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1. Related theory and Literature Review 

The LSTM network is a special kind of Recurrent Neural Network (RNN) and is 

capable of solving long-term dependencies problems for which RNN was deficient. An 

LSTM unit is comprised of a memory cell, a forget gate ሺ𝑓௧ሻ, an input gate ሺ𝑖௧ሻ, and an 

output gate ሺ𝑂௧ሻ, as shown in Fig. S.1. 

Figure S1. The structure of a single LSTM unit. 

 

 1 1( [ , ] ) ( )fh fxt f t t f t t ff W h W x b      W h x b  (S1) 

Equation (1) denotes the forget gate. It decides that how much information of cell state 

ሺ𝐶௧ሻ from the previous time step 1tc  is needed to be kept into the current cell state at the 

current time step. fW is the weight matrix of the forget gate, 1[ , ]t th x . fb is the bias of the 

forget gate, and   is the sigmoid function. The input gate is defined as follows, 

 1 1( [ , ] ) ( )ih ixt i t t i t t ii W h W x b      W h x b  (S2) 

where iW is the weight matrix of the input gate, ib is the bias of the input gate. Then, the 

cell state which is used to describe the current input which is given as, 
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1 1tanh( [ , ] ) tanh( )Ch Cxt c t t c t t CC W h W x b     W h x b   (S3) 

where cW is the weight matrix of the current cell state. tC is the cell state of the 

current input, and it is calculated from the combination of previous output and the current 

input. tanh is a function that can push values between -1 and 1. The cell state tC  at the 

current time step is the sum of two items. One is the previous cell state 1tC   multiplying 

the forget gate tf , and the result of the current input cell state tC multiplying the input 

gate ti . This step is known as the cell state updating step, and its mathematical equation 

is given as, 

 
1t t t t tC C f i C      (S4) 

Therefore, the current (that can be called as short-term) memory tC  and long-term 

memory 1tC   are combined and developed into a new cell state tC . Due to the control of 

the forget gate, the LSTM unit can remember the information from a long-time distance, 

and due to the presence of an input gate, it can keep the current useless information in 

the memory cell. Finally, the output gate is defined as, 

 1 1[ , ] ( )Oh Oxt o t t o t t OO W h W x b     W h x b  (S5) 

It controls the effect on the current output from the long-term memory. The final output is 

determined by the output gate and the new cell state i.e. 

 tanh( )t t th O C   (S6) 

There is a great interest in the development of deep learning neural networks and its 

application as an alternative solution for solving the unpredictable degradation 

progression problems of a complex system. In this respect, an overview of the current 

research work is presented here. 

Zhu [1] presented a  new data-driven transferable method based on multiple layer 

perceptron, which was providing reliable transferable prognostics under various working 

conditions. Hinchi [2] studied a convolutional LSTM  network to predict the rolling bearing 

element life.  Yang [3] used LSTM work to conduct the natural gas pipeline safety 

classification problem. Zhang [4] used the LSTM, RNN network to predict the remaining 
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useful life of the battery, which was solving the long-term dependencies problem among 

the degraded capacities of lithium-ion batteries.  Wu [5] utilized the vanilla LSTM neural 

networks to obtain good RUL predictions for the industrial complex engineered systems 

for avoiding catastrophic failures and minimizing the economic losses. Qu [6] proposed a 

wind power prediction model based on the LSTM model, which showed a higher 

prediction accuracy and greater potential of engineering applications. Mao [7] proposed 

a RUL prediction approach based on the deep feature representation and LSTM method. 

Fan [8] studied the use of Deep Bidirectional LSTM (DBLSTM) to capture the information 

in future sequence data. Ozal [9] proposed a bidirectional LSTM network-based wavelet 

sequence called DBLSTM-WS to classify the electrocardiogram(ECG) signals. Kara 

Ahmet [10] predicted the RUL of lithium-ion batteries by extracting the spatio-temporal 

relations between the multivariate time series data and captured nonlinear characteristics. 

Esfahani [11] predicted the RUL of turbofan jet engines using NASA’s commercial 

modular aero-propulsion system simulation (C-MAPSS) dataset. Unlike the other CNN-

LSTM models, where features were typically extracted using CNN, which were then fed 

to LSTM, his developed model utilized both the algorithms organically for enhancing the 

prediction ability. Songhao Gao [12] utilized the phase space warping (PSW) and hidden 

Markov model regression for developing a scale-normalized bearing health indicator. 

Later on, for predicting the rolling bearing RUL, the developed indicator was utilized as 

the input for the encoder–decoder LSTM model with an attention mechanism. Jiahang 

Luo [13] predicted the RUL of rotating machinery by developing a novel convolution-

based attention mechanism BiLSTM model. He focused on the cell states of Bi-LSTM. 

For obtaining the feature Information, the input signal was passed through the CNN. Then, 

for performing the convolution operation, the obtained features were fed into the Bi-LSTM 

network with an attention mechanism. Mohamed Marei [14] predicted the RUL of a cutting 

tool by developing a hybrid LSTM model with an embedded transfer learning mechanism. 

The novel point of the proposed method was the introduction of the transfer learning 

mechanism to the volume of datasets that were required for the training of the developed 

deep learning model. Huaqing Peng [15] developed a novel three-stage fault prediction 

approach for the analysis of the type of failure and the identification of the degradation 

period. He made a hybrid LSTM model for extracting the spatiotemporal features of the 



Page 4 of 11 
 

fault type and degradation period by utilizing the cross-entropy loss function. Then he 

predicted the type of failure by utilizing the BiLSTM network as the regression model for 

predicting the feature’s future trend. Satish Kumar [16] developed an approach of fusing 

the feature selection technique along with deep learning models. He predicted the tool 

wear by utilizing the NASA milling data sets along with vibration signals. for the feature 

selection and ranking, multiple steps were taken and different (LSTM) models were used 

for improving the overall RUL prediction accuracy of the developed model. Jiachen Yao 

[17] utilized the LSTM network for developing a transfer reinforcement learning (DTRL) 

network. For tracking the tool states, local features were extracted from consecutive 

sensor data and the trained network size was adjusted by controlling the time sequence 

length. For a smooth processing of the temporal information and mining long-term 

dependencies, the LSTM network was utilized to construct the value function 

approximation.  

Thus, the above-mentioned literature revealed that LSTM modeling has the 

outstanding potential for capturing the temporal and long-term information [18], that is 

why a lot of researchers have utilized LSTM models alone or with the combination of 

some other models for determining the RUL of different engineering equipment. Having 

a view of the above-given knowledge, the authors also utilized a hybrid deep LSTM based 

modeling for predicting the online RUL of a slurry pump in the absence of its run to failure 

data. 
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Figure S2. Developed HDTs for 18 traditional statistical features (a) nine in the time domain, and (b) nine in the frequency 

domain, for channel 2. 
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Figure S3. Developed HDTs for 18 traditional statistical features (a) nine in the time domain, and (b) nine in the frequency 

domain, for channel 4.
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Table S1. 18 Statistical features extracted in time and frequency domains (  

represents the valid vibration data in temporal and spectral domains) 

 

 

 

References 

1.  Zhu, J.; Chen, N.; Shen, C. A new data-driven transferable remaining useful life 

prediction approach for bearing under different working conditions. Mech. Syst. 

Signal Process. 2020, 139, 106602, doi:10.1016/j.ymssp.2019.106602. 

2.  Hinchi, A.Z.; Tkiouat, M. Rolling element bearing remaining useful life estimation 

based on a convolutional long-short-Term memory network. Procedia Comput. Sci. 

2018, 127, 123–132, doi:10.1016/j.procs.2018.01.106. 

3.  An, Y.; Wang, X.; Chu, R.; Yue, B.; Wu, L.; Cui, J.; Qu, Z. Event classification for 

natural gas pipeline safety monitoring based on long short-term memory network 

and Adam algorithm. Struct. Heal. Monit. 2020, 19, 1151–1159, 

nX

(1) Mean: 

 

(2) Standard deviation (STD): 

 

(3) Root mean square: 

 

(4) Skewness: 

 

(5) Kurtosis: 

 

(6) Crest Factor: 

 

(7) Clearance Factor: 

 

(8) Shape Factor: 

 

(9) Impulse Factor: 

 

1

1 N

n
n

X
N




  2

1

1
( )

1

N

n
n

X
N

 


 
  2

1

1
( )

N

n
n

RMS X
N 

 

3

1
3

( )

( 1)

N

n
n

X
SK

N











 4

1
4

( )

( 1)

N

n
n

X
KU

N












2

1

max( )

1
( )

n

N

n
n

X
CF

X
N 





2

1

max( )

1

n

N

n
n

X
CLF

X
N 


 
 
 


2

1

1

1
( )

1

N

n
n

N

n
n

X
N

SF
X

N








 1

max( )

1
n

N

n
n

I
X

X
N

F









Page 10 of 11 
 

doi:10.1177/1475921719879071. 

4.  Zhang, Y.; Xiong, R.; He, H.; Pecht, M.G. Long short-term memory recurrent neural 

network for remaining useful life prediction of lithium-ion batteries. IEEE Trans. Veh. 

Technol. 2018, 67, 5695–5705, doi:10.1109/TVT.2018.2805189. 

5.  Wu, Y.; Yuan, M.; Dong, S.; Lin, L.; Liu, Y. Remaining useful life estimation of 

engineered systems using vanilla LSTM neural networks. Neurocomputing 2018, 

doi:10.1016/j.neucom.2017.05.063. 

6.  Kisvari, A.; Lin, Z.; Liu, X. Wind power forecasting – A data-driven method along 

with gated recurrent neural network. Renew. Energy 2021, 163, 1895–1909, 

doi:10.1016/j.renene.2020.10.119. 

7.  Mao, W.; He, J.; Tang, J.; Li, Y. Predicting remaining useful life of rolling bearings 

based on deep feature representation and long short-term memory neural network. 

Adv. Mech. Eng. 2018, doi:10.1177/1687814018817184. 

8.  Fan, Y.; Qian, Y.; Xie, F.; Soong, F.K. TTS synthesis with bidirectional LSTM based 

Recurrent Neural Networks. Proc. Annu. Conf. Int. Speech Commun. Assoc. 

INTERSPEECH 2014, 1964–1968, doi:10.21437/interspeech.2014-443. 

9.  Yildirim, Ö. A novel wavelet sequences based on deep bidirectional LSTM network 

model for ECG signal classification. Comput. Biol. Med. 2018, 96, 189–202, 

doi:10.1016/j.compbiomed.2018.03.016. 

10.  Kara, A. A data-driven approach based on deep neural networks for lithium-ion 

battery prognostics. Neural Comput. Appl. 2021, 33, 13525–13538, 

doi:10.1007/s00521-021-05976-x. 

11.  Esfahani, Z.; Salahshoor, K.; Farsi, B.; Eicker, U. A New Hybrid Model for RUL 

Prediction through Machine Learning. J. Fail. Anal. Prev. 2021, 21, 1596–1604, 

doi:10.1007/s11668-021-01205-8. 

12.  Gao, S.; Xiong, X.; Zhou, Y.; Zhang, J. Bearing remaining useful life prediction 

based on a scaled health indicator and a lstm model with attention mechanism. 

Machines 2021, 9, doi:10.3390/machines9100238. 



Page 11 of 11 
 

13.  Luo, J.; Zhang, X. Convolutional neural network based on attention mechanism and 

Bi-LSTM for bearing remaining life prediction. Appl. Intell. 2022, 52, 1076–1091, 

doi:10.1007/s10489-021-02503-2. 

14.  Marei, M.; Li, W. Cutting tool prognostics enabled by hybrid CNN-LSTM with 

transfer learning. Int. J. Adv. Manuf. Technol. 2022, 118, 817–836, 

doi:10.1007/s00170-021-07784-y. 

15.  Peng, H.; Li, H.; Zhang, Y.; Wang, S.; Gu, K.; Ren, M. Multi-Sensor Vibration Signal 

Based Three-Stage Fault Prediction for Rotating Mechanical Equipment. Entropy 

2022, 24, 164, doi:10.3390/e24020164. 

16.  Kumar, S.; Kolekar, T.; Kotecha, K.; Patil, S.; Bongale, A. Performance evaluation 

for tool wear prediction based on Bi-directional, Encoder–Decoder and Hybrid Long 

Short-Term Memory models. Int. J. Qual. Reliab. Manag. 2022, 

doi:10.1108/IJQRM-08-2021-0291. 

17.  Yao, J.; Lu, B.; Zhang, J. Tool remaining useful life prediction using deep transfer 

reinforcement learning based on long short-term memory networks. Int. J. Adv. 

Manuf. Technol. 2022, 118, 1077–1086, doi:10.1007/s00170-021-07950-2. 

18.  Xia, M.; Zheng, X.; Imran, M.; Shoaib, M. Data-driven prognosis method using 

hybrid deep recurrent neural network. Appl. Soft Comput. J. 2020, 93, 106351, 

doi:10.1016/j.asoc.2020.106351. 

 


