friried applied
e sciences

Article

Novel Security Models for IoT-Fog—Cloud Architectures in a
Real-World Environment

Mohammed A. Aleisa 1'2*(, Abdullah Abuhussein 3*(, Faisal S. Alsubaei 4

check for
updates

Citation: Aleisa, M.A.; Abuhussein,
A.; Alsubaei, ES.; Sheldon, ET. Novel
Security Models for IToT-Fog-Cloud
Architectures in a Real-World
Environment. Appl. Sci. 2022, 12,
4837. https://doi.org/10.3390/
app12104837

Academic Editor: Eui-Nam Huh

Received: 31 March 2022
Accepted: 28 April 2022
Published: 10 May 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Frederick T. Sheldon !

Department of Computer Science, The University of Idaho, Moscow, ID 83844, USA; sheldon@uidaho.edu
Department of Computer Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia

Information Systems Department, St. Cloud State University, St. Cloud, MN 56301, USA

Department of Cybersecurity, University of Jeddah, Jeddah 23890, Saudi Arabia; fsalsubaei@uj.edu.sa

* Correspondence: alei3598@vandals.uidaho.edu or m.aleisa@mu.edu.sa (M.A.A.);
aabuhussein@stcloudstate.edu (A.A.)

W N e

Abstract: With the rise of the Internet of Things (IoT), there is a demand for computation at network
edges because of the limited processing capacity of IoT devices. Fog computing is a middle layer that
has appeared to address the latency issues between the Internet of things (IoT) and the cloud. Fog
computing is becoming more important as companies face increasing challenges in collecting and
sending data from IoT devices to the cloud. However, this has led to new security and privacy issues
as a result of the large number of sensors in IoT environments as well as the massive amount of data
that must be analyzed in real time. To overcome the security challenges between the IoT layer and
fog layer and, thus, meet the security requirements, this paper proposes a fine-grained data access
control model based on the attribute-based encryption of the IoT-Fog-Cloud architecture to limit the
access to sensor data and meet the authorization requirements. In addition, this paper proposes a
blockchain-based certificate model for the IoT-Fog—Cloud architecture to authenticate IoT devices
to fog devices and meet the authentication requirements. We evaluated the performance of the two
proposed security models to determine their efficiency in real-life experiments of the loT-Fog-Cloud
architecture. The results demonstrate that the performance of the IoT-Fog-Cloud architecture with
and without the blockchain-based certificate model was the same when using one, two, or three IoT
devices. However, the performance of the IoT-Fog—Cloud architecture without the access control
model was slightly better than that of the architecture with the model when using one, two, or three
IoT devices.

Keywords: blockchain; AWS cloud metrics; fog computing; access control; cloud computing; authen-
tication; Internet of Things; authorization

1. Introduction

The Internet of Things (IoT) ecosystem includes multitudinous devices connected to
the Internet [1] with a variety of capabilities, such as sensing, processing, and communi-
cating. In 2025, the number of IoT devices is estimated to exceed 75 billion [2,3], driving
a parallel rise in the already massive amount of data that must be locally processed at
the edges of networks to reduce latency and save network bandwidth. Cloud computing
provides a lot of processing and storage power for thousands of IoT devices [4]. However,
due to the geographic centralization of cloud computing data centers, the large volume
of data generated by the distributed IoT devices will not be processed in a timely manner,
which will increase the latency from IoT devices to the cloud especially as the number of
IoT devices continues to grow. To overcome these challenges, fog computing has emerged
to deal with the high processing demand and temporary storage. Fog computing serves
as a middle layer between IoT devices and the cloud [5-7], solving the data transmission
latency between them.

Appl. Sci. 2022, 12, 4837. https:/ /doi.org/10.3390/app12104837

https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12104837
https://doi.org/10.3390/app12104837
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7015-4131
https://orcid.org/0000-0002-1350-6719
https://orcid.org/0000-0001-7332-3773
https://orcid.org/0000-0003-1241-2750
https://doi.org/10.3390/app12104837
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12104837?type=check_update&version=1

Appl. Sci. 2022,12, 4837

20f16

Despite the benefits of fog computing for IoT devices and the cloud, there are several
security issues between the IoT, fog, and cloud layers. For example, the Dyn cyberattack
(21 October 2016) disrupted Internet service across Europe and the US [8] through a series
of distributed denial-of-service (DDoS) attacks that targeted IoT-enabled devices such as
cameras, residential gateways, and baby monitors. Many services were affected by this
cyberattack, including businesses such as Amazon, Comcast, PayPal, and Netflix and news
networks such as Fox News and CNN.

Further significant threats to IoT devices include eavesdropping [1,4,9,10] and unau-
thorized access [9,11,12], which can lead to device failure. Because there is no human
interaction involved in the communication between these devices and because they have
extensive operating times, it is difficult to monitor and detect their security issues. There-
fore, it is essential to build a security model that meets the security requirements of the
IoT-Fog-Cloud architecture by applying authentication and authorization between the IoT,
fog, and cloud layers.

Because there are not enough real-life implementations of cloud-based IoT environ-
ments, as mentioned in our previous work [5], we proposed two architectures of cloud-
based IoT environments and three analysis methods using a real-world environment [6,7].
We utilized a fog layer between IoT devices and the cloud in the first architecture, while
in the second architecture, IoT devices sent data directly to the cloud [6,7]. We conducted
several experiments and evaluated our results of the methodologies and the three analysis
methods [6], finding that the first architecture (IoT-Fog—Cloud) outperforms the second
architecture (IoT-Cloud) in terms of performance. This is because all of the IoT devices in
the second architecture (IoT-Cloud) need to have a certificate to be authenticated to the
AWS cloud. However, only one certificate which is placed on the fog device of the first
architecture (IoT-Fog—Cloud) is required to be authenticated to the AWS cloud. Therefore,
the communication between the IoT layer and the fog layer, in particular, was left without
adequate authentication and authorization mechanisms [6].

To fill the gap in security requirements between the IoT layer and fog layer and
overcome the limitations and challenges presented by these security issues [5-7], this paper
makes the following contributions:

e We propose a fine-grained data access control model based on the attribute-based
encryption (ABE) of the IoT-Fog—Cloud architecture to limit access to sensor data to
meet the authorization aim.

e We propose a blockchain-based certificate model of the IoT-Fog—Cloud architecture to
authenticate IoT devices to fog devices to meet the authentication aim.

e We evaluate the performance of the security model (fine-grained data access control
and blockchain-based certificate) using AWS message broker metrics for a real-life
scenario of the IoT-Fog—Cloud architecture.

e We compare the performance of the IoT-Fog—Cloud architecture with and without
our security model using AWS message broker metrics and present its efficiency
and feasibility.

The remainder of the paper is structured as follows: In Section 2, we provide an
overview of the IoT-Fog—Cloud architecture. In Section 3, we explain the authentication
model, a blockchain-based certificate model, and the authorization model, a fine-grained
data access control model based on the ABE of the IoT-Fog—Cloud architecture. In Section 4,
we detail the setup of the JoT-Fog-Cloud architecture experiments and describe the evalu-
ation metrics that were used to evaluate the IoT-Fog-Cloud architecture performance with
the two security models. In Section 5, we present the evaluation methods used to evaluate
the IoT-Fog—Cloud architecture with the two security models. In Section 6, we evaluate the
experiment results based on the evaluation methods of the loT-Fog-Cloud architecture. In
Section 7, we conclude the paper.

Appl. Sci. 2022,12, 4837

30f16

2. Overview of IoT-Fog—Cloud Architecture

We describe our IoT-Fog—-Cloud architecture in detail in this section. IoT refers to
devices that generate data, communicate with other devices in a real-world scenario, and
have storage for configuration. Since DHT11 sensors are not equipped with network
capabilities and storage for configuration, one DHT11 sensor will be linked to only one
Raspberry Pi board in the IoT-Fog—Cloud architecture using GPIO pins. The DHT11 sensor
connected to the Raspberry Pi will be considered an IoT device. We used the Raspberry Pi
to provide storage for configuration and enable the Wi-Fi connectivity of the DHT11 sensor.
Each IoT device will be linked to other Raspberry Pi devices through Wi-Fi, which served
as a fog device in the fog layer.

The MQTT protocol was utilized to communicate between IoT devices, fog nodes,
and the cloud because the MQTT protocol is extensively used and supported by all IoT
platforms and commercial sensors. The MQTT broker named Eclipse Mosquitto [13] was
installed in the Raspberry Pi which served as a fog device. The Mosquitto MQTT broker is a
server that receives all messages from IoT devices and publishes them to other devices using
the MQTT protocol. Some advantages of using an MQTT broker include (1) facilitating
scalability with a large number of IoT devices, (2) handling authentication credentials and
certificates, (3) decreasing cellular network strain without compromising security, and
(4) preventing unsafe and vulnerable devices from being connected. The Mosquitto MQTT
broker used the subscribe—publish strategy described in [5] to exchange messages and
filtered them based on the topics. The topics are UTE-8 strings used by the broker to identify
the sensor data type (temperature degree or humidity degree). In our experiments, each
data type (temperature degree or humidity degree) was considered a separate topic to
provide consistent and accurate results. The three DHT11 sensor data gathered by the three
IoT devices were sent through Wi-Fi to the Raspberry Pi that served as the fog device. The
Raspberry Pi that acts as the fog device with the MQTT broker Mosquitto was connected
through the Internet to the AWS cloud. The Internet served as the communication between
the three layers.

We conducted several experiments based on the three analysis methods in our pre-
vious work [6], and we found that the performance of the IoT-Fog—Cloud architecture
outperforms the performance of the IoT-Cloud architecture. However, we found that the
IoT-Fog—Cloud architecture does not meet the security requirements. Therefore, to fill the
gap of security requirements between the IoT layer and fog layer and meet the authenti-
cation and authorization aims, first, we propose a blockchain-based certificate model of
the IoT-Fog—Cloud architecture to fill the gap of the authentication problem. Second, we
propose a fine-grained data access control model based on the ABE of the loT-Fog—Cloud
architecture to fill the gap of the authorization problem. Figure 1 shows an overview of the
IoT-Fog—Cloud architecture and where the two security models are applied.

Appl. Sci. 2022,12, 4837

40f16

Temperature & Humidity Sensors

loT Layer

Storage for Configuration

Light Computation

o Blockchain-based Certificate Model
Raspberry Pi 3

Model B 1
(

Amazon S3
Bucket

AWS 0T === P> ﬁ

AWS

-

.......... & Sensorto Wi-Fi Enabler

.en)

4= == ==p ThroughInternetto Fog

== == Through Internetto Cloud

= wm P AWS Network

e,

1;—/@
| g (

Cloud Layer
Permanent Big Data Storage,
High Computation Power

Fog Layer
Temporary light Storage
Light Computation Power

Figure 1. Overview of the JToT-Fog—Cloud architecture.

3. Authentication Model and Authorization Model
3.1. Proposed Authentication Model: Blockchain-Based Certificate

To fill the gap of the security requirements between the IoT layer and fog layer [5-7],
we propose a blockchain-based certificate model of the IoT-Fog—Cloud architecture to
authenticate the IoT devices to fog devices and achieve the authentication aim of this study.
Figure 2 presents the operations comprising the model, which are as follows: (1) the IoT
devices make a connection request to the fog devices; (2) the fog devices distribute a valid
certificate to the IoT devices; (3) the handshake mechanism using the TLS cryptographic
protocol is established between IoT devices and fog devices; (4) encrypted communication
is established between the IoT devices and fog devices; (5) because the fog devices are
expected to be limited, the blockchain technology is applied to a set of fog devices within
their geographical location; and (6) each fog device inside the blockchain has a copy
of transactions, such as the distributed IoT device certificates. Figure 2 shows how the
blockchain-based certificate model was applied to the IoT-Fog—Cloud architecture using a
real-life environment.

Appl. Sci. 2022,12, 4837

50f16

Blockchain-Based Certificate
\\ SN '
LR} €y i i
8:‘ > u\ — e/oc > str, Raspberry Pi 3
Clice Say,, -
e gy, : Model B ~| FhstFog device certificate Amazon S3
i ~ ~ ! () mosauvitto s S¢H ond Fog device certificate Bucket
\\ A ~ ~ 1 S (ird Fog device certificate Y
ﬁ:‘ S— G = s o e 5 Y — e WS (WS 10T = >E
”
”
- ”
P - . = irst Fog device certificate
N ; .
\\ A P | s Sgcond Fog device certificate
8 NI 'S u o ' () mosauitto hird Fog device certificate
Thir,
0\\----> . V"//d‘:&’
g‘. e er"f/t‘at ed’"’/buze:
el)
evice First Fog device certificate
~ econd Fog device certificate
\\ A hird Fog device certificate
8:‘,____’ = = = = = = - DR
- device
”
& -~
. - sssssssnssdp Sensorto Wi-Fi Enabler
N » -
ﬁ & EEEEE P u 4= == ==p ThroughInternetto Fog
e == Through Internet to Cloud
; E
ﬁ\ Temperature & Humidity Sensors m= == P AWS Network

loT Layer
Storage for Configuration
Light Computation

Cloud Layer
Permanent Big Data Storage,
High Computation Power

Fog Layer
Temporary light Storage
Light Computation Power

Figure 2. Blockchain-based certificate model applied to the IoT-Fog—Cloud architecture.

3.2. Proposed Authorization Model: Attribute-Based Encryption for Access Control

To fill the gap in the security requirements between the IoT and fog layers [5-7], we
propose a fine-grained data access control model based on the ABE of the IoT-Fog—Cloud
architecture to limit access to sensor data and achieve the authorization aim of this study.

Figure 3 illustrates the several operations comprising the model, which are as follows:
(1) attributes are generated for each sensor data type; (2) keys containing a set of attributes
or corresponding to attributes are generated; (3) the generated sensor data type values
are encrypted with the corresponding key that contains their attributes; (4) the encrypted
message is published to the fog device using a secure communication channel; (5) the
access tree that specifies the policy of the set of attributes is generated; (6) the ciphertext
is decrypted if the key containing a set of attributes satisfies the access policy tree; and
(7) the decrypted message is published to the AWS cloud. The model is designed such
that each data type in an IoT device is associated with attributes, which represent the topic
of each sensor data type. For example, the DHT11 sensor attached to the Raspberry Pi is
considered an IoT device [6,7] and generates two types of data: (A) temperature degree
and (B) humidity degree. The temperature value is encrypted according to the key that
contains a set of attributes and then published to the fog device.

Appl. Sci. 2022,12, 4837

6 of 16

Access control-Attribute based encryption (authorization model)

|

loT device Fog device
Encrypt (message payload, key Decrypt (message payload, key
corresponding to attributes)) corresponding to attributes))
lAccess Policy Tree
Temperature or Humidty degree message
A’fD
[* e
serial number attribute Topics attributes
represents the device represent the sensor data w——, ey
type

'

DHT 11 sensor Accept Deny

> Temperature

S Humidity Publish (Decrypt (message
payload, key corresponding to

“ ! attributes)) to AWS cloud

Publish (Encrypt (message
payload, key corresponding to
attributes)) to Fog

Figure 3. Access control model for the IoT-Fog—Cloud architecture.

The fog device then generates an access policy tree according to the attributes of
each data type in the IoT device, an example of which is presented in Figure 4. Once the
fog device receives the ciphertext from the IoT device, it decrypts it if the ciphertext key
that contains the attributes satisfies the access policy tree. Otherwise, it will decline the
decryption request. Then, the temperature degree value will be published to the AWS
cloud. Figure 5 shows how the ABE for the access control model was applied to the
IoT-Fog—Cloud architecture.

7 of 16

Appl. Sci. 2022, 12, 4837

>

’Temperature or Humidity degree message ﬁ:

l Humidity degree message l
L AT
JTXXXXXXXXBT

(NIRRT =

S/N: JTXXXXXXXX87
% A

Humidity Topic

A
loT device Serial number

Serial number first loT device |

>

« >
] i
o®

temperature Topic

A

A
Humidity Topic l
Temperature degree message

I||||I|||III|I||II|II|||I||||| =
o]

JTXXXXXXXX87
A

Serial number first loT device Temperature Topic ‘

Figure 4. Access policy tree for the access control model for the IoT-Fog-Cloud architecture.

)

)

8:' .u
[MMakS

‘ Temperature Topic attribute
- ouB 0 Encryption-Based Access Control

-

Serial nimber attribute

Raspberry Pi 3
¥ Model B
Temperature Topic attribute ee Amazon S3
p L_"./f . AWS Bucket

" 0 Certificate o mm mm m= = -)
Publish (Encrypt (message payload, ((M)))mosoumo 3 ‘ IWS Io.l. E
. LLITTTD *

4— -».
Serial oE=" atmbllte key corresponding to attributes)) V———
il (1A e

Humidity Topic attribute Access Policy Tree

' Temperature Topic attribute m
oA e “ T
ub\\sh \EnCNP \U \buxes @\
= o ‘a»

o "/#\%Q

Humidity Topic attribute sessnnnnnnnnnnnnnsndP Sensorto Wi-Fi Enabler
Temperature & Humidity Sensors | <= == w= == == Geperate two attributes(Temperature & Humidity)

Publish (Encrypt (message payload, key corresponding to attributes))

sesssssnnssnssesssp Pyblish data to python script on Fog

S TLLTCLTCETLELLEELEL Subscribe to python script topics or bridge topics on Fog

Q== == == = == == Subscribe to topics on mosquito
=== * ===+ ==) Publishdata to Cloud or Bridge Mosquitto to Cloud

- -’ AWS Network

loT Layer Fog Layer Cloud Layer
Storage for Configuration Temporary light Storage Permanent Big Data Storage,
Light Computation Power High Computation Power

Light Computation

Figure 5. Access control model applied to the IoT-Fog—Cloud architecture.

Appl. Sci. 2022,12, 4837

8 of 16

4. Experiment Setup and Evaluation Metrics

In this paper, we propose two security models of the loT-Fog—Cloud architecture [6]
to meet the security requirements [4,9]. The following subsections present the hardware,
software configurations, and evaluation metrics used in our loT-Fog—Cloud architecture
experiments.

4.1. Hardware

In this section, the experiments are based on the first architecture of IloT-Fog—Cloud
which was proposed in [6], as shown in Figure 1. First, we describe, in detail, the types
of devices that were used in the IoT-Fog—Cloud architecture as shown in Figure 6. The
devices used to perform the experiments in the IoT-Fog—Cloud architecture were a DHT11
sensor [14] and the Raspberry Pi 3 Model B [15]. The DHT11 sensor is a low-cost device
that produces real-time data for measuring the temperature degree and humidity degree of
the surrounding air. The Raspberry Pi is a single-board computer with integrated Wi-Fi and
computing capabilities that is used in a variety of applications, including smart health care,
weather monitoring, and smart homes. The Raspberry Pi was used in our work to provide
light computational capabilities for data generated by the DHT11 sensor. In addition, the
Raspberry Pi was used to provide light storage for the configuration performed by the
DHT11 sensor. One of the advantages of using the Raspberry Pi is that it can be readily
transferred from one location to another. Table 1 shows a complete list of the hardware
utilized in the IoT-Fog—Cloud architecture. Figure 6 shows the hardware used in the
IoT-Fog—Cloud architecture.

Raspberry Pi

—

’lﬂi

a7
loT Node 3

N1
"o

,/—\

Wifi Enabler ,‘ ! Wiﬂ Enabler
(Raspberry Pi) (Rnpb-rry Pi)

‘)l~’)

Figure 6. Hardware used in the IoT-Fog—Cloud architecture.

Wifi Enabler
(Raspberry Pi)

Appl. Sci. 2022,12, 4837

9o0f 16

Table 1. Complete list of the hardware utilized in the IoT-Fog—Cloud architecture.

Equipment Name Equipment Type Quantity Purpose
DHT11 Sensor 3 Generates temperature degree and humidity degree
Raspberry Pi Version 3 (Model B) 4 Provides W1F1. service and processing and
storage capabilities
Micro SD card 32 GB of storage 4 Operating system storage
Monitor HP 4 Monitors the experiments
Keyboards and mice HP 4 Make it easier to work on a Raspberry Pi
Power supply/adapter CanaKit 4 Provides the Raspberry Pi with power
HDMI cable onn 4 Provides the connection between the Raspberry Pi

and a monitor

4.2. Software

We installed Python on the three IoT devices (DHT sensor + Raspberry Pi) and the
fog device. Then, we installed the Circuit Python DHT Library on the three IoT devices
to allow communication between the DHT11 sensor and Raspberry Pi. Next, we installed
the cryptography library on the three IoT devices and fog device to perform the security
operations. Algorithm 1 illustrates the authentication and authorization operations from
IoT devices (DHT11 sensor + Raspberry Pi) to the fog device, and Algorithm 2 illustrates
the authentication and authorization operations from the fog device to the IoT devices
(DHT11 sensor + Raspberry Pi) and from the fog device to the AWS cloud.

4.3. Evaluation Metrics: AWS Cloud Metrics

The performance of the IoT-Fog—-Cloud architecture can be evaluated using a variety
of metrics from the cloud side. Since we chose AWS as our cloud service provider, we used
Amazon CloudWatch to evaluate the [oT-Fog—-Cloud architecture performance [6,7,13,16,17].
We used Amazon CloudWatch to evaluate the IoT-Fog—Cloud architecture performance
since it collects and evaluates data at the same time and gives the following metric, as
shown in Table 2.

Table 2. Descriptions of AWS cloud metrics.

AWS Cloud Metrics

Descriptions

connect.success

This is used to count how many successful connections our fog devices made with the AWS cloud.

ping.success

This is used to count how many ping messages our fog devices sent to the AWS cloud in the

IoT-Fog—Cloud architecture.

publishin.success

This is used to count how many publish requests were processed by the AWS cloud.

publishout.success

This is used to count how many publish requests were made by the AWS cloud to the fog devices in
the IoT-Fog—-Cloud architecture.

subscribe.success

This is used to count how many subscribe requests were processed by the AWS cloud.

unsubscribe.success

This is used to count how many unsubscribe requests were processed by the AWS cloud.

Appl. Sci. 2022,12, 4837 10 of 16

Algorithm 1: Collect data from the IoT device and send it to the fog device-loT-Fog-Cloud architecture. This algorithm provides
authentication and authorization operations from IoT devices (DHT11 sensor + Raspberry Pi) to fog devices.

O 2 NN

=
@

N NDNDNDNMNDNDNDNNNR R R P2 R /2R,
PN THEDINLOODXN TN

W oW
el

B W W W W G W L) W

ST
n e

N

Import board
Import adafruit_dht
Import paho.mqtt.client as mqtt
From Crypto.Cipher import ABS
Import base64
Define the DHT sensor type (DHT11)
Define the Raspberry Pi’s input/output pins to which the DHT11 is connected
Define a Python library (adafruit_dht:DHT11) to read the DHT series of humidity and temperature sensors on a Raspberry
Pi with one argument, DHT pin connected
Define the key length which must be either 16, 24, or 32 bytes long
Define humidity topic variable and temperature topic variable for each IoT device (DHT11 attached to Raspberry Pi) in
each experiment
Define MQTT broker variable
Define the variable of MQTT port
While True do
Define a connection function
Connect to Internet
If (the connection is established) then
Print “connected”
Else (the connection is not established) then
Try reconnecting to Internet
Define a message function
Read humidity degree from Raspberry Pi serial port using (dhtDevice. humidity)
Read temperature degree from Raspberry Pi serial port using (dhtDevice.temperature)
Print humidity degree
Print temperature degree
Generate keys containing a set of attributes for each sensor data type in each IoT device
Generate a first key containing a set of attributes for temperature sensor in each IoT device
Generate a second key containing a set of attributes for humidity sensor in each IoT device
Create the cipher config for first key (temperature sensor)
Create the cipher config for second key (humidity sensor)
Use the cipher of the first key to encrypt the humidity degree message using cipher.encrypt
Use the cipher of second key to encrypt the temperature degree message using

cipher.encrypt
Encode the cipher and humidity degree message using the base64 module
Encode the cipher and temperature degree message using the base64 module
Print the encrypted message
Publish humidity topic with its encrypted message to fog device
Publish temperature topic with its encrypted message to fog device

End while

Create a client to connect to fog device

Make the client run connect, and message function

Enable the transport layer security using fog device certificates and MQTT protocol version
Connect the client to the MQTT broker using fog device’s IP address and MQTT port 1883
Call a loop_start() method for the client connection

Appl. Sci. 2022,12, 4837 11 0f 16

Algorithm 2: Collect data received from the fog device and send it to the cloud-IoT-Fog-Cloud architecture. This algorithm
provides authentication and authorization operations from fog devices to IoT devices (DHT11 sensor + Raspberry Pi) and from fog
devices to the AWS cloud.

1: Import sys
2: Import ssl
3: Import adafruit_dht
4: Import paho.mqtt.client as mqtt
5: From Crypto.Cipher import ABS
6: Import base64
7: Define the key length which must be either 16, 24, or 32 bytes long
8: Define the MQTT broker variable
9: Define the MQTT port variable
10: While True do
11: Define a connection function
12: Subscribe for all topics in each IoT devices
13: Connect to Internet
14: If (the connection is established) then
15: Print “connected”
16: Else (the connection is not established) then
17: Try reconnecting to Internet
18: Define a message function
19: Define keys containing a set of attributes for each sensor data type in each IoT device
' based on access policy
20: Define a first key containing a set of attributes for temperature sensor in each IoT device
21: Define a second key containing a set of attributes for humidity sensor in each IoT device
22: Create the cipher config for first key (temperature sensor)
23: Create the cipher config for second key (humidity sensor)
24: Decode the encrypted message using the base64 module
25: Use the cipher of the first key to decrypt the humidity degree message using cipher.decrypt
2%6: Use the cipher of second key to decrypt the temperature degree message using
' cipher.decrypt
27: Print the decrypted message
28: Publish humidity topic with its decrypted message to AWS cloud
29: Publish temperature topic with its decrypted message to AWS cloud
30: end while
31: Create two clients, the first client used for the MQTT broker, and the second client used for the AWS broker
32: Make the first client run connect, and message function
33: Connect the first client to MQTT broker using fog device’s IP address and MQTT port
34: Call a loop_start() method for the first client connection
35: Enable the transport layer security for the second client using the AWS certificates paths and MQTT protocol version
36: Connect the second client to AWS broker using AWS Endpoint and AWS port
37: Call a loop_start () method for the second client connection

5. Evaluation Methods

AWS cloud metrics were used to evaluate the performance of the blockchain-based
certificate model and the fine-grained data access control model based on the ABE for
the IoT-Fog—Cloud architecture proposed in our previous papers [6,7]. We defined the
subscribe and publish request number as two for each IoT device because each IoT device
generated two types of data: (A) temperature degree and (B) humidity degree. Therefore,
when the number of IoT devices increases, the numbers of subscribe and publish requests
will also increase. This produces accurate and real results about the performance of the
blockchain-based certificate model and the fine-grained data access control model based on
the ABE for the IoT-Fog-Cloud architecture. In this section, we provide the methods used
to evaluate the performance of the blockchain-based certificate model and the fine-grained
data access control model based on the ABE for the IoT-Fog—Cloud architecture.

Appl. Sci. 2022,12, 4837

12 of 16

5.1. IoT-Fog-Cloud Architecture with Blockchain-Based Certificate Model versus without
Blockchain-Based Certificate Model

The performance of the loT-Fog—Cloud architecture with the blockchain-based certifi-
cate model was analyzed and compared with the architecture without the blockchain-based
certificate model, which was presented in the previous work [6], using AWS metrics. The
experiment was conducted using different numbers of IoT devices (one, two, or three) two
times, once with the blockchain-based certificate model and once without. The results were
compared and analyzed to show the impacts of our blockchain-based certificate model on
the proposed IoT-Fog-Cloud architecture [6,7]. Because the AWS cloud provider requires
a certificate to authenticate any device, and because the fog device is the next layer, the
certificate was placed in the Raspberry Pi that served as the fog device. The communication
between the IoT device and the fog device was left without an authentication model [6]; this
gap was filled by the proposed security model. The fog device distributed the certificates
to the IoT devices after a connection request was made by the IoT devices. The fog device
certificate was placed in each IoT device to allow them to be authenticated to the fog device.
The objective of this method was to illustrate the impact of the blockchain-based certificate
model on the IoT-Fog-Cloud architecture and that the performance of the model remains
identical when using different numbers of IoT devices.

5.2. 1oT-Fog-Cloud Architecture with Access Control Model versus without Access Control Model

The performance of the IoT-Fog—Cloud architecture with the access control model
was evaluated by comparison with the architecture without the model [6]. The experiment
was performed using one, two, and three IoT devices. The experiment was performed
twice, once with the access control model and once without. The results were compared
and evaluated to show the impact of our access control model on the proposed IoT-Fog—
Cloud architecture [6]. Since the IoT devices were authenticated to the fog device using a
blockchain-based certificate model, the sensor data needed to be unavailable to the other
IoT devices and have limited access. Therefore, the access control model proposed in this
paper fills the authorization requirement gap between the IoT layer and fog layer. The
objective of the analysis method was to show the impact of the access control model on the
IoT-Fog-Cloud architecture and how the performance changed using different numbers of
IoT devices.

6. Evaluation of Results
6.1. IoT-Fog—Cloud Architecture with Blockchain-Based Certificate Model versus without
Blockchain-Based Certificate Model

In this subsection, we evaluate the loT-Fog—Cloud architecture with our blockchain-
based certificate model using AWS cloud metrics, as shown in Table 3.

The first experiment of the IoT-Fog—Cloud architecture was performed using one IoT
device. We ran the first experiment twice simultaneously, one without our blockchain-
based certificate model and the other with the model. We used two subscribes and two
publishes because the IoT device generated two types of data: (A) temperature degree
and (B) humidity degree. The results show that the numbers of subscribes and publishes
(i.e., subscribe.success and connect.success) for the loT-Fog—Cloud architecture with and
without the blockchain-based certificate model were the same and reflect the defined
number of subscribes and publishes for one IoT device. This is because the connection of
neither experiment (with versus without the security model) was disconnected and, thus,
the subscribe request was not lost. Although the first experiment with the security model
had a certificate in the authentication process of the IoT-fog—cloud layers, it did not affect
the number of subscribes and publishes. Furthermore, the number of published messages
(publishout.success and publishin.success) for the loT-Fog—Cloud architecture with the
blockchain-based certificate model remained the same as that of the architecture without
the model.

Appl. Sci. 2022,12, 4837

13 of 16

Table 3. AWS cloud metric results on N. Virginia datacenter for the IoT-Fog—Cloud architecture with
the blockchain-based certificate model versus without the blockchain-based certificate model.

AWS Cloud Metrics (N. Virginia Datacenter)—Python
Script—IoT-Fog—Cloud Architecture without

AWS Cloud Metrics (N. Virginia Datacenter)—Python
Script—IoT-Fog—Cloud Architecture with Blockchain-Based

Blockchain-Based Certificate Model Certificate Model

IoT devices 1 IoT devices 1

Subscribe and publish requests 2 Subscribe and publish requests 2

AWS cloud metrics (minutes) 0.5 1 5 15 60 AWS cloud metrics (minutes) 0.5 1 5 15 60
connect.success 2 2 2 2 2 connect.success 2 2 2 2 2
ping.success 2 2 8 29 120 ping.success 2 2 8 29 120
publishin.success 44 44 206 586 2360 publishin.success 44 44 206 586 2360
publishout.success 44 44 206 586 2360 publishout.success 44 44 206 586 2360
subscribe.success 2 2 2 2 2 subscribe.success 2 2 2 2 2
unsubscribe.success 2 2 2 2 2 unsubscribe.success 2 2 2 2 2
IoT devices 2 IoT devices 2

Subscribe and publish requests 4 Subscribe and publish requests 4

AWS cloud metrics (minutes) 0.5 1 5 15 60 AWS cloud metrics (minutes) 0.5 1 5 15 60
connect.success 4 4 4 4 4 connect.success 4 4 4 4 4
ping.success 2 2 8 29 120 ping.success 2 2 8 29 120
publishin.success 70 70 350 1110 4590 publishin.success 70 70 350 1110 4590
publishout.success 70 70 350 1110 4590 publishout.success 70 70 350 1110 4590
subscribe.success 4 4 4 4 4 subscribe.success 4 4 4 4 4
unsubscribe.success 4 4 4 4 4 unsubscribe.success 4 4 4 4 4
IoT devices 3 IoT devices 3

Subscribe and publish requests 6 Subscribe and publish requests 6

AWS cloud metrics (minutes) 0.5 1 5 15 60 AWS cloud metrics (minutes) 0.5 1 5 15 60
connect.success 6 6 6 6 6 connect.success 6 6 6 6 6
ping.success 2 2 9 29 119 ping.success 2 2 9 29 119
publishin.success 115 115 548 1660 6510 publishin.success 115 115 548 1660 6510
publishout.success 115 115 548 1660 6510 publishout.success 115 115 548 1660 6510
subscribe.success 6 6 6 6 6 subscribe.success 6 6 6 6 6
unsubscribe.success 6 6 6 6 6 unsubscribe.success 6 6 6 6 6

The second and third experiments of the IoT-Fog—Cloud architecture were performed
using two and three IoT devices with four and six subscribes and publishes, respectively.
The results show that the numbers of subscribes and publishes (i.e., subscribe.success
and connect.success) were the same for the l[oT-Fog—Cloud architecture with and without
the blockchain-based certificate model and reflect the defined number of subscribes and
publishes for two or three IoT devices. This is because when the fog device distributed the
certificates to the two or three IoT devices, those devices were authenticated simultaneously
to the fog device. Therefore, there was no sign of failure in the number of connects
and subscribes because the two or three IoT devices remained authenticated to the fog
device and started publishing messages. Moreover, the number of published messages
(publishout.success and publishin.success) for the loT-Fog—Cloud architecture with and
without the blockchain-based certificate model also remained identical using two or three
IoT devices; there was no loss in the number of published messages, as there was no sign
of failure in the number of connects and subscribes (connect.success and subscribe.success)
because the two or three IoT devices remain authenticated to the fog device and start
publishing messages at the same time.

Overall, we found that the performance of the IoT-Fog—Cloud architecture with and
without the blockchain-based certificate model was the same when using one, two, or three
IoT devices. Thus, there was no delay in the number of published messages for the IoT-Fog—
Cloud architecture with the blockchain-based certificate model, as shown in Table 3. This is
because the first layer of security requirements, authentication, was proposed and added to
the IoT-Fog—Cloud architecture, and it did not affect its performance. This means that the
IoT-Fog—Cloud architecture had improved performance and security simultaneously.

Appl. Sci. 2022,12, 4837

14 of 16

6.2. IoT-Fog—Cloud Architecture with Access Control Model versus without Access Control Model

In this subsection, we evaluate the IoT-Fog—Cloud architecture with our access control
model using AWS cloud metrics, as shown in Table 4.

The first experiment of the loT-Fog-Cloud architecture was conducted using one IoT
device. We ran this experiment twice simultaneously, one instance without our access con-
trol model and the other with the model. We used two subscribes and two publishes because
the IoT device generated two types of data: (A) temperature degree and (B) humidity de-
gree. The results show that the numbers of subscribes and publishes (i.e., subscribe.success
and connect.success) for the IoT-Fog—Cloud architecture with and without the access con-
trol model were the same and reflect the defined number of subscribes and publishes for
one loT device. This is because the connection of neither experiment (with versus without
the access control model) was disconnected, so the subscribe request was not lost. Although
the first experiment with the security model had a certificate in the authentication process
of the IoT-fog—cloud layers, it did not affect the number of subscribes and publishes. In
contrast, the number of published messages (publishout.success andpublishin.success)
for the IoT-Fog—Cloud architecture with the access control model was slightly less than
that of the architecture without the model. This is because the IoT device performed some
security operations that took one second for each sensor data type. Each sensor data type
(i.e., temperature data and humidity data) took one second to generate keys containing a
set of attributes and encrypt the generated sensor data type value with the corresponding
key containing its attribute.

The second experiment of the IoT-Fog—Cloud architecture was performed by connect-
ing two IoT devices and making four subscribe and publish requests. This experiment was
also run twice simultaneously, with and without our access control model. The results show
that the numbers of subscribes and publishes (i.e., subscribe.success and connect.success)
for the IoT-Fog—Cloud architecture with and without the access control model were the
same for two IoT devices and match the defined number of subscribe and publish requests
for one IoT device. However, the number of published messages (publishout.success and
publishin.success) for the architecture with the access control model was slightly less than
that of the architecture without the model. This is because each of the two IoT devices
performed security operations, which took one second for each sensor data type (i.e., tem-
perature data or humidity data) for each of the two IoT devices. Each sensor data type
(i.e., temperature data or humidity data) of each of the two IoT devices took one second to
generate a key containing a set of attributes and encrypt the generated sensor data type
value with the corresponding key containing its attribute.

Overall, we found that the performance of the loT-Fog—Cloud architecture without the
access control model was slightly better than that of the architecture with the model when
using one, two, or three IoT devices. However, when using one, two, or three IoT devices,
the number of published messages was delayed two seconds when using the access control
model, as shown in Table 4. This is because the second layer of security requirements,
authorization, was proposed and added to the IoT-Fog—Cloud architecture. Therefore, this
gives the IoT-Fog—Cloud architecture a better performance and security at the same time.

Appl. Sci. 2022,12, 4837

150f 16

Table 4. AWS cloud metric results on N. Virginia datacenter for the IoT-Fog—Cloud architecture with
the access control model versus without the access control model.

AWS Cloud Metrics (N. Virginia Datacenter)—Python
Script—IoT-Fog—Cloud Architecture without Access Control

Model

AWS Cloud Metrics (N. Virginia Datacenter)—Python
Script—IoT-Fog—Cloud Architecture with Access Control

IoT devices

Subscribe and publish requests
AWS cloud metrics (minutes)
connect.success

ping.success

publishin.success
publishout.success
subscribe.success
unsubscribe.success

IoT devices

Subscribe and publish requests
AWS cloud metrics (minutes)
connect.success

ping.success

publishin.success
publishout.success
subscribe.success
unsubscribe.success

IoT devices

Subscribe and publish requests
AWS cloud metrics (minutes)
connect.success

ping.success

publishin.success
publishout.success
subscribe.success
unsubscribe.success

Model
1 IoT devices 1
2 Subscribe and publish requests 2
0.5 1 5 15 60 AWS cloud metrics (minutes) 0.5 1 5 15 60
2 2 2 2 2 connect.success 2 2 2 2 2
2 2 8 29 120 ping.success 2 2 8 29 120
44 44 206 586 2360 publishin.success 42 42 204 584 2358
44 44 206 586 2360 publishout.success 42 42 204 584 2358
2 2 2 2 2 subscribe.success 2 2 2 2 2
2 2 2 2 2 unsubscribe.success 2 2 2 2 2
2 IoT devices 2
4 Subscribe and publish requests 4
0.5 1 5 15 60 AWS cloud metrics (minutes) 0.5 1 5 15 60
4 4 4 4 4 connect.success 4 4 4 4 4
2 2 8 29 120 ping.success 2 2 8 29 120
70 70 350 1110 4590 publishin.success 68 68 348 1108 4588
70 70 350 1110 4590 publishout.success 68 68 348 1108 4588
4 4 4 4 4 subscribe.success 4 4 4 4 4
4 4 4 4 4 unsubscribe.success 4 4 4 4 4
3 IoT devices 3
6 Subscribe and publish requests 6
0.5 1 5 15 60 AWS cloud metrics (minutes) 0.5 1 5 15 60
6 6 6 6 6 connect.success 6 6 6 6 6
2 2 9 29 119 ping.success 2 2 9 29 119
115 115 548 1660 6510 publishin.success 113 113 546 1658 6508
115 115 548 1660 6510 publishout.success 113 113 546 1658 6508
6 6 6 6 6 subscribe.success 6 6 6 6 6
6 6 6 6 6 unsubscribe.success 6 6 6 6 6

7. Conclusions

In this paper, we proposed a blockchain-based certificate model and a fine-grained
data access control model based on the ABE for the loT-Fog—Cloud architecture using a
real environment. The two proposed models meet the authentication and authorization
security requirements of the architecture. We ran a number of experiments and increased
the numbers of IoT devices, subscribes, and publishes in each experiment. We used AWS
cloud metrics to evaluate the performance of the models based on the evaluation methods.
First, we evaluated the IoT-Fog—Cloud architecture performance with and without the
blockchain-based certificate model. Second, we evaluated the loT-Fog—Cloud architecture
performance with and without the access control model. The results indicate that the
performance of the IoT-Fog—Cloud architecture with and without the blockchain-based
certificate model was the same when using one, two, or three IoT devices. Furthermore,
the performance of the IoT-Fog—Cloud architecture without the access control model
was slightly better than that of the architecture with the model when using one, two,
or three IoT devices. This work aimed to improve the performance and security of the
IoT-Fog—Cloud architecture.

Appl. Sci. 2022,12, 4837 16 of 16

Author Contributions: Conceptualization, M.A.A., A.A. and ES.A ; methodology, M.A.A; writing,
M.A A validation, M.A.A., A.A,, ES.A. and FT.S.; supervision, M.A.A., A.A, ES.A. and FTS. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under grant
No. (UJ-21-ICI-6). The authors, therefore, acknowledge with thanks the University of Jeddah for its
technical and financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nebbione, G.; Calzarossa, M.C. Security of IoT Application Layer Protocols: Challenges and Findings. Future Internet 2020, 12, 55.
[CrossRef]

2. Yunana, K,; Alfa, A.A; Misra, S.; Damasevicius, R.; Maskeliunas, R.; Oluranti, J. Internet of Things: Applications, Adoptions and
Components—A Conceptual Overview. In Proceedings of the Hybrid Intelligent Systems; Abraham, A., Hanne, T., Castillo, O.,
Gandhi, N., Nogueira Rios, T., Hong, T.-P., Eds.; Springer International Publishing: Cham, Germany, 2021; pp. 494-504.

3. Zhou, W, Jia, Y.; Peng, A.; Zhang, Y.; Liu, P. The Effect of IoT New Features on Security and Privacy: New Threats, Existing
Solutions, and Challenges Yet to Be Solved. IEEE Internet Things]. 2019, 6, 1606-1616. [CrossRef]

4. Alzoubi, YI; Osmanaj, V.H.; Jaradat, A.; Al-Ahmad, A. Fog Computing Security and Privacy for the Internet of Thing Applications:
State-of-the-Art. Secur. Priv. 2021, 4, e145. [CrossRef]

5. Aleisa, M.A.; Abuhussein, A.; Sheldon, ET. Access Control in Fog Computing: Challenges and Research Agenda. IEEE Access
2020, 8, 83986-83999. [CrossRef]

6. Aleisa, M.A.; Abuhussein, A.; Alsubaei, F.S.; Sheldon, E.T. Examining the Performance of Fog-Aided, Cloud-Centered IoT in a
Real-World Environment. Sensors 2021, 21, 6950. [CrossRef] [PubMed]

7. Aleisa, M.; Hussein, A.A.; Alsubaei, F.; Sheldon, ET. Performance Analysis of Two Cloud-Based IoT Implementations: Empirical
Study. In Proceedings of the 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud) /2020
6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), New York, NY, USA, 1-3 August 2020;
IEEE: New York, NY, USA, August, 2020; pp. 276-280.

8. The DDoS Attack on Dyn’s DNS Infrastructure. Available online: https://www.thousandeyes.com/blog/dyn-dns-ddos-attack/
(accessed on 13 February 2022).

9. Alrawais, A.; Alhothaily, A.; Hu, C.; Xing, X.; Cheng, X. An Attribute-Based Encryption Scheme to Secure Fog Communications.
IEEE Access 2017, 5,9131-9138. [CrossRef]

10. Khan, S.; Parkinson, S.; Qin, Y. Fog Computing Security: A Review of Current Applications and Security Solutions. J. Cloud Comp.
2017, 6, 19. [CrossRef]

11. A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications. Available online:
https:/ /ieeexplore.ieee.org/abstract/document/7879243/ (accessed on 13 February 2022).

12. Patwary, A.A.-N.; Fu, A,; Naha, R.K; Battula, S.K,; Garg, S.; Patwary, M.A K.; Aghasian, E. Authentication, Access Control,
Privacy, Threats and Trust Management Towards Securing Fog Computing Environments: A Review. arXiv 2020, arXiv:2003.00395.

13. Eclipse Mosquitto. Available online: https://mosquitto.org/ (accessed on 13 February 2022).

14. Industries, A. DHT11 Basic Temperature-Humidity Sensor + Extras. Available online: https://www.adafruit.com/product/386
(accessed on 20 November 2020).

15. Foundation, TR.P. Buy a Raspberry Pi 3 Model B. Available online: https://www.raspberrypi.com/products/raspberry-pi-3-
model-b/ (accessed on 13 February 2022).

16. Amazon CloudWatch Documentation. Available online: https://docs.aws.amazon.com/cloudwatch/index.html (accessed on 13
February 2022).

17. AWS IoT Core Documentation. Available online: https://docs.aws.amazon.com/iot/ (accessed on 13 February 2022).

http://doi.org/10.3390/fi12030055
http://doi.org/10.1109/JIOT.2018.2847733
http://doi.org/10.1002/spy2.145
http://doi.org/10.1109/ACCESS.2020.2992460
http://doi.org/10.3390/s21216950
http://www.ncbi.nlm.nih.gov/pubmed/34770256
https://www.thousandeyes.com/blog/dyn-dns-ddos-attack/
http://doi.org/10.1109/ACCESS.2017.2705076
http://doi.org/10.1186/s13677-017-0090-3
https://ieeexplore.ieee.org/abstract/document/7879243/
https://mosquitto.org/
https://www.adafruit.com/product/386
https://www.raspberrypi.com/products/raspberry-pi-3-model-b/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b/
https://docs.aws.amazon.com/cloudwatch/index.html
https://docs.aws.amazon.com/iot/

	Introduction
	Overview of IoT–Fog–Cloud Architecture
	Authentication Model and Authorization Model
	Proposed Authentication Model: Blockchain-Based Certificate
	Proposed Authorization Model: Attribute-Based Encryption for Access Control

	Experiment Setup and Evaluation Metrics
	Hardware
	Software
	Evaluation Metrics: AWS Cloud Metrics

	Evaluation Methods
	IoT–Fog–Cloud Architecture with Blockchain-Based Certificate Model versus without Blockchain-Based Certificate Model
	IoT–Fog–Cloud Architecture with Access Control Model versus without Access Control Model

	Evaluation of Results
	IoT–Fog–Cloud Architecture with Blockchain-Based Certificate Model versus without Blockchain-Based Certificate Model
	IoT–Fog–Cloud Architecture with Access Control Model versus without Access Control Model

	Conclusions
	References

