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Featured Application: The work shows the results of the application of a vis/NIR prototype used to
measure qualitative parameters of Chardonnay grapes by building predictive regression models.

Abstract: In this paper, a cost-effective visible/near infrared optical prototype was tested for grape
maturity monitoring. The device was used to quantify the qualitative parameters of Chardonnay
grapes, based on the combination of spectroscopic data and the creation of predictive models. The
optical acquisitions were performed directly in the field through the use of 12 wavelengths in the
vis/NIR range, i.e., 450, 500, 550, 570, 600, 610, 650, 680, 730, 760, 810 and 860 nanometers. The
prediction of the qualitative parameters was carried out through a multivariate model, partial least
square (PLS) regression technique and built knowing the real values of the parameters, i.e., total
soluble solids (TSS), titratable acidity (TA) and pH measured through the reference laboratory
analyses. Sampling included two harvest years. The most efficient model was the one for TSS
evaluation that gave a R2 = 0.87 (independent test set validation). The results demonstrated that the
optical device is able to provide useful information about the ripening parameters of Chardonnay
grapes directly in the field in order to predict its correct maturation stage and, therefore, support
operators in rapid and objective decision making. Overall, the use of the prototype promotes a
sustainable approach and viticulture 4.0.

Keywords: viticulture 4.0; chemometrics; portable; ripeness; field measurement; vis/NIR wavelengths

1. Introduction

Food products, particularly those with a high added value, are frequently subjected to
stringent quality standards, which are critical for attesting to certain specific characteristics,
such as geographical origin, manufacturing method, and/or producer know-how. Analyt-
ical platforms must be updated and improved on a regular basis as fraudulent methods
become more sophisticated, as well as the complexity and diversity of food composition [1].

In this context, non-destructive techniques, such as spectroscopic and imaging tech-
niques, are inserted effectively, responding to the problems of the food control field.
Since these are analytical techniques that offer numerous advantages, including the non-
destruction of samples, the rapidity to obtain results and the possibility of checks during
the production processes, they have been studied and exploited for a long time in the
agro-food sector [2]. The most commonly widespread non-destructive techniques in the
food industry are indeed vis/NIR spectroscopy, NIR spectroscopy (NIRs) and image and
multi/hyperspectral analysis [3].

Appl. Sci. 2022, 12, 4853. https://doi.org/10.3390/app12104853 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12104853
https://doi.org/10.3390/app12104853
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8326-4826
https://orcid.org/0000-0002-9837-5497
https://orcid.org/0000-0002-5137-8877
https://orcid.org/0000-0001-7141-4938
https://orcid.org/0000-0003-0021-3981
https://orcid.org/0000-0003-3058-082X
https://doi.org/10.3390/app12104853
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12104853?type=check_update&version=1


Appl. Sci. 2022, 12, 4853 2 of 11

Vis/NIR spectroscopy has been used successfully in the non-destructive evaluation of
fruit and vegetable quality over the past few decades [4] and, in particular, in the grape
and wine industry, e.g., to determine the optimum harvest time or to evaluate the quality
parameters in works by Kemps et al. [5], Guidetti et al. [6], González-Caballero et al. [7],
Giovenzana et al. [8], dos Santos Costa et al. [9], Power et al. [10] and Vallone et al. [11], just
to name a few.

The possibility of monitoring the ripening stage of the grapes directly in the field has
now become of fundamental importance both to guarantee a raw material of the highest
quality and to support winemakers in their choices.

Another crucial aspect is covered by sustainability. The chemical analyses normally
carried out in the laboratory to evaluate the qualitative parameters of grapes require
chemical reagents and also a lot of time and specialized personnel; the optical analyses
in this case represent a sustainable alternative [12]. Nowadays, commercially available
spectrophotometers are mostly expensive benchtop instruments that do not offer the
possibility of being used outside the laboratories. The existing portable instruments offer
the possibility of being used directly in the field, but also have a high cost and often a
configuration that is only useful to acquire spectra and not to obtain immediate results,
in terms of parameter prediction. For these reasons, the research is concentrating on
maintaining the high performance of this type of optical analysis, while using simplified,
portable and easy to use tools [13].

Some papers have been published on the use of portable spectrometers on vegetal
matrices. Nagpala et al. [14] used a portable vis/NIR device based on the creation of an
index, which was based on two wavelength peaks (index of absorbance difference, IAD) to
follow the ripening evolution of cherries; Ribera-Fonseca et al. [15] used the same device on
grape berries, demonstrating that the use of IAD may be useful for monitoring technological
ripeness and anthocyanin concentration. Yang et al. [16] used a portable vis/NIR device
implemented with an optical fiber to predict the sugar content (TSS) of kiwi fruits and
Fan et al. [17] used a portable vis/NIR device on apples to predict the content in TSS.

Despite attempts at simplification, these non-destructive and rapid techniques are,
however, characterized by an intrinsic complexity of the data collected, which requires
multivariate statistical analysis techniques for interpretation. To measure fruit maturity
at harvest and during the post-harvest period, various non-destructive techniques and
chemometric algorithms have been developed [18].

Chemometrics is a discipline of statistics that deals with multivariate data historically
derived from analytical chemistry. The chemometric techniques used to obtain information
from these data are identified as pattern recognition techniques and can be divided between
unsupervised methods (principal component analysis and cluster analysis) and supervised
methods that allow the creation of predictive models, using various techniques includ-
ing the regression technique. Exploratory data analysis, such as PCA, is a fundamental
step in the analysis of this type of data. It provides an overall view of the system under
study, allowing the detection of possible similarities/dissimilarities among samples, the
identification of clusters or systematic trends, the discovery of those variables that are
relevant to describe the system and that can be discarded in principle, and the detection
of possible outlying, anomalous, or at the very least suspicious samples [19]. The proper
management of outliers is necessary to develop models that are effective [20]. Regres-
sion models can be used to predict and quantify selected maturity indices of products.
Chemometric techniques are, therefore, fundamental for extracting useful information from
optical data and for creating simplified models. In this case, a PLS (partial least square)
regression model was used, which represents a particular type of multivariate analysis that
is capable of modeling the relationship between two matrices, i.e., the relationship between
the predictors, X, and the variables we want to predict, Y [21].

The experimentation tested a cost-effective and portable prototype to estimate the
qualitative parameters of Chardonnay grapes directly in the field in order to support
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operators in rapid and objective decision making. The aim of this work is to obtain
immediate results on grape ripeness to identify the optimal harvesting time.

The optical prototype is equipped with vis/NIR bands and predictive models to
promote a sustainable approach and viticulture 4.0.

2. Materials and Methods
2.1. Sampling Activities

The experimental campaign took place in the viticulture area of the province of
Mantua at “Azienda Agricola Ricchi” (Monzanbano, Lombardy, Italy; 45◦23′22.848′ ′ N
10◦41′36.427′ ′ E) during the ripening period at the end of July and the end of August 2020
and 2021. Sampling was performed on Chardonnay grapes (Vitis vinifera L.) in different
plots distributed in the vineyard. Chardonnay is a white grape strong variety with moderate
grape production; its berry clusters are tiny, cylindrical, and winged, and can range in size
from well-filled to compact [11].

All the samples were collected from 8 plots and in each plot, 3 plants were selected
and marked in order to take the samples as representative as possible of the entire vineyard.
In 2020, a total of 80 samples were collected and analyzed in 4 different sampling dates
(8 samples for time 0, 24 samples for each of the other 3 sampling dates). In 2021, a total of
96 samples (24 samples for each sampling date) were collected with the same procedure.

2.2. Optical Acquisition and Prototype Features

The acquisitions were performed directly in the field (immediately after manually
collecting the samples), without any sample preparation. For each sample, 5 single berries
were analyzed to obtain a total dataset of 400 optical analyses in 2020, corresponding to
40 acquisitions for time 0 and 120 acquisitions for the other samplings. In 2021, 480 optical
analyses (corresponding to 120 acquisitions per sampling date) were collected and made
up the dataset.

A first version of the prototype was described in 2021 [22] as a pre-prototype; the
device was used for optical acquisitions during 2020 sampling. The new version of the
device used for 2021 sampling consists of 2 optical sensors with 6 wavelengths each, for a
total of 12 wavelengths, as described in Table 1.

Table 1. Device wavelengths.

Wavelengths (nm)

Sensor 1 450 500 550 570 600 650
Sensor 2 610 680 730 760 810 860

The prototype incorporates the two sensors just mentioned (AMS, models AS7262 visi-
ble and AS7263 NIR, Premstaetten, Austria, Europe) for spectral acquisitions in visible (vis)
and in short wave near-infrared (SW-NIR) regions. The sensors have a 16-bit radiometric
resolution and 12 independent on-device optical filters, from 450 to 860 nanometers. The
full-width half-maximum of the vis sensor is 40 nm, while the full-width half-maximum of
the SW-NIR sensor is 20 nm. The use of these commercial optical cores allows the costs of
the prototype to be kept extremely low.

The wavelengths used in the device are the same as in the pre-prototypal version [22],
precisely because each wavelength corresponds to a particular absorption peak of par-
ticular interest in this type of analysis. As reported by Giovenzana et al. [8], 630 and
690 nanometers are near the characteristic peak of chlorophyll, 730 nanometers is near
the third overtone of the -OH bond, and lastly, 810 and 860 nanometers are near the
combination band of the -OH groups of sugars.

Unlike the first version of the device, the two sensors are now integrated into a clamp
that enables the operator to fully embrace the berry grape (Figure 1a,b) and capture all the
readouts at once, without the need to repeat the analysis with the first sensor and then
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with the second sensor. Moreover, the instrument was configured to perform an average of
10 scans for each acquisition, trying to reduce as much as possible the experimental noise
associated with the light that often creates issues with optical analyses.
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2.3. Chemical Analyses

The wet-chem analyses were carried out on the same samples on which the optical data
were collected and were used as reference parameters. In particular, three characteristic
parameters generally used for estimating grape’s technological maturity were measured.
Total soluble solids (TSS) were measured using a digital refractometer (PAL-1 ATAGO,
Tokyo, Japan, accuracy refractive index ±0.2 Brix), which provides the result in Brix,
measuring the refractive index of the juice obtained from mashing the sample according to
the total content of soluble solids. Titratable acidity (TA) was measured for the juice with
an automatic titrator (TitroMatic KF 1S, Crison Instruments, Milan, Italy) and the result was
expressed in grams of tartaric acid per liter (gtartaric acid dm−3). The pH was measured for
the juice using a portable pH meter PCE-PHD 1 (PCE Inst. GmbH, Meschede, Germany).

2.4. Data Processing

The results of the chemical reference parameters (TSS, TA and pH) and the optical data
obtained by the device were analyzed in Matlab® environment, version 2021a (MathWorks,
Inc., Natick, MA, USA) using the PLSToolbox package (Eigenvector Research, Inc., Manson,
WA, USA).

The first part of data processing involved the creation of matrices showing the optical
data and the execution of a first principal components analysis (PCA). This first unsuper-
vised exploratory analysis allowed the identification, and then the removal, of some outliers
using the ‘Hotelling T2 computation’ function. The data matrix used was averaged and
then reduced to obtain a new matrix (similarly representative of the sampling campaign)
made up of 24 samples for each sampling date (except only for the time 0 of 2020, which
consists of 8 samples as mentioned above), switching from a matrix with 880 rows to
a matrix with 176 rows. After performing the exploratory PCA analysis and removing
outliers, reference parameters (TSS, pH and TA) were used for the calculation of three
different predictive models. The partial least square (PLS) regression technique was used
to create the models, with only autoscaling as pretreatment.. Cross-validation was used
with the leave more out technique, venetian blinds with 5 cancellation groups. Concerning
test-set validation, the dataset was randomly divided into a training set, corresponding
to the calibration set, and into a test set. A total of 60% of the samples were used for the
training set and 40% for the test set. To evaluate model accuracy, root mean square error
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(RMSE) and coefficient of determination (R2) were used; the better the model performs, the
lower the error is, and the higher the R2 (as maximum equal to 1) is.

In addition, the ratio between the standard deviation of the response variable and
RMSE (RPD) was calculated. An RPD between 1.5 and 2 means that the model can discrim-
inate low from high values of the response variable; a value between 2 and 2.5 indicates
that coarse quantitative predictions are possible, and a value between 2.5 and 3 or above
corresponds to good and excellent prediction accuracy, respectively [23].

Finally, a significance test (Student′s t-test) was performed between the reference and
predicted data along the ripening evolution monitoring for each year considered.

3. Results
3.1. Reference Parameters (TSS, pH, TA)

In Figure 2, the descriptive statistics of the parameters of technological maturation
measured in the laboratory are reported. The data are divided into the four sampling dates
and the mean, the median, the interquartile range and the data range are represented in the
figure. The graphs also show the outliers and extreme outliers. The outliers highlighted are
the values that are more than 1.5 times the interquartile range away from the top or bottom
of the box. The characteristic trends of grape ripening are clearly visible from left to right;
the total soluble solids and the pH increase, while the titratable acidity tends to decrease as
the maturation progresses [24].
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Figure 2. Box plots reporting descriptive statistics of reference parameters (TSS, pH, TA) in 2020 (a)
and 2021 (b).

The trend of the qualitative parameters clearly shows the same trend in the year 2020
and in the year 2021. The 2020 data (Figure 2a) are characterized by higher variability
between the dates than the 2021 sampling (Figure 2b), while the 2021 data highlight higher
variability within the dates, with respect to the 2020 sampling.
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3.2. Optical Readouts

Figure 3 shows the total readouts of both sampling years, colored according to the
qualitative parameters. Data from the two different sources, i.e., the pre-prototype [22]
and the new version of the device and the two different years, were merged to observe
the sample reflectance in the whole optical range covered by the sensors. Even if the
device is not able to provide continuous spectra, the increasing and decreasing trends of
the measured parameters are visible by observing the readouts in their entirety.
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reference parameters: TSS (a), pH (b) and TA (c).

The readouts represented in Figure 3a are colored based on total soluble solids, the
readouts in Figure 3b are colored based on pH, while the readouts in Figure 3c are colored
based on titratable acidity. The progressive ripening trend determines the color variations
in the samples, which are strictly related to the ripening evolution. Variations in green
color occur; initially, it is very bright then it tends to turn gradually towards light green,
almost yellow. The decreasing trend of the optical outputs is due to high reflectance values
corresponding to the less ripe (and therefore greener) grapes; as the ripening progresses,
the reflectance values of the samples tend to decrease [25]. Evidently, these effects are more
noticeable in the visible region readouts (460–650 nm).

3.3. Principal Component Analysis

As already discussed in Section 2.4, principal component analysis constitutes a fun-
damental part of chemometric data processing. Figure 4a shows on the x axis the first
principal component (PC1), which explains 42.97% of the variance and on the y axis, the
third principal component (PC3), which explains 9.78% of the variance. In the orthogo-
nal space defined by the two components (which account for about 53% of the original
variance), a horizontal trend is evident along the PC1, which could be attributable to the
maturation of the samples and the variations that occur in berries over the course of time,
mainly evolution of skin pigmentation. The ripening trend is underlined by the labelling of
the samples according to the content of soluble solids (TSS); from right to left, we observe
the same trend also recognizable in the total readouts of the device.

Therefore, the interpretation of scores plot suggests that the main source of variability
is the progress of maturation. To fully understand the results of the PCA, it is also necessary
to observe the loadings plots, as reported in Figure 4b,c. The second principal component
(PC2) seems to be attributable to the use of two different sensors. PC2 is positive for
the wavelengths of the first sensor (450, 500, 550, 570, 600 and 650 nm) and negative
for the wavelengths of the second sensor (610, 680, 730, 760, 810, and 860 nm). This
principal component could explain the information related to the acquisition methodology
of sensors operating in two different ranges of the electromagnetic spectrum, i.e., visible
and NIR, respectively.
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3.4. Predictive Models

The partial least square (PLS) regression method was used to build predictive models
using 2020 and 2021 datasets together to try to better verify the predictive capability.
The only pre-treatment that was performed on the data was autoscaling; by dividing the
variables into their respective standard deviations, it is possible to give each variable the
same importance by imposing equal weights in the analysis [26,27].

The prediction capability of the PLS models was verified by calculating the parameters
to evaluate it, both in cross-validation and in prediction. Table 2 shows the figure of merit
of the three predictive models built by considering two latent variables (LVs).

Table 2. Figure of merit of the partial least square (PLS) models calculated with two latent variables,
using optical data pretreated with autoscaling.

Parameter LVs Treatment SD * R2CV RMSECV R2Pred RMSEP RPD

TSS 2 autoscaling 5.35 0.88 1.84 0.87 1.90 2.81

pH 2 autoscaling 0.26 0.56 0.18 0.62 0.14 1.85

TA 2 autoscaling 8.85 0.83 3.59 0.80 3.94 2.25

* SD = standard deviation of reference parameters; R2
CV = coefficient of determination in cross-validation;

RMSECV = root mean square error of cross-validation; R2
Pred = coefficient of determination in prediction;

RMSEP = root mean square error in prediction.

The most efficient model is the model for TSS prediction (R2 in cross-validation = 0.88 and
in prediction = 0.87) and secondary, the model for TA prediction (R2 in cross-validation = 0.83
and in prediction = 0.80). The least performing model is the one built for the prediction of
the pH with a R2 in cross-validation of 0.56 and in prediction of 0.62. Maturation curves,
which represent the measured and predicted (through the use of PLS models) values for each
qualitative parameter, were created. For the creation of the curves, the average values for each
sampling date were calculated to be compared with the average values obtained using the
device.

The maturation curves that represent the 2020 data show more evident differences
between the reference values measured by wet-chem analyses (in red color) and the values
predicted by the model (in blue color). The performance improvement of the models
for the prediction of the three qualitative parameters is to be attributed to the innovative
structure of the prototype, which, as already mentioned, has been modified with respect
to the original device in pre-prototype form that did not have the two sensors integrated
in a single instrument. The integration of the two sensors in a single hardware allowed
for better performance in terms of efficiency of light transfer, both from the LED to the
agri-food product and from the grapes to the photodiode, i.e., a better signal to noise
ratio [28].
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Table 3 shows the Student’s t-test results performed on the values used to build the
maturation curves reported in Figure 5.

Table 3. Student′s t-test performed between refence and predicted data for each sampling time (t0-t3)
and for each year considered (2020 and 2021).

Time
TSS TA pH

2020 2021 2020 2021 2020 2021

t0 * *** ** n.s. *** n.s.
t1 n.s. n.s. * n.s. n.s. n.s.
t2 n.s. n.s. * n.s. n.s. n.s.
t3 *** *** *** n.s. *** n.s.

n.s. = difference not significative at p < 0.05; * = difference significative at p < 0.05; ** = difference significative at
p < 0.01; *** = difference significative at p < 0.001.
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The test carried out a comparison between the values of the qualitative parameters
measured in the laboratory (reference parameters) and the values predicted by the device,
i.e., the values obtained from the PLS predictive models. The values were compared
for each qualitative parameter and for both sampling years, and for each sampling time.
The results demonstrated that the integrated version of the prototype (2021) provides
more accurate quality parameters estimation than the pre-prototype version used in 2020
sampling. This phenomenon is highlighted by the non-significative differences (n.s.) in the
2021 comparisons, e.g., for TA and pH, no sampling time shows differences between the
reference and predicted values.

4. Discussion

The sampling turned out to be representative; an improvement to obtain an even
greater variability could be to carry out sampling at constant days apart to collect data
with a more constant variability, in particular in the central week of August. With regard
to the models’ predictive capabilities, further experiments are needed to test the device
performance in real operative conditions, both on Chardonnay and on other cultivars.
The low variability between dates and the high variability within dates in 2021 sampling,
compared to 2020 data, could have led to a worst result in the application of predictive
PLS models in the estimation of the three parameters (Figure 5) for the year 2021. Instead,
the new and more efficient version of the prototype allowed for better performance in
the application of the PLS model for 2021 sampling, as also confirmed by the Student’s
t-test results reported in Table 3. The creation of predictive models will certainly help the
development of simpler vis/NIR prototypes that can be applied directly in the field, making
non-expert personnel able to estimate the quality of agri-food products in an objective,
instant and more sustainable way.

This work has focused on the applicability of the optical and cost-effective prototype
in the wine sector, to define the grape quality by better identifying the exact moment of
ripening and obtaining high quality wine. The tested prototype could be easily applied to
other small fruits, such as olives and blueberries (after an appropriate modelling phase),
for qualitative characterization. Moreover, it could be used at different points of the supply
chain, both in pre-harvest to define the best harvest period directly in the field, but also in
post-harvest for fruit selection to create different quality classes, optimizing the production
process and reducing waste. Moreover, optical devices have been recognized as a green
technology capable of estimating quality parameters, producing a low environmental
damage compared to traditional wet-chem analyses [12]. Applying smart devices, such
as the prototype developed and tested in this work, would help the sector to obtain a
sustainable supply chain from an environmental point of view and in line with the industry
4.0 approach [29].

In order to summarize the strengths, weaknesses, opportunities, and threats related
to the application of the experimental outputs and concepts of this work in the agri-food
sector, a SWOT table was created (Table 4).
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Table 4. Strengths, weaknesses, opportunities, and threats related to the application of the experi-
mental outputs and concepts of this work in the agri-food sector.

Internal

Strengths Weaknesses

Selection of vis/NIR bands easily
available on the market

Real-time monitoring quality
parameters of agri-food products in an

objective way, directly in field or in
post-harvest conditions

Cost-effective smart device
Remote control devices

Need to control environmental
conditions during optical acquisitions
High variability of agri-food quality

parameters
Research efforts to optimize quality
parameters estimation using smart

devices

External

Opportunities Threats

Optimization of agri-food chains
Better management of agri-food

products
Waste reduction

Lower environmental impact of
agri-food chains

Suitable also for SME

Strong link with traditional methods by
operators

Reduced orientation towards
innovation by operators, still managed

by old generation

5. Patents

Patent application PCT n. PCT/IB2022/051110 (8 February 2022) for Portable Device
for Analysing Vegetable Matrices on the Field and Related System and Method.
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