the continuous state of a pilot’s decision process.
Das S. [19] and Bass E. [20] only modeled a series of discrete and continuous aircraft au-
tomation modes; they did not model and analyze the pilot’s micro-cognitive process in
the modeling process. Wanyan Xiaoru et al. [21] have studied the relationship between a
pilot’s psychological load and a pilot’s cognitive ability. The achievement of this research
is based on the pilot’s electrooculogram and other data obtained by the pilots operating
simulator. Earlier studies were purely based on data-driven methods such as “cluster
anomaly detection” and “multi-core anomaly detection” to study a pilot’s intention in
pattern confusion. Moreover, these studies were modeling and analyzing pilots’ intentions
without fully considering the multidimensional information of pilots, aircraft, and the
operating environment. In response to the above problems, Fu Shan et al. [22] studied
the microscopic behavior of pilots from the aspects of physiology, psychology, and the
behavior of pilots. Cai Zhengxiang et al. [23] studied pilots’ cognitive intentions based
on physiological signals. In Cai’s research, the pilot’s physiological signals, such as heart
rate and respiration, are collected when the left engine fails during the aircraft’s climb.
Zhang Xia et al. [24] analyzed the mapping relationship between the physiological data
(including ECG, respiration, etc.) and pilot control intentions to realize the research on the
cognitive state changes of pilots. Xu Shuting et al. [25,26] established an intelligent human
pilot model to describe the nonlinear PIO prediction process and identify pilot behavior
based on the pilot’s visual perception, intelligent decision-making, and force feedback
from control receivers to address issues such as the unfavorable interaction of pilot–aircraft
systems including pilot-induced oscillations (PIO). Nandiganahalli J.S. et al. [27] proposed
a pattern confusion detection framework based on the pilot’s intention for UI (user inter-
face) verification. What is more, the automatic system control strategy is abstracted into
a continuous intention state. This provides a theoretical basis for the research of pilots’
decision-making and the control strategies of automation systems.

The essence of intention identification is the problem of pattern recognition. The
intention is mainly to use abstract objects (e.g., physiological signals) for the description of
specific microscopic behaviors. From the perspective of engineering physiology, scholars
have conducted extensive and in-depth research on the pilot’s intentions. In these studies,
data preprocessing, feature extraction, and pattern recognition methods are adopted to
identify the pilot’s intentions. They have also generated considerable research results. The
importance of intention in the study of a pilot’s micro behavior is proved by these research
results from different levels. In other words, the intention has a significant impact on
flight safety. Feature extraction is generally regarded as an important process in pattern
recognition because a fine feature space could make the identification process concise
and efficient and the accuracy of the identification results could be improved. What’s
more, due to the diversity of intentions in nonstationary systems under the interaction of
human–aircraft–environment. However, in previous studies, feature extraction is mainly
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through Shannon entropy, statistical methods such as average error, variance, time domain,
and frequency domain [17–20]. These methods ignore the time-varying evolving nature
of intentions. At the same time, these also limit the process of automatic training and the
analysis of the identification model. In addition to feature extraction, the establishment
of an identification model is also an important stage. Methods proposed by scholars for
intention identification mainly include artificial neural networks, support vector machines,
Gaussian distribution, and other methods [18–23]. These methods lay the foundation for
intention identification and have made great achievements. However, they still have certain
problems. For example, under a large number of samples, most of these methods will
have problems, such as slow training speed, uncertain model parameters, and difficulty
in optimization. In this paper, outcomes of the above-mentioned feature extraction and
identification methods are referenced and make up for their shortcomings. In this study,
the airfield traffic pattern is taken as an example. The pilot’s dynamic physiological data,
such as electrocardiogram (ECG), respiration (RESP), and electrodermal activity (EDA),
are collected by the wireless physiological acquisition system in simulated flight. Here,
the extended symbol aggregation approximation method and the intelligent icon method
are adopted to extract and analyze the complex physiological signal features. These
features provide sufficient information for further identification. Then, based on the pilot
intention characteristic variables, the crow search algorithm (CSA) is adopted to optimize
the parameters of the extreme learning machine (ELM). The pilot’s intention identification
model based on CSA-ELM is constructed. Finally, research on the accurate identification
method of pilot intention generation under different flight states is realized in this paper.
The results of this study provide a good foundation for further research on the evolution
mechanism of a pilot’s intentions. At the same time, it provides a basis for further study for
the micro-behavior assessment of pilots and the active safety warning of flights.

The rest of this paper is organized as follows. The research methods are introduced in
Section 3. The results will be analyzed in Section 4. The discussion is described in Section 5.
Section 6 is a conclusion.

2. Materials
2.1. Experimental Design

In the process of pilots’ controlling an aircraft, their brains will be occupied by the
generation, growth, transfer, and reduction of intention. Flight simulation scenarios need to
include common scenarios such as acceleration, deceleration, climb, change of course, etc.,
which can be used to monitor and identify the occurrence of a pilot’s behavior (including
throttle control, joystick control, rudder pedal, etc.) in these scenarios.

Classic airfield traffic pattern tasks are selected as flight simulation scenes that stimu-
late intention. Such scenes include the departure leg, crosswind leg, downwind leg, base
leg, and final leg (as shown in Figure 1). The entire airfield traffic pattern lasts about 7 min.
Each participant completed five airfield traffic patterns. Nanjing Lukou Airport, which is
clear and windless, is selected during the whole simulated flight.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 21 
 

 
Figure 1. Flight diagram of the airfield traffic pattern.  

2.2. Experimental Design 
For the reason of obtaining the pilot’s physiological characteristics during the simu-

lated flight, experiments were carried out on the human–aircraft–environment integrated 
information acquisition experimental platform. The experimental platform uses a 1:1 scale 
Cessna 172 simulator, with a high-fidelity virtual flight environment and a good sense of 
immersion. The pilot completed the airfield traffic pattern mission in terms of the instruc-
tion in the simulation flight process of the experimental platform. During this period, Er-
goLAB physiological signal acquisition equipment was used to collect the pilot’s physio-
logical signals. The physiological acquisition device used in this experiment is a wearable 
wireless device. It has the advantages of being noninvasive and harmless. There is no dan-
ger in this experiment. It will not cause harm to the pilot. In addition, the experimental 
platform also includes a laptop, HD cameras, etc. This platform for comprehensive hu-
man–aircraft–environment information acquisition is depicted in Figure 2. 

 
Figure 2. Comprehensive information acquisition experimental platform for human–aircraft–envi-
ronment. 

2.3. Experimental Participants 
The sample size of the experiment was 75 male pilots who had obtained a private 

personal pilot license, commercial pilot license, and instrument rating license. Their ages 
ranged from 25 to 30 and the mean value is 27. They had 250–300 h of flight experience 
and the average flight time is 275 h. 

The experimental process is strictly in accordance with the Helsinki Declaration. All 
experimental personnel received a complete explanation of the experimental procedures 
and equipment and signed a written informed consent form to participate in the experiment. 

  

Figure 1. Flight diagram of the airfield traffic pattern.



Appl. Sci. 2022, 12, 4858 4 of 20

2.2. Experimental Design

For the reason of obtaining the pilot’s physiological characteristics during the simu-
lated flight, experiments were carried out on the human–aircraft–environment integrated
information acquisition experimental platform. The experimental platform uses a 1:1
scale Cessna 172 simulator, with a high-fidelity virtual flight environment and a good
sense of immersion. The pilot completed the airfield traffic pattern mission in terms of
the instruction in the simulation flight process of the experimental platform. During this
period, ErgoLAB physiological signal acquisition equipment was used to collect the pilot’s
physiological signals. The physiological acquisition device used in this experiment is a
wearable wireless device. It has the advantages of being noninvasive and harmless. There
is no danger in this experiment. It will not cause harm to the pilot. In addition, the experi-
mental platform also includes a laptop, HD cameras, etc. This platform for comprehensive
human–aircraft–environment information acquisition is depicted in Figure 2.
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Figure 2. Comprehensive information acquisition experimental platform for human–
aircraft–environment.

2.3. Experimental Participants

The sample size of the experiment was 75 male pilots who had obtained a private
personal pilot license, commercial pilot license, and instrument rating license. Their ages
ranged from 25 to 30 and the mean value is 27. They had 250–300 h of flight experience and
the average flight time is 275 h.

The experimental process is strictly in accordance with the Helsinki Declaration. All
experimental personnel received a complete explanation of the experimental procedures
and equipment and signed a written informed consent form to participate in the experiment.

2.4. Experimental Data

In this paper, the Cessna 172 standard operating procedure (SOP) was referred to
when organizing pilots to conduct the simulation flight for the airfield traffic patterns. The
simulation experiment was developed on the basis of the airfield traffic pattern procedure.
Steps not closely related to flight operations are omitted and a simplified version is formed,
as depicted in Table 1.

According to the simulated flight scene, the pilots’ physiological data (including
ECG, skin resistance, breathing frequency, etc.) that characterize their flight intentions
during the airfield traffic pattern were measured. The sampling rates of electrocardiogram,
respiration, and electrodermal activity are 512 Hz, 64 Hz, and 64 Hz, respectively. Because
this experiment lasts a long time, it was divided into two periods to avoid the effect caused
by the difference in experiment time, with the similar physiological cycle of the human body,
namely, 9:00–12:00 and 14:00–17:00. The whole process was supposed to remain quiet.



Appl. Sci. 2022, 12, 4858 5 of 20

Table 1. Airfield traffic pattern control program.

Step NO. Pilot’s Control Process

1 Take-off run.

2 The speed is 55 knots and the front wheels are lifted.

3 Climbing airspeed (70~80 KIAS).

4 The height is 300 ft, the throttle is 2000~2100 RPM.

5 Crosswind turn at 500 ft height.

6 Downwind turn at 900 ft height.

7
The altitude is changed to 1000 ft and the throttle is 1800 RPM
on the downwind leg to enter the cruise. The cruising airspeed

is 90 KIAS.

8
When the aircraft is tangent to the head of the runway, the

throttle is closed to 1500 RPM; it descends to 800 ft and prepares
for the third turn with an airspeed of 80 KIAS.

9 The head of the runway is 45~50 degrees from the right-wing of
the aircraft, enter the third turn.

10
The aircraft recovered from the third turn, throttled back to
1300~1400 RPM, extended the flaps at 10 degrees, and the

airspeed is 70 KIAS.

11 Enter 500~550 ft in the fourth turn and recover from 400~350 ft
in the fourth turn.

12 The throttle is 1200~1400 RPM, the flaps at 20 degrees.

13 Approach airspeed (65 KIAS).

14
After closing the throttle, the aircraft maintains a certain

attitude, angle of pitch, and speed to taxi a certain distance, and
then flattens (push the nose down and the aircraft flattens).

3. Methods
3.1. Data Processing

In this paper, high-pass and low-pass filters are adopted to filter the ECG, EDA, and
RESP signals, respectively [23], as shown in Table 2. The result of each physiological signal
after filtering is displayed in Figure 3.

Table 2. The definitions of parameters for data preprocessing.

Type of Signal Method Notes

EEG
0.5 Hz high-pass filter Frequencies less than 0.5 Hz are filtered.
100 Hz low-pass filter

magnetic induction Frequencies greater than 100 Hz are filtered.

EDA 0.3 Hz high-pass filter Frequencies less than 0.3 Hz are filtered.

RESP 100 Hz low-pass filter Frequencies greater than 100 Hz are filtered
Notes: Low-frequency signal is retained and high-frequency signal is cut off in low-pass filter [28]. High-frequency
signal is retained and low-frequency signal is cut off in high-pass filter.

3.2. Extension of Symbolic Aggregate Approximation

In this paper, the intention of pilots in the cognitive process is analyzed and deduced
based on physiological characteristics. Among them, how to accurately and efficiently
obtain the characteristic variables in physiological signals is the key to realize the pilot’s
intention identification. The existing physiological signal feature extraction methods mainly
use statistical methods to obtain time-based and spectrum-based features [29]. However,
characteristics of high dimensionality and plenty of physiological signals are ignored, which
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will affect the performance of the latter identification model and reduce the identification
accuracy of the model [30]. Therefore, the extension of symbolic aggregate approximation
(E-SAX) method is used in this paper to achieve effective dimensionality reduction of
physiological signals and reasonable interpretation of data. E-SAX is an improved feature
extraction method on the basis of the SAX algorithm proposed by Lin J. et al. [31]. This
method could not only represent continuous time-series values with discrete and abstract
symbols, while considering extreme and outlier values but, at the same time, it avoids
shortcomings of the original SAX method. These shortcomings are mainly due to the mean
approximation that misses some important values [32]. The realization process could be
divided into the following steps:

(1) The numerical sequence is standardized as shown in Equation (1):

B = (A− µ)/σ (1)

where A is raw data, B is normalized values, and µ and σ are the mean and standard
deviation of the original data, respectively.

(2) The normalized sequence is divided into equal-length subsequences by piecewise
aggregate approximation (PAA). Then, the mean value of each subsequence is calculated.
Since the normalized sequence follows Gaussian distribution, the corresponding proba-
bility distribution is divided into equal areas. For the time series B = b1, b2, b3, · · · , bn, n
represents its length and the number of segments is ω, then the segmented time series
could be expressed as B′ = b1

′, b2
′, b3

′, · · · , bω
′ in terms of Equation (2).

bi
′ =

ω

n

ni
ω

∑
j= n(i−1)

ω +1

bj (2)

In view of the statistical table in reference [32,33], the region of sequence B′ is seg-
mented and judged. After that, different regions are represented by symbols so that the
values are serialized into symbol sequences, respectively. The breakpoints β that divide the
distribution space into α equiprobable regions are determined by a lookup table that could
be seen in Table 3.

Table 3. The value table of break point.

α

β
3 4 5

β1 −0.43 −0.67 −0.84
β2 0.43 0 −0.25
β3 0.67 0.25
β4 0.84

Note: The breakpoint from 3 to 5 is given in Table 3 [31].

As Table 3 illustrates, the values of βi (i = 1, 2, 3, 4) are defined by means of a statistical
table that divides the Gaussian curve into equal areas. Each area is delimited by the interval
[βi−1, βi].

(3) Each subsequence segment is encoded with a symbol. Finally, the region corre-
sponding to the mean of each subsequence is found, and the character corresponding to
the region is used to replace the subsequence. After PAA, the equal size segments and their
average values are obtained, and then the maximum and minimum values are defined
in each segment. This means the time series is represented by the mean value and two
additional values (the maximum and the minimum in the subsegment). These segments
are described in Figure 4.
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For any given segment B′i in a time series, Sk and Ek are the start and end position on
the time segment B′i , respectively. The middle position pmid of the time segment B′i could
be calculated by Equation (3):

Pmid =
Sk + Ek

2
(3)

S′1, S′2, and S′3 are assumed to be the first, second, and third symbols in the kth (k ≤ ω)
subsection. The pmax, pmin, and pmid denote the maximum, minimum, and average value
in the kth subsection on the x-axis, respectively. At the same time, S′max, S′min, and S′mid
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are supposed to be the maximum, minimum, and average characters in the k segment,
respectively. The sequence of strings in the kth segment can be calculated by Equation (4):

(s′1, s′2, s′3) =



(s′max, s′mid, s′min) i f pmax < pmid < pmin
(s′min, s′mid, s′max) i f pmin < pmid < pmax
(s′min, s′max, s′mid) i f pmin < pmax < pmid
(s′max, s′min, s′mid) i f pmax < pmin < pmid
(s′mid, s′max, s′min) i f pmid < pmax < pmin
(s′mid, s′min, s′max) otherwise

(4)

Time series B = b1, b2, b3, · · · , bn is represented by the symbol sequences
B′ = b′1, b′2, b′3, · · · , b′ω in the extended symbolic aggregation approximation method. Among
them, b′1 = (s′11 , s′12 , s′13 ), B′ = (s′11 , s′12 , s′13 , s′21 , s′22 , s′23 , s′31 , s′32 , s′33 , · · · , s′j1 , s′j2 , s′j3 , s′k1 , s′k2 , s′k3 ), and

(s′j1 , s′j2 , s′j3 ) are the ordered sets of the segment strings in Equation (4).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 21 
 

 
Figure 4. Diagram of the positioning process. 

For any given segment 
'
iB  in a time series, kS  and kE  are the start and end posi-

tion on the time segment 
'
iB , respectively. The middle position midp  of the time segment 

'
iB  could be calculated by Equation (3): 

mid 2
k kS E

P


   (3)

'
1S , '

2S , and '
3S  are assumed to be the first, second, and third symbols in the thk  (

k  ) subsection. The maxp , minp , and midp  denote the maximum, minimum, and average 
value in the thk  subsection on the x-axis, respectively. At the same time, '

maxS , '
minS , and 

'
midS  are supposed to be the maximum, minimum, and average characters in the k  seg-

ment, respectively. The sequence of strings in the thk  segment can be calculated by 
Equation (4): 

' ' '
max mid min max mid min

' ' '
min mid max min mid max

' ' '
min max mid min max mid' ' '

1 2 3 ' ' '
max min mid max min mid

' ' '
mid max min mid max min

'
mid min

( , , )

( , , )

( , , )
( , , )

( , , )

( , , )

( ,

s s s if p p p

s s s if p p p

s s s if p p p
s s s

s s s if p p p

s s s if p p p

s s

 

 

 


 

 
' '

max, )s otherwise












 (4)

Time series 1 2 3, , , , nB b b b b   is represented by the symbol sequences 
' ' ' ' '

1 2 3, , , ,B b b b b   in the extended symbolic aggregation approximation method. Among 
them, ' '1 '1 '1

1 1 2 3( , , )b s s s , ' '1 '1 '1 '2 '2 '2 '3 '3 '3 ' ' ' ' ' '
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3( , , , , , , , , , , , , , , , )j j j k k kB s s s s s s s s s s s s s s s  , and 

' ' '
1 2 3( , , )j j js s s  are the ordered sets of the segment strings in Equation (4). 

3.3. Extreme Learning Machine Optimized by the Crow Search Algorithm 
(1). Extreme learning machine 

The extreme learning machine (ELM) is a single hidden-layer forward neural net-
work (SLFM) learning method proposed by Huang et al. [34]. In ELM, the connection 
weights between the input and hidden layer and the threshold value of the hidden layer 
are generated randomly. It is not necessary to adjust during the training, which could 
avoid the cumbersome adjustment of neural network parameters in the iterative process. 
Therefore, the ELM method has a fast learning speed and good generalization perfor-
mance. Compared with traditional learning algorithms based on gradient descent theory, 

Figure 4. Diagram of the positioning process.

3.3. Extreme Learning Machine Optimized by the Crow Search Algorithm

(1) Extreme learning machine

The extreme learning machine (ELM) is a single hidden-layer forward neural network
(SLFM) learning method proposed by Huang et al. [34]. In ELM, the connection weights
between the input and hidden layer and the threshold value of the hidden layer are
generated randomly. It is not necessary to adjust during the training, which could avoid the
cumbersome adjustment of neural network parameters in the iterative process. Therefore,
the ELM method has a fast learning speed and good generalization performance. Compared
with traditional learning algorithms based on gradient descent theory, such as the BP
algorithm, its learning speed is faster and it can obtain better generalization performance.
Compared with support vector machines, the model of ELM is simpler.

In this paper, it is supposed that there are N arbitrary samples (Xi, ti). Among them,
the physiological characteristic parameter is the input variable, Xi = (xi1, xi2 · · · , xin)

T ∈ Rn.
Intention is expressed as an output variable, ti = (ti1, ti2 · · · , tin)

T ∈ Rn. n is the dimension
of the input layer and m is the dimension of the output layer. For a single hidden-layer
feedforward neural network with L hidden layer nodes, the output can be expressed by
Equation (5):

L

∑
j=1

β jg(Xi) =
L

∑
j=1

β jg(Wj·Xi + qj) = oi (5)

where i = 1, 2, · · · , N, Wj = (ωj1, ωj2, · · · , ωjn)
T represents the input weight,

β = (β j1, β j2, · · · , β jm)
T is the output weight, qj is the bias of the jth hidden-layer ele-

ments, Wj·Xi expresses the inner product of Wj and Xi, and g(x) is the activation function.
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The learning goal of SLFM is to approximate N samples under the minimum error,
which can be defined by Equation (6):

N

∑
i=1

β j‖oi − ti‖ = 0, i = 1, 2, · · · , N (6)

That is, there are Wj, β j, qj such that:

L

∑
j=1

β jg(Wj·Xi + qj) = ti, i = 1, 2, · · · , N (7)

It can be simplified as Hβ = T, where H, β, and T are the hidden-layer node output
matrix, the output weight, and the desired output, respectively.

H(W1, W2, · · · , WL, q1, q2, · · · qL, X1, X2, · · · , XL) =
g(W1·X1 + b1) g(W2·X1 + b2) · · · g(WL·X1 + qL)
g(W1·X2 + b1) g(W2·X2 + b2) · · · g(WL·X2 + qL)

...
...

. . .
...

g(W1·XN + b1) g(W2·XN + b2) · · · g(WL·XN + qL)


N×L

(8)

where β =


βT

1
βT

2
...

βT
L


L×m

, T =


TT

1
TT

2
...

TT
L


N×m

.

To train a single hidden-layer neural network, a set of parameters Ŵj, β̂ j and q̂j are
obtained such that:

‖H(Ŵj, q̂j)β̂ j − T‖ = min
W,q,β
‖H(Wj, qj)β j − T‖, j = 1, 2, · · · , L (9)

The output matrix of hidden layer H will be obtained when the single hidden-layer
feedforward neural network input weight Wi and hidden-layer bias qi are determined
randomly. The solution process of SLFM is transformed into a linear system Hβ = T. The
output weight β could be determined by Equation (10):

β̂ = H + T (10)

In the extreme learning machine, the weights from the input layer to the hidden layer
and the threshold of the hidden-layer nodes are random. ELM saves the training time of
the model but, on the other hand, it also generates some non-optimal and unnecessary
input weights and hidden biases, which makes the adaptability and stability of the network
worse, and reduces the generalization ability of the network. To solve this problem, this
paper uses the crow search algorithm based on a powerful search ability to optimize the
input layer weight and hidden-layer bias of ELM, so as to improve the accuracy and
adaptability of its identification.

(2) Crow search algorithm

The crow search algorithm is based on the intelligent behavior of crows, a metaheuristic
algorithm [35] proposed by Alireza Askarzadeh [36]. From an optimization perspective,
the crow is a searcher, whose flying environment is its search space. Each location in the
environment corresponds to a feasible solution for the optimization algorithm, and the
position of the food source corresponds to the size of the objective function value (fitness
value) of a certain location. The best food source in the environment is the global optimal
solution [37].
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Suppose that in the d dimensional environment and iter time, N crows fly through
space, trying to find the best food source location. The location of crow i in the generation
could be expressed by Equation (11) as:

xi,iter = [xi,iter
1 , xi,iter

2 , · · · , xi,iter
d ] (11)

where i ∈ [1, N], iter ∈ [1, itermax], and itermax represent the maximum number of iterations.
Each of the crows (N) has a memory of the best food source location (m) in the search

space (d). In the iter iteration, the best location that i could find so far is expressed by
Equation (12) as:

Mi,iter = [mi,iter
1 , mi,iter

2 , · · · , mi,iter
d ] (12)

Under the circumstance that the reference [29], in the iter iteration, j wants to visit
where it stores food, i decided to follow j to the hiding place of j and steal its food. In the
process of tracking, there are two situations:

Case 1: j did not find i was following it and, as a result, i arrived at the location where
j was hiding the food to steal food. i arrives at j’s home where food is stored to steal. i
replaces its current position. The formula is shown in Equation (13):

Xi,iter+1 = Xi,iter + ri × f li.iter × (Mj,iter − Xi,iter) (13)

where ri obeys the uniform distribution between 0 and 1, f li,iter represents the flying
distance of i in the iter iteration.

Case 2: j found i was tracing it, so j flew to other places to confuse i to avoid food
theft.

Case 1 and case 2 could be expressed by Equation (14):

xi,iter+1 =

{
Xi,iter + ri × f li,iter × (Mj,iter − Xi,iter) , rj ≥ APj,iter

a random position , otherwise
(14)

where rj obeys the uniform distribution between 0 and 1, and APj,iter means the awareness
probability of j at the iter moment.

In the CSA, when awareness probability (AP) is small, it is not easy for the crow to
find that it is being tracked. CSA tends to search locally to find the current best solution in
a local area. Correspondingly, when AP is large, CSA tends to search globally to find the
current best solution in a local area.

(3) ESAX-CAS-ELM model

The number of hidden layers of the ELM is pre-assigned, hidden-layer parameters
are selected randomly, and the parameters remain unchanged during the training process.
The setting of these parameters directly affects the classification results of ELM. Only
when proper parameters are set can the model achieve better performance. On the basis
of the symbolization and visualization of the original data by ESAX and the intelligent
icon method, the global optimization capability of the crow search is used to obtain the
optimal ELM input layer weight and hidden-layer threshold. The output weight could
be determined by Equation (10) to make up for the defect that ELM does not have high
diagnostic accuracy because of poor parameter selection. The flow diagram of the ESAX-
CAS-ELM model is indicated in Figure 5.
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The pilot’s intention identification model is constructed by the ESAX-CAS-ELM
method through physiological signals such as ECG, EDA, and RESP. The construction
process of the model is as follows:

Step 1: Data standardization. The physiological signals obtained in Section 2.4 are
filtered and otherwise pre-processed and then the numerical sequence of physiological sig-
nals is standardized by Equation (1). The original time series is converted to a standardized
series, B = b1, b2, b3, · · · , bn.

Step 2: Data dimensionality reduction. The PAA method is used to reduce the dimen-
sion of time series B with length n, which is expressed as B = b′1, b′2, b′3, · · · , b′ω , where ω is
the number of segments, and the ith element in B′ is calculated by Equation (2).

Step 3: Data discretization. After the process of data standardization and dimension-
ality reduction, for any given segment B′i in the time series, the intermediate value of the
segment is calculated from the maximum and minimum values on the time axis through
Equation (3). Thereby, the characters corresponding to the maximum, minimum, and
average values of the kth segment are obtained. Furthermore, the symbol set is determined
by Equation (4). The symbolic representation of the ESAX datasets such as ECG, EDA, and
RESP is realized.

Step 4: The dataset is divided. After the dataset is symbolized by ESAX, the physio-
logical signals are further represented in a more compact form through the intelligent icon
method. This will make the time-series data more visible. In addition, the visualized data
are divided into two parts: training and test sets. Among them, the training set is utilized
to train the ELM model, and the test set is used to verify the identification performance of
the optimized ELM model.
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Step 5: CSA parameter initialization. The parameters of dataset initialization in light
of the training set include the population size of crows (N), dimensions of search space (d),
flight distance ( f l), maximum iteration number (itermax), and awareness probability (AP).

Step 6: The location of the crow and its memory of hiding food are initialized.
The initial positions of N crows are randomly generated in a d-dimensional space, xi

j
(i = 1, 2, · · · , N, j = 1, 2, · · · , d). Each crow represents a feasible solution to the problem
and d is the number of decision variables. Because, in the initial iteration process, crows
have no experience in hiding food, it is assumed that they hide food in their initial positions.
In other words, the initial memory of each crow is the initial position, mi

j (i = 1, 2, · · · , N,
j = 1, 2, · · · , d).

Step 7: The ELM network parameters are optimized by the crow search algorithm.
The input weight Wj of ELM and the bias qj of the hidden-layer unit are taken as the
crow’s location, denoted as (Wj, qj). Moreover, the root mean-square error of the extreme
learning machine training set is taken as a fitness function to calculate the fitness value of
each location.

Step 8: Generate a new position. If the fitness value does not reach the global optimal
value, the CSA algorithm is used to generate new positions. The process of generating a
new position is as follows: crow i will randomly select a crow in the population to track
(assuming that the selected one is j). If crow j cannot find the tracked crow, then crow i will
steal the food of j. The position update of crow i is completed by Equation (14).

Step 9: The feasibility of the new location is checked. If the new position of crow i is
feasible, the position is updated; otherwise, it is not updated. In other words, if the new
position of crow i is in the search space, it will fly to the new position.

Step 10: The fitness of the location is calculated. The fitness of the new position with
the objective function is calculated.

Step 11: The memory of the crow is updated. If the usage value of the new position is
better than the fitness of the original memory, the memory will be updated according to
the new position. Otherwise, the memory will not be updated. Crow memory is updated
by Equation (15):

mi,iter+1 =

{
Xi,iter , f (Xi,iter) is better than f (mi,iter)
mi,iter , otherwise

(15)

where f (·) represents the fitness value.
Step 7 is iterated until the termination condition is reached. In the end, the optimal

memory of the crow is output, so that the input weight Wj of ELM and the bias qj of the
hidden-layer unit are optimized.

Step 12: The accuracy of model identification is calculated. After the above steps,
the optimized ELM model is obtained. The test set is adopted to test the identification
performance of the optimized ELM and, finally, to output the identification accuracy of
the model.

4. Results

In this section, in the light of the physiological data obtained during the flight simula-
tion experiment of the pilot in the second section, the ESAX-CAS-ELM method described in
the second section is used to establish the identification model to realize the classification of
the pilot’s intention (i.e., whether the intention is generated). Moreover, the characteristic
patterns in different states are further analyzed. In the flight simulation experiment, a
total of 375 airfield traffic-pattern samples were collected; 80% of the total samples were
randomly selected as a training set, and the remaining 20% as a test set. Each sample
includes three physiological signals, namely ECG, RESP, and EDA. These physiological
signals are divided into time windows according to the pilot’s simulation of airfield traffic
patterns. The width of each window corresponds to the time required for each side of
the airfield traffic pattern. Whether the pilot generates an intention during the control of



Appl. Sci. 2022, 12, 4858 13 of 20

the aircraft is numbered in this article, where “0” means no intention is generated and
“1” represents intention generation. Thus, the physiological signals in the time window
were labeled.

4.1. Feature Extraction of Intention

To better realize the feature extraction of intentions based on ESAX, the time-series
change characteristics of the physiological signals are considered. Here, the local structure
analysis method is utilized to reveal the continuous change characteristics between adjacent
data points, and then used to identify whether the intention is generated. That is, the time
window of length slides on the symbol sequence to obtain the symbol string, as exhibited
in Figure 6.
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4.2. Classification of Intention Generation

Under the circumstance that the above analysis results in physiological characteristics
such as ECG, EDA, and RESP by ESAX, here the intelligent icon method is used to represent
these physiological characteristics. In this section, these physiological characteristics will
be used to identify whether the pilot has intentions during the flight simulation. Moreover,
the typical characteristic pattern in the intention generation process is tried to identify. CSA
and ELM are coupled together in paper. The input weight and bias of ELM are optimized
by CSA to identify whether the pilot has an intention. The specific steps are as follows.

(1) Determination of network structure
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According to the physiological characteristics data obtained above, the number of
neurons in the input layer is determined to be three. The simulation value corresponding
to whether each sample generates intention is used for network output. Namely, there are
two neurons in the output layer. An identification model including three inputs and two
outputs is constructed.

Sigmoid is the best activation function and is a key to build the most powerful ELM.
In this paper, the Sigmoid function is used as the excitation function of the ELM model, as
shown in Equation (16) [38]:

g(x) =
1

1− e−x (16)

After the activation function is determined, the performance of ELM is only affected
by the number of hidden-layer neurons. Here, K-fold cross validation (K = 10) is adopted
to determine the best number of neurons in the competitive layer through a large number
of experiments. The effect of the number of hidden-layer neurons on ELM performance
is illustrated in Figure 7. It can be seen from the curves of RMSE and R2 in Figure 7 that
the fitting effect of ELM on the training sample set is improved with the increase of the
number of hidden-layer neurons. When the number of hidden-layer neurons is more than
100, ELM could approximate all training samples with no error. However, according to the
curves of RMSE and R2, when the number of hidden-layer neurons increases, R2 presents
the trend of first increasing and then decreasing, while RMSE first decreased and then
increased. Thus, it suggests that there should not be too many or too few neurons in the
hidden layer. Too many hidden-layer neurons will lead to overfitting, while too few may
lead to underfitting, which will reduce the generalization ability of ELM. Therefore, the
appropriate number of hidden-layer neurons should be selected to ensure that the network
has a good generalization ability. In this paper, in the light of Figure 7, the number of
neurons in the hidden layer is 53.
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(2) Determination of parameters

In the CSA-ELM model, the determination of the CSA parameter is similar to ELM [39].
In the ELM model, the Sigmoid function is selected as the activation function and the
number of hidden-layer neurons is 53. In CSA, the spatial dimension where crows search
is d = 53 × 3 + 53 (i.e., 53 is the number of neurons in the hidden layer and 3 is the
number of neurons in the input layer). RMSE/R2 is adopted as the fitness function.
In this way, CSA is used to optimize the weight of the input layer and the bias of the
hidden-layer unit in the constructed ELM model of 3-53-2. Following the reference [35],
the parameters in the CSA algorithm are determined, including the total number of crows
N = 50, the maximum number of iterations itermax = 100, flight length f l = 2, and
awareness probability AP = 0.1. The fitness values of CSA in different AP are given in
Figure 8. With the increase of the AP value, CSA could neither achieve the global optimal
solution nor obtain the local optimal value. Therefore, the value of AP is 0.1.

(3) CAS-ELM performance evaluation

Statistical parameters (such as accuracy rate, precision rate, recall rate, etc.) were used
to evaluate the performance of the CSA-ELM model. A brief explanation of these statistical
parameters is as follows: the accuracy rate is the probability reflecting the classification
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accuracy of a model. The precision rate is used to reflect the degree of accuracy in model
classification; that is, how many of the samples classified as positive are real positive
samples. The recall rate is utilized to reflect the sensitivity of the model; namely, how
many correct samples are classified as correct. The precision rate and recall rate are used to
deal with positive and negative events, respectively. The accuracy rate is regarded as the
stability index of the classifier. The performance evaluation index and calculation formulas
are illustrated in Table 4.
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Table 4. Performance evaluation index and calculation formulas.

Performance Metrics Formula

Precision rate TP
TP+FP

Recall rate TP
TP+FN

Accuracy rate TP+TN
TP+FP+FN+TN

Note: TP, FN, FP, and TN are the values in the confusion matrix that reflect the model judgment in the classification
problem. Among them, TP: true positive, means that the real label is “+”, and the value of the classification label
is 1. FN: false negative, means that the real label is “+”, and the value of the classification label is 0. FP: false
positive, means that the real label is “-”, and the value of the classification label is 1. TN: true negative, means that
the real label is “-”, and the value of the classification label is 1.
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Every time CSA choses the input weight and bias of the hidden-layer unit in the ELM
model, it produces inconsistent results. It is measured based on the physiological data
during the flight simulation and the results of each performance index are revealed in
Table 5.

Table 5. Performance metrics of the CSA-ELM model.

Performance Metrics Training Set Testing Set

Precision rate 0.8256 0.8226
Recall rate 0.8341 0.8422

Accuracy rate 0.8673 0.8452

As shown in Table 5, the accuracy rate, precision rate, and recall rate of the CSA-
ELM model are all over 80%. This result indicates that the evaluation accuracy and
generalization ability of the CSA-ELM model are very high, and it could be used for pilot
intention identification.

5. Discussion

The flight data and physiological indexes in the simulation experiment were sorted
out and analyzed. Here, the time-varying characteristics of intention and human memory
characteristics are comprehensively considered, and a change-of-intention curve (measured
value) was drawn. The characteristic data of the experimental samples are input into the
pilot intention identification model, and the intention identification simulation experiment
is carried out. According to the real-time identification results of the model, the change
of the pilot’s intention curve (simulated value) is drawn and the comparison between
the simulated result and the measured value is obtained. The verification results of a
simulation experiment are revealed in Figure 9. It can be seen from the results of the
simulation experiments that the identification results of the model proposed in this paper
have a high degree of fit with the pilot’s measured values, and the accuracy of identification
is about 90%.
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To further verify and evaluate the stability and reliability of the CSA-ELM model,
the traditional BP, ELM, and support-vector machine models were used to process the
physiological data during the simulated flights of 32 pilots. The identification results of
these methods are compared with the target intention identified by CSA-ELM, and the
intention identification accuracy rate of each method is described in Figure 10.

Figure 10 is a comparison diagram of the accuracy of the four methods for pilot
intention identification. The identification accuracy of the CSA-ELM model is 87.2%, which
is 18.5%, 8.1%, and 17.7% higher than BP, ELM, and SVM, respectively. The results show
that CSA-ELM has higher accuracy and better stability for pilot intention identification.
Moreover, it can better process multiparameter time-series data.

Figure 11 shows the percentage of the same number of identification results when four
methods are used to identify the same pilot’s intentions. Figure 11 shows the percentage of
the same number of identification results when four methods are used to identify the same
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pilot’s intention. It can be seen from Figure 11 that the same degree of the four methods is
86.7% in identifying whether the pilot’s intention is generated. It can be proved that the
proposed intention identification model has high reliability.
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In this study, based on the physiological indexes such as ECG, RESP, and EDA obtained
by simulating airfield traffic patterns, the results show that physiological indexes such as
ECG, RESP, and EDA can be used for intention identification. This is consistent with the
results of other relevant pilot micro-cognition studies [22–24].

Compared with previous studies [15–27], the main advantages of this study are
reflected in the following aspects. (1) In this study, a large number of airfield traffic-pattern
simulation experiments were carried out, and the amount of experimental data was larger
and more reliable. (2) The ESAX feature extraction method is utilized in this paper; it
can obtain more comprehensive feature variables from experimental data. The extracted
characteristic variables are used to identify the pilot’s intentions. The results of this research
enrich the research of the characteristic indicators of micro-cognitive behaviors such as
pilot intention. (3) The established CSA-ELM identification model based on characteristic
ESAX variables has a higher accuracy. The accuracy of intention recognition is as high as
87.2%, which is 18.5%, 8.1%, and 17.7% higher than BP, ELM, and SVM, respectively.

Comprehensive simulation experiment verification results show that the pilot intention
identification model established in this paper is reasonable, stable, and effective. However,
in view of a preliminary study of pilot intention, there are still many areas that need to be
strengthened in this study. The follow-up research work is as follows:
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(1) The pilot’s intention follows the evolutionary laws of generation, transfer, and
reduction. Therefore, as a preliminary study of pilot intention identification, this paper
is only a basic identification of whether the pilot generates an intention to change the
operating attitude of the aircraft. Here, the intention to affect the flight attitude needs
to be further determined. Thus, in the follow-up study on pilot intentions, a detailed
division of pilot intentions is needed. Based on the determined pilot intention, the law of
transfer between different intentions and even the attenuation law will be studied so as
to identify the pilot’s intention more comprehensively, specifically, and accurately in the
follow-up study.

(2) To improve the efficiency of intention identification, this paper only considers the
process of generating the intention of the pilot when performing the airfield traffic pattern.
The impact of other complex flight environments on the pilot such as crosswind, engine
failure, landing gear failure, and other more complex situations during flight missions
should be analyzed in future research. The model used in flight simulation is an abstract
expression of the actual system, which has a certain subjectivity. Therefore, in future
research, we need to pay more attention to the objectivity of the problem and consider the
comprehensive impact of multiple situation effects on establishing a model. In addition,
we also need to further improve the consistency between the model simulation results and
the actual situation.

(3) In the process of establishing the identification model, the experimental data used
in this paper have a certain deviation from the actual data because of objective factors
such as time, experience of experimenters, and accuracy of equipment, which leads to
some errors in the pilot intention identification results. Furthermore, it is still necessary to
improve the experimental methods and expand the experimental sample size to make the
intention identification results more accurate in future research.

6. Conclusions

Realizing accurate identification of pilot intention based on physiological signals is
an important prerequisite for achieving the harmonious interaction between pilot, aircraft,
and flight environment under the intelligent autopilot conditions. At the same time, it is
not only the basic requirement for the development of advanced autopilot systems and
intelligent cockpits, but an important part of the microscopic research on flight safety.
Pilot intention plays an important role in behavior decision-making. Therefore, it is very
important to introduce the evolutionary mechanism of intention into the autopilot systems.
In this paper, based on the analysis of a large amount of experimental data, the ESAX
method and intelligent icon theory are used to extract the combination of physiological
features. Then, the crow search algorithm and extreme learning machine are combined to
establish a contactless online identification model of pilot intention. Hence, the “intention
generation” in the dynamic evolution mechanism of the pilot’s intention has been accurately
identified online. In the theory, the research results of this paper provide new ideas
for further intention identification. This study enriches the pilot intention parameter
set and lays a foundation for more scholars to carry out real-time online pilot intention
identification research. In application, it provides a theoretical basis for the development of
“people-oriented” safety monitoring and early-warning systems. At the same time, it lays a
theoretical fundamental for the study of interaction between intention and micro-features
and the intelligentization of aircraft cockpits. Moreover, it provides a basis for further
research on human–aircraft–environment intelligent interaction. It is of great practical
significance to research the future active safety warnings for flight, pilot micro-behavior
assessment, and flight safety.
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