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Abstract: The traditional rolling bearing diagnosis algorithms have problems such as insufficient
information on time-frequency images and poor feature extraction ability of the diagnosis model.
These problems limit the improvement of diagnosis performance. In this article, the input of the
time-frequency image and intelligent diagnosis algorithms are optimized. Firstly, the characteristics
of two advanced time-frequency analysis algorithms are deeply analyzed, i.e., multisynchrosqueezing
transform (MSST) and time-reassigned multisynchrosqueezing transform (TMSST). Then, we propose
time-frequency compression fusion (TFCF) and a residual time-frequency mixed attention network
(RTFANet). Among them, TFCF superposes and splices two time-frequency images to form dual-
channel images, which can fully play the characteristics of multi-channel feature fusion of the
convolutional kernel in the convolutional neural network. RTFANet assigns attention weight to the
channels, time and frequency of time-frequency images, making the model pay attention to crucial
time-frequency information. Meanwhile, the residual connection is introduced in the process of
attention weight distribution to reduce the information loss of feature mapping. Experimental results
show that the method converges after seven epochs, with a fast convergence rate and a recognition rate
of 99.86%. Compared with other methods, the proposed method has better robustness and precision.

Keywords: rolling bearing; time-frequency compression fusion; intelligent fault diagnosis

1. Introduction

Bearing is one of the essential parts of rotating machinery, and its damage causes
serious failures of rotating machinery and incalculable consequences. Therefore, the bearing
fault diagnosis research has become a hot spot. However, in actual working conditions, the
fault signals of rotating machinery are difficult to accurately identify due to the complexity
of the working condition and the influence of noise signals.

At present, A series of time-frequency analysis methods are proposed to solve these
problems, for example, short-time Fourier transform (STFT) [1], continuous wavelet trans-
form (CWT) [2], s-transform (ST) [3] and so on. The essence of time-frequency the analysis
is to transform a one-dimensional time-domain signal into two-dimensional time-frequency
image to reflect the variation rule of each frequency component of signal with time. Many
scholars have applied it to the study of fault diagnosis. Ma et al. [4] presented a condition
monitoring method based on a deep belief network (DBN) optimized by multi-order frac-
tional Fourier transform (FRFT) and sparrow search algorithm (SSA). Firstly, they used
fractional Fourier transform based on curve feature segmentation to filter fault vibration
signals and extract fault characteristic frequencies. Then, the fault features are input into
SSA-DBN model for training and the bearing fault features are classified, recognized and
diagnosed. Zhu et al. [5] extracted the time-frequency characteristics of bearing signals
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through wavelet packet transform (WPT) and formed the time-frequency characteristic
matrix of the signals. Secondly, multi-weight singular value decomposition (MWSVD) was
constructed using singular value contribution rate and entropy weight to extract further
the characteristics of the time-frequency characteristic matrix obtained by WPT. Finally, the
extracted feature matrix is used as the input of the support vector machine (SVM) classifier
for bearing fault diagnosis. Gituku et al. [6] used refined composite multiscale fuzzy
entropy (RCMFE) for cross-domain diagnosis of bearing faults and used self-organizing
fuzzy (SOF) classifier for classification. Although these methods are easy to implement, the
limitations of Heisenberg’s uncertainty principle [7] prevent them from improving time
and frequency resolution. To obtain time-frequency images of vibration signals with better
energy concentration, Daubechies et al. [8] suggested the synchronous squeeze wavelet
transform (SSWT). In essence, it is a time-frequency analysis method of energy rearrange-
ment. Based on CWT, spectral energy is redistributed and concentrated at instantaneous
frequencies [9]. Based on this idea, Huang et al. [10] proposed the synchrosqueezing S
transform (SSST). Yu et al. proposed the Multisynchrosqueezing Transform (MSST) [11]
and Time-reassigned Multisynchrosqueezing transform (TMSST) [12]. They performed
multiple iterations based on synchronous compression transformation. They proved that
the error between the time-frequency representation obtained and the ideal case becomes
smaller with the increase of iterations. In other words, this method can theoretically
approach the ideal time-frequency representation infinitely, which makes it widely used in
the field of bearing fault diagnosis [13–18].

With the development of artificial intelligence, many scholars inducted deep learning
into fault diagnosis.In bearing fault diagnosis, Major deep learning networks include au-
toencoder [19–23], Convolutional Neural Networks (CNN), generative adversarial network
[24–26], Recurrent Neural Networks (RNN) and deep transfer learning [27–29].

Considering the characteristics of CNN and RNN, more and more scholars have
applied them to rolling bearing fault diagnosis. The original one-dimensional vibration
signal was collected as input and feature information was extracted adaptively through
CNN [30–33]. However, Khorram et al. [34] combined CNN with short and long duration
memory network and proposed a new convolutional short and long duration memory
recurrent neural network. In addition, on that basis, some scholars generated the spectrum
graph of vibration data through a time-frequency analysis and proposed a lightweight
convolutional neural network to classify bearing faults [35,36]. Shenfield and Howarth [37]
combined CNN and RNN. They proposed a dual-channel circulating neural network, which
solved the problems of domain adaptive and high-frequency noise under actual working
conditions. In addition, CNN was also used to extract the features of CWT, STFT and HHT
time-frequency images, respectively [38–40]. These deep learning methods were novel, but
they required more computing resources. Many hyperparameters need to be determined
in advance, such as activation function, iteration number, learning rate, convolution kernel
size, network layer number, etc.

In summary, in the intelligent fault diagnosis of rolling bearings, many scholars
only used one of the methods of frequency compression and time compression. Still,
they ignored the different applicable characteristics of the two kinds of methods. The
compression along the frequency axis is suitable for signal components with slowly varying
frequency (SCSVF). Conversely, compression along the time axis is more suitable for signal
components with rapidly varying frequency (SCRVF). Rolling bearing vibration signals
collected by sensors are rich and complex, often interwoven with SCSVF and SCRVF.
Therefore, the combination of MSST and TMSST can be more conducive to bearing fault
diagnosis. In addition, diagnostic models are divided into traditional machine learning
models and deep learning models, both of which have advantages and disadvantages.
The conventional method is interpreted well, but the process is complicated and has
a poor-fitting ability. Deep learning automatically extracts features, but it has a high
computational cost and many hyperparameters. Both methods are favored by a large
number of researchers. However, the biggest obstacle to their wide application in the field of
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rolling bearing fault diagnosis is still how to establish a high-precision, and high-efficiency
fault diagnosis model [41,42]. Therefore, it is crucial to integrate the information of multiple
time-frequency images and diagnostic design models with more vital feature extraction
ability and better performance. Meanwhile, the above methods have great advantages in
the case of constant speed, but the advantages are not obvious in the case of variable speed.
This paper proposes a fault diagnosis algorithm in the case of variable speed.

Given the above problems, this paper proposes time-frequency compression fusion
(TFCF) and residual time-frequency mixed attention network (RTFANet). Firstly, two time-
frequency images obtained by TMSST and MSST are fused to transform the vibration signals
into dual-channel time-frequency images. Then, the attention mechanism is introduced
from three aspects of channel, time, and frequency combined with the residual connection.
The model can selectively focus on essential time-frequency information, avoid information
overload, and extract the practical features under the framework of the convolutional
neural network to solve the problem of the weak generalization ability of the model.

2. The Proposed Method

Figure 1 shows the overall framework of the proposed method, and the following
subsections provide details of TFCF and RTFANet. As can be seen from Figure 1, the input
of the RTFANet model is a TFCF dual-channel time-frequency image, and the output is
the probability of this image belonging to bearing health, inner race fault and outer race
fault. RTFANet first carries out the first convolution operation on the input image. After
each convolution operation, the nonlinear expression ability of the model is improved by
the ReLU activation function, and the parameters of the feature graph are reduced to 1/2
of the original by maximum pooling. Then, the residual time-frequency mixed attention
(RTFA) is used to enhance the vital information of feature mapping. After RTFA, the second
convolution operation is carried out, and the tensor dimension is reconstructed. A fully
connected layer (FC) is input, and the probability of each failure is output by the softmax
classifier. The details of TFCF and RTFA in Figure 1 are described in subsequent sections.

RCA

Convolution
Operation

ReLU
Operation

Max Pooling
Operation

RFA RTA

Fully 
Connected

Layer

RTFA

MSST

TMSST

Reshape

TFCF

Health

Inner race fault

Outer race fault

MSST time-
frequency image 

TMSST time-
frequency image 

Figure 1. Overall model architecture.

2.1. Time-Frequency Compression Fusion
2.1.1. Time-Reassigned Multisynchrosqueezing Transform

TMSST redistributes the coefficients of time-frequency points to the time position
indicated by the group delay estimation value to complete asynchronous compression
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transformation and obtains a new time-frequency plane, on which time redistribution
operation is repeated. The group delay estimation of the signal can be expressed as:

t̂(τ, v) = j
∂vTSTFTδ(τ, v)
TSTFTδ(τ, v)

(1)

where τ stands for time shift factor and v for frequency shift factor, when the signal does not
satisfy the ideal pulse signal, there is some error between the group delay estimation and
the real-time calculated by Equation (1). Fortunately, it has been shown in the literature [12]
that this error can be reduced by finding a new group delay on the assumption of the
original t̂(τ, v) into τ. ∣∣t̂(t̂(τ, v), v)− t

∣∣ < ∣∣t̂(τ, v)− t
∣∣ (2)

where t indicates the actual processing time of the signal, as t̂(t̂(τ, v), v) is an iteration,
this operation can be performed several times. As the number of iterations increases, the
estimated group delay is closer to the actual processing time.∣∣∣t̂[N+1](τ, v)− t

∣∣∣ < ∣∣∣t̂[N](τ, v)− t
∣∣∣ (3)

where N is a positive integer, indicating the number of iterations. t̂[N](t, v) Indicates the
group delay estimate obtained after N iterations of the time-frequency point. Specificly,
t̂[1](t, v) = t̂(τ, t̂(τ, v)), t̂[2](t, v) = t̂(τ, t̂(τ, t̂(τ, v))), t̂[3](t, v) = t̂(τ, t̂(τ, t̂(τ, t̂(τ, v))), and so
on, we get t̂[N](t, v).

After the new group delay estimation is obtained, the time-frequency coefficients of
the traditional STFT can be redistributed, and the process can be expressed as:

TMSST[N](τ, v) =
∫ +∞

−∞
TSTFT(t, v)δ(τ − t̂[N](t, v))dt (4)

where TSTFT(t, v) is the traditional short-time Fourier transform of the model signal.
TMSST[N](τ, v) is the time-frequency representation of the final time redistribution N
resynchronization compression transformation. The larger N is, the more compression
times and the better energy concentration of the time-frequency image.

2.1.2. Multisynchrosqueezing Transform

Unlike TMSST, MSST redistributes the coefficients of time-frequency points to the
frequency position indicated by the instantaneous frequency estimation value to complete
asynchronous compression transformation and obtains a new time-frequency plane. The
frequency redistribution operation is repeated. The instantaneous frequency estimation of
the signal can be expressed as:

ω̂(τ, v) =
∂τMSTFT(τ, v)
jMSTFT(τ, v)

(5)

when the signal does not satisfy the complex sine model, there is some error between
the instantaneous frequency estimate and the actual frequency calculated by Equation (5).
Fortunately, literature [11] has demonstrated that this error can be reduced by obtaining a
new instantaneous frequency estimate from the original ω̂(τ, v) into v.

|ω̂(τ, ω̂(τ, v))−ω| < |ω̂(τ, v)−ω| (6)

where ω indicates the actual frequency, and the processing of ω̂(τ, ω̂(τ, v)) can be per-
formed multiple times. As the number of iterations increases, the instantaneous frequency
is estimated to be closer to the real frequency. The iterative process is similar to TMSST.
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After the new instantaneous frequency estimation is obtained, the time-frequency
coefficient of the improved STFT can be redistributed. The process can be expressed
as follows:

MSST[N](τ, v) =
∫ +∞

−∞
MSTFT(τ, ω)δ(v− ω̂[N](τ, v))dω (7)

where MSTFT(τ, ω) is the improved short-time Fourier transform of the model signal.
MSST[N](τ, v) is the time-frequency representation of the final frequency redistribution
N resynchronization compression transformation. The larger N is, the more compression
times and the better energy concentration of the time-frequency image.

2.1.3. Comparison of the Two Methods

TMSST and MSST adopt different forms of short-time Fourier transform in principle
from the perspective of signal reconstruction. Let the direct current component of the
window function not equal to zero, that is, G∗(0) 6= 0. ∗ is the conjugate symbol. The
inverse transformation formula of TMSST can be expressed as:

x(t) =
1

G∗(0)
F−1

{∫ +∞

−∞
TMSST[N](τ, v)dτ

}
(8)

where F−1{·}represents the inverse Fourier transform operator. Assuming g∗(0) 6= 0, the
inverse transformation formula of MSST can be expressed as:

x(t) =
1

2πg∗(0)

∫ +∞

−∞
MSST[N](τ, v)dv (9)

The proof process of combined Equations (1) and (6) is as follows:

1
G∗(0)

F−1
{∫ +∞

−∞
TMSST[N](τ, v)dτ

}
=

1
2πG∗(0)

∫ +∞

−∞

[ ∫ +∞

−∞
TMSST[N](τ, v)dτ

]
ejvtdv

= F−1
{

1
G∗(0)

∫ +∞

−∞

∫ +∞

−∞
TSTFT(t, v)δ(τ − t̂[N](t, v))dtdτ

}
= F−1

{
1

G∗(0)

∫ +∞

−∞
TSTFT(t, v)dt

}
= F−1

{
1

G∗(0)

∫ +∞

−∞
TSTFT(τ, v)dt

}
= F−1

{
1

G∗(0)

∫ +∞

−∞

∫ +∞

−∞
x(t)g∗(t− τ)e−jvtdtdτ

}
= F−1

{
1

G∗(0)

∫ +∞

−∞
x(t)

[ ∫ +∞

−∞
g∗(t− τ)dτ

]
e−jvtdt

}
= F−1

{
1

G∗(0)

∫ +∞

−∞
x(t)

[ ∫ +∞

−∞
g(τ)e−j0τdτ

]∗
e−jvtdt

}
= F−1

{
1

G∗(0)

∫ +∞

−∞
x(t)G∗(0)e−jvtdt

}
= F−1

{∫ +∞

−∞
x(t)e−jvtdt

}
= F−1{Fx(t)}
= x(t) (10)
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The proof process of combined Equations (3) and (6) is as follows:

1
2πg∗(0)

∫ +∞

−∞
MSST[N](τ, v)dv

=
1

2πg∗(0)

∫ +∞

−∞

∫ +∞

−∞
MSTFT(τ, ω)δ(v− ω̂[N](τ, ω))dωdv

=
1

2πg∗(0)

∫ +∞

−∞
MSTFT(τ, ω)

[ ∫ +∞

−∞
δ(v− ω̂[N](τ, ω))dv

]
dω

=
1

2πg∗(0)

∫ +∞

−∞
MSTFT(τ, v)dv

=
1

2πg∗(0)

∫ +∞

−∞

∫ +∞

−∞
x(t)g∗(t− τ)e−jv(t−τ)dtdv

=
1

g∗(0)

∫ +∞

−∞
x(t)g∗(t− τ)

[
1

2π

∫ +∞

−∞
e−jv(t−τ)dv

]
dt

=
1

g∗(0)

∫ +∞

−∞
x(t)g∗(t− τ)δ(t− τ)dt

=
1

g∗(0)
x(t)g∗(0)

= x(t) (11)

From the derivation of Equations (7) and (8), it can be known that whether the reas-
signment transform can be reconstructed depends on the short-time Fourier transform it
selects. The reconstruction of the traditional STFT is completed by integrating along the
time axis. Before reconstruction, the redistribution of the time-frequency coefficients along
the time axis does not affect the final reconstruction result, and the traditional STFT is
suitable for TMSST. The reconstruction of the improved STFT is completed by integrating
it along the frequency axis. Before reconstruction, the redistribution of time-frequency
coefficients along the frequency axis does not affect the final reconstruction result, and
the improved STFT applies to MSST. The reconstruction properties of TMSST and MSST
determine their redistribution mode to redistribute the time-frequency point coefficients
of the time-frequency image to the group delay estimation and instantaneous frequency
estimation of the signal, respectively. The more iterations are, the closer the group delay
estimation and instantaneous frequency estimation are to the time-frequency ridgeline.
However, in the time-frequency image, the time-frequency ridge line forms of different sig-
nals are different. The time-frequency ridge of the SCSVF is more inclined to the horizontal
state, while that of SCRVF is vice versa.

To further investigate the applicable scenarios of TMSST and MSST, We define a
simulation signal including fast and slow variable signals. The simulation signal xe(t) is
defined as follows:

xe(t) = cos
{

2π

[
250t +

150
2π

cos(2πt)
]}

(12)

Figure 2 shows the time-domain waveform and related time-frequency images of
the simulation signal. Figure 2a,b are the time-domain waveform and short-time Fourier
transform time-frequency image of the simulation signal. It can be seen that, compared with
the time-domain waveform, the time-frequency image can clearly describe the change rule
of signal frequency over time to better express the characteristics of the signal. Figure 2c,f
are TMSST and MSST time-frequency images of simulation signals, respectively. 1 and
2 represent the two red square box regions marked in the figure. It can be observed that
the frequency changes slowly in region 1, while the frequency changes quickly in region
2, where the small red arrow represents the compression direction. Time redistribution
is to move the time-frequency coefficient in Figure 2b to a new position along the time
axis according to the group delay estimation calculated at the time-frequency point to
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realize the conversion from Figure 2b to c. Frequency redistribution refers to moving
the time-frequency coefficient along the frequency axis according to instantaneous fre-
quency estimation, as shown in Figure 2f. By comparing Figure 2c,f, it can be seen that
time redistribution has a good compression effect in region 2 but leads to time-frequency
energy dispersion in region 1. Frequency redistribution is the opposite. Although the two
methods have the defect of energy dispersion, their advantages and disadvantages are
complementary, so we can consider combining the two methods for signal analysis.
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Figure 2. Time–frequency analysis and comparison of simulation signals: (a) time–domain waveform
of simulation signal xe(t): (b–f) are STFT, TMSST and MSST time–frequency images of simulation
signals, respectively; (d,e) are enlarged images of regions 1 and 2 in (c), respectively; (g,h) are
respectively enlarged images of regions 1 and 2 in (f).

2.1.4. Time-Frequency Compression Fusion

The two STFT reconstruction methods determine the applicable redistribution methods
according to the above analysis. The traditional STFT is reconstructed by integrating along
the time axis, showing that it is suitable for multiple synchronous compression transform
time redistribution. The improved short-time Fourier transform reconstruction method
integrates along the frequency axis, which is suitable for frequency redistribution multiple
synchronous compression transform. At the same time, different redistribution methods
apply to other signal components. Time redistribution compresses horizontally on a time-
frequency image and applies to SCRVF. Frequency redistribution compresses vertically on
a time-frequency image and is more suitable for SCSVF. The two methods can learn from
each other and enhance their application value.
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Therefore, we propose a time-frequency compression fusion method to fuse the infor-
mation of two time-frequency images obtained by TMSST and MSST, respectively. Since
the scale range of the time-frequency coefficients of the two time-frequency images is not
consistent, the time-frequency coefficients are normalized before fusion.

TFI
′
(t, f ) =

TFI(t, f )− TFImin
TFImax − TFImin

(13)

where f = ω/2π, TFImin and TFImax are the minimum and maximum values of all time-
frequency coefficients in the time-frequency image, respectively, and TFI

′
(t, f ) is the result

after normalization. The fusion method is named time-frequency compression fusion
(TFCF). TFCF superposes and splices two time-frequency images to form dual-channel
images, which can fully play the characteristics of multi-channel feature fusion of the
convolutional kernel in the convolutional neural network. It is suitable for deep learning
diagnosis methods.

2.2. Residual Time-Frequency Mixed Attention Module Network

The convolutional neural network has shown excellent performance in image feature
extraction. However, as the complexity of the network model increases, the phenomenon
of gradient explosion or disappearance is easy to occurs, and the model performance
is affected. Residual network structure [43] is widely used in various network models
due to its special jump connection mode that can effectively alleviate gradient explosion
or disappearance. The deep convolutional neural network has many parameters and
performs image classification tasks well under the condition of sufficient sample size,
whereas, in practical engineering, the insufficient sample size is a common problem. The
sample size of vibration signals of variable speed rolling bearings used in this article is
small, with only 1200 for each health condition. It is easy to overfit when directly input
into the network for learning, resulting in a poor sample effect of the test set. Moreover,
in the classification task, only a few important contents in the image contribute to the
recognition result. Other redundant information quickly interferes with network learning
and reduces network performance. Therefore, the RTFANet model is proposed. The
residual time-frequency mixed attention module (RTFA) is designed and embedded into
the convolutional neural network to fully extract important time-frequency features and
improve the model’s classification accuracy.

2.2.1. Residual Time-Frequency Mixed Attention Module

The attention mechanism was first proposed by Bahdanau et al. [44] based on the
observation rules of the visual system. In essence, it is a mechanism for allocating resources
to the object of attention, that is, allocating resources according to the importance of the
object. The critical parts need to be allocated more than the other parts. In deep learning,
the resources allocated by the attention mechanism are reflected in weight. The information
related to the recognition task is weighted more heavily, while the irrelevant information is
weighted less [45].

Introducing the attention mechanism into the convolutional neural network can make
the network model pay more attention to the region of interest in the input information.
It makes the model ignore irrelevant features and focus only on the essential features to
be extracted. The residual time-frequency mixed attention module proposed in this paper
includes the channel, time and frequency. As can be seen from Figure 1, RCA, RTA and
RFA are the three components of the residual time-frequency mixed attention module, and
this module is stacked with the three components in sequence. When an input feature map
is given, RCA pays attention to the time-frequency images of different channels. Then, RTA
and RFA pay attention to SCRVF and SCSVF, respectively, and ignore the unimportant
interference information. The residual time-frequency mixed attention module does not
increase the model’s depth but expands the model’s width, which further improves the
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performance of the network model. The details of the RCA, RTA, and RFA components are
shown in Figure 3.

Figure 3. Structure of residual time–frequency mixed attention module.

To improve the recognition performance of a convolutional neural network for TFCF
dual-channel time-frequency image feature mapping, RCA, RTA and RFA are proposed to
focus on the valuable information in feature mapping. Firstly, three dimensions of input
feature mapping M are defined as C, T and F, corresponding to time-frequency image
channel, time and frequency, respectively. As you can see from Figure 3, RCA, RFA, and
RTA differ only in input and output. RCA does not change the dimension of the input
feature map, while RFA and RTA perform generalized transpose of the input feature map
to realize the attention mechanism of C, T and F. Take RCA as an example, and the input
characteristic map is M ∈ RT×F×C. Then, global average pooling and maximum global
pooling are performed on M, and the sum of the two results by element fuses the entire time-
frequency plane information into a channel identifier Mc ∈ R1×1×C. Then, to further extract
the effective information of Mc, this paper uses two convolution operations to process it
and adds the ReLU function after each convolution operation to improve the nonlinear
expression ability of the attention module. The first convolution layer is mainly used for
dimensionality reduction, setting the dimensionality reduction ratio r = 2. The second
convolution layer is used to restore the dimensions. Finally, the element value of channel
identifier Mc is controlled between 0 and 1 by sigmoid function, and the channel weight
information Ac ∈ R1×1×C is obtained. The channel attention feature matrix Uc ∈ RT×F×C

is obtained by weighting the input feature map M with Ac. The above process can be
expressed as:

Uc = [σ(W2R(W1Mc))]×M (14)

where R(·) represents the ReLU function, W1 ∈ R
c
r×C and W2 ∈ RC× c

r represent the
weights of the two convolution operations respectively, and σ(·) represents the Sigmoid
activation function. Finally, to reduce the information loss of the channel attention feature
matrix after channel weighting, the residual structure is used to fuse the channel attention
feature matrix and input feature map to obtain the final channel attention feature map
Ũc ∈ RT×F×C.

Ũc = Uc + M (15)

The other components, RTA and RFA, differ from RCA only in the dimension positions
of input features and output features after generalized transpose of input feature mapping,
but the computing process is consistent.
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2.2.2. Loss Function

Compared to other loss functions, cross entropy loss can avoid gradient dispersion
in gradient descent calculation, leading to the decrease of learning rate. So the cross
entropy loss function is a common objective function that can be divided into binary and
multi-classification cross-entropy loss functions. The proposed network model realizes a
multi-classification fault diagnosis based on TFCF time-frequency images of rolling bearing
vibration signals. Therefore, the multi-classification cross-entropy loss function is adopted,
and its expression is as follows:

Loss =
N

∑
i=1

yi log ŷi (16)

where N indicates the number of types of rolling bearing faults, yi indicates the actual label
value of category i, and ŷi indicates the predicted value of category i.

3. Experiments and Results

Firstly, the collected experimental data are sampled and sorted out, and three types of
fault signal are selected for time-frequency analysis. Time-frequency images are input into
the proposed neural network, and then ablation experiments and comparative analysis are
carried out. Finally, to verify the robustness of the proposed algorithm, tests are carried out
under different sample sizes, sampling frequencies and sampling time.

3.1. The Experimental Data

The data set used from the bearing dataset of the University of Ottawa [46]. The
sampling frequency of the test bench is 200 kHz. The encoder and acceleration sensor
measures the speed and bearing vibration signals. The measured data include normal,
inner race fault, and outer race fault. There are four speed shifting schemes, which are
acceleration (↑), deceleration (↓), acceleration then deceleration (↑↓) and deceleration then
acceleration (↓↑). The minimum speed in data collection is 9.9 Hz, and the original signal
is segmented with 20,000 sampling points to ensure that each sample contains as much
as possible a period. The length of each sample is also reduced to 800 to obtain a total
of 3600 samples, including 1200 for each condition, which is randomly divided into the
training set, validation set, and test set in the same ratio (6:2:2). More detailed information
is shown in Table 1.

Table 1. Bearing dataset of the University of Ottawa.

Bearing
Condition

Variable Speed
Condition Training Set Validation

Set Test Set Class
(Label)

Healthy state ↑ / ↓ / ↑↓ / ↓↑ 720 240 240 1
Inner race fault ↑ / ↓ / ↑↓ / ↓↑ 720 240 240 2
Outer race fault ↑ / ↓ / ↑↓ / ↓↑ 720 240 240 3

To verify the superiority of our proposed method, the proportion of samples between
the training set and the test set is still 3:1, in which the test set samples are the same in each
experiment, and the training set is randomly selected from the rest of samples in proportion.
In other words, the total sample size is 3600, the sample size of the test set is fixed at 720,
240 for each fault, and 2160 samples are randomly and evenly selected from the remaining
2880 samples in each experiment training set. The time-domain waveform of some samples
is shown in Figure 4a–c. It can be seen that the time-domain waveform of vibration signals
of rolling bearing with variable speed is complex, and different fault types contain signal
components with frequency transients, making it difficult to extract features directly.
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Figure 4. Time–frequency images of vibration signal of rolling bearing: (a–c) are time–domain
waveforms of normal, inner race fault and outer race fault samples respectively; (d–f) are STFT
time-frequency images corresponding to (a–c) respectively; (g–i) are TMSST time-frequency images
corresponding to (a–c); (j–l) are MSST time-frequency images corresponding to (a–c) respectively.
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3.2. Time-Frequency Image of Vibration Signal

To improve the model’s peformance, TFCF is used to transform vibration signals
into dual-channel time-frequency images containing both SCRVF and SCSVF. A sample is
randomly selected from each fault type, and their STFT, TMSST and MSST time-frequency
images are shown in Figure 4. It can be seen that a two-dimensional time-frequency image
converted from a one-dimensional vibration signal by a time-frequency analysis algorithm
can more intuitively reflect the variation rule of various frequency components in vibration
signal with time.

3.3. Model Parameter Setting

In the experiment of TFCF time-frequency image classification of rolling bearing
vibration signal, the setting of hyperparameters required by the training network model is
as follows. The model is trained through stochastic gradient descent in small batches, and
the sample size of small batches is set to 8. Adam algorithm is used to optimize the gradient
value of each weight update, and the initial learning rate is set to 0.001. At the same time,
L2 regularization is introduced to impose penalty constraints on weight parameters, and
the penalty factor is set to 0.0001. The equal interval attenuation strategy is adopted to
adjust the learning rate in the training process. The adjustment interval is set as five epochs,
the adjustment multiplier gamma is set as 0.5, and other parameters can be seen in Table 2.
The kernel size of the two convolution layers in the middle of RCA, RTA, and RFA modules
is 1× 1. The corresponding parameter settings in Table 2 refer to the number of output
channels of the two convolution layers. In addition, all models are trained and tested using
PyTorch deep learning framework and NVIDIA GeForce GTX 1650 GPU.

Table 2. RTFANet model parameter settings.

The Network Layer Nuclear Size Step Length Output Channel Output Size

Input - - - 2× 400× 800
Conv1 5× 5 1 6 6× 396× 796
ReLU - - - 6× 396× 796

Max Pooling 2× 2 2 - 6× 198× 398
RCA - - 3; 6 6× 198× 398
RTA - - 99; 198 6× 198× 398
RFA - - 199; 398 6× 198× 398

Conv2 5× 5 1 16 16× 194× 394
ReLU - - - 16× 194× 394

Max Pooling 2× 2 2 - 16× 97× 197
FC1 - - 120 1× 1× 120
FC2 - - 84 1× 1× 84
FC3 - - 3 1× 1× 3

Softmax - - 3 1× 1× 3

3.4. Ablation Experiments
3.4.1. Different Time-Frequency Image Input

TFCF images with rich time-frequency information are proposed as the input of
our diagnostic model. The time-frequency images of STFT, TMSST, MSST and TFCF
are input into RTFANet for experiments to verify their superiority. Considering that
the time-frequency images of STFT, TMSST and MSST are single-channel images, they
are directly copied and extended into dual-channel images to ensure the consistency of
model parameters. Ten experiments are conducted for each input, the training samples are
randomly selected for each experiment, and the diagnostic model is input to train until
convergence. During the training of optimal model obtained from ten experiments, the
loss of training set and accuracy of test set varies with the number of iterations, which
are shown in Figure 5. In addition, the average accuracy and standard deviation of ten
experimental results are recorded in Table 3.
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Figure 5. Training of RTFANet model under different inputs: (a) curve of training set loss; (b) curve
of the accuracy of the test set.

Table 3. RTFANet recognition results of different time frequency images input.

The Time-Frequency Image Average Recognition Accuracy (%) Standard Deviation (%)

TFCF 99.80 0.02
MSST 94.13 0.09

TMSST 93.51 0.06
STFT 85.62 0.23

It can be seen from Figure 5 that no matter which time-frequency images are used as
input. The model can converge to a small loss value eventually. It indicates that the model
has a solid fitting ability, but the recognition accuracy of the test set is inconsistent at the end.
It suggests that the information quality of images with different time-frequency is different,
directly affecting the recognition results. Combined with Table 3, it can be seen that STFT
has the worst effect, mainly because its time-frequency energy is too vague. MSST and
TMSST compress the time-frequency energy, while the time-frequency information of some
signal components is lost in compression, and the recognition effect is not good. While
TFCF directly splices MSST and TMSST into a dual-channel image without eliminating any
time-frequency information and achieves the highest average recognition accuracy.

To further explore the reasons for the best effect of TFCF input into RTFANet, we inves-
tigate the gradient-weighted class activation mapping of three types of TFCF images [47].
As shown in Figure 6, it can be seen that regardless of the fault type, the SCRVF, the SCSVF,
and the partial dispersion time-frequency information in the TFCF image, all contribute to
the final decision of the model. Therefore, it is more advantageous to use a TFCF image
with more time-frequency information as the input of the network model.

3.4.2. Different Model Combinations

To verify the effectiveness of the proposed method, different module combinations are
used to identify TFCF images. The average recognition accuracy and standard deviation
of ten experiments are recorded in Table 4, and the tick mark under the module in Table 4
indicates that the module is adopted in the recognition method. The variation curves of
training set loss and validation set accuracy of high accuracy models obtained by different
methods in ten experiments are shown in Figure 7. It can be seen that the proposed model
only converges after 7 epochs, which is faster than other methods.

Overall, the proposed method has the best recognition effect and the fastest conver-
gence speed.

By comparing the experimental results of methods 4 and 5, it can be seen that the
recognition effect is greatly improved after CNN is added to the neural network. Because
the same time-frequency energy appearing in different positions of time-frequency images
is essentially different, the traditional neural network directly reconstructs the tensor,
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completely ignoring the position information of the image. Since RCA introduces residual
structure to reduce the information loss of eigenmatrix after channel weighting, it can
be seen from methods 2 and 3 that RCA has a better effect than the channel attention
mechanism in traditional SENet [48]. Comparing the experimental results of method 1
and method 2, it can be seen that the effect of using only the channel attention mechanism
is not as good as adding an attention mechanism in all three dimensions. The main
signal components of each fault type are different, and the time and frequency dimensions
correspond to SCRVF and SCSVF, respectively. Time and frequency need to be further
assigned to the weight of the network.

Figure 6. Gradient–weighted class activation mapping for different fault samples: (a) normal;
(b) inner race fault; (c) outer race fault.

Table 4. Identification results of different combination models.

Number CNN SENet RCA RTA TFA FC Average Accuracy Standard Deviation

1
√

-
√ √ √ √

99.80 0.02
2

√
-

√
- -

√
97.17 0.11

3
√ √

- - -
√

93.09 0.10
4

√
- - - -

√
90.34 0.09

5 - - - - - - 81.5 0.46
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(a) (b)

Figure 7. Training of different combination models: (a) curve of training set loss; (b) accuracy curve
of the test set.

Figure 8 shows the confusion matrix of the optimal model on the test set in the ten
experiments of RTFANet. It can be seen that the accuracy of the test set is 99.86%, and only
one sample with an inner ring fault is incorrectly identified as the normal state. In contrast,
the other samples can be correctly identified. Therefore, it can be verified that the model
has good generalization ability.

Figure 8. RTFANet model confusion matrix on test set.

3.5. Comparisons with Other Methods

To verify the superiority of the proposed algorithm, Table 5 shows the recognition
accuracy of different rolling bearing fault diagnosis methods. As can be seen from Table 5,
the proposed method achieves the highest average accuracy of 99.86% under the same
working conditions. The methods in Table 5 fail to extract the complete time-frequency
information, and some even directly take the original signal as the input, which leads to
information overload and increases the training time. Moreover, the model also learns
irrelevant information, affecting the recognition accuracy. The proposed method introduces
an attention mechanism from three perspectives of the channel, time and frequency com-
bined with residual connection, which can obtain useful time-frequency information more
effectively and facilitate subsequent model diagnosis.
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Table 5. Comparison with other rolling bearing fault diagnosis methods.

Method Fault Types Accuracy (%)

TFCF+RTFANet (Proposed) 3 99.86
FRFT+SSA-DBN [4] 3 95

STFT+CNN [32] 3 96
WPT-MWSVD+SVM [5] 3 87.8

CNN-BLSTM [30] 3 99.2
ResNet-STAC-tanh [31] 3 90.77

RCMFE+SOF [6] 3 95.8

3.6. Model Performance Test

To further test the performance of the proposed method, different sample sizes, differ-
ent sampling times and different sampling frequencies of each sample are investigated. The
detailed experimental design is shown in Table 6. Ten test experiments are conducted under
each design, and the training set and test set are randomly assigned to each experiment in
a fixed proportion. The experimental results are shown in Figure 9.

Table 6. Experimental design of model performance test.

The Serial
Number

Sample Size of
Training Set

Sample Size of
Test Set

Sampling Time
(s)

Sampling
Frequency

A 2160 720 0.1 8
B 1800 1800 0.1 8
C 180 3420 0.1 8
D 108 3492 0.1 8
E 180 3420 0.05 8
F 180 3420 0.025 8
G 180 3420 0.05 4
H 180 3420 0.05 2

Combined with Table 6 and Figure 9, in general, a smaller sample size of the training
set, shorter sampling time, or reduced sampling frequency affects the model performance.
Still, the average accuracy is no less than 98%. Above a specific threshold condition, the
average recognition accuracy of the model is more excellent than 99.70%, and experiment
C is the best, with an average recognition accuracy of 99.90% and a standard deviation
of only 0.01%. In addition, according to experiments A, B, C and D, when the sample
size of the training set is less than 180, the accuracy decreases obviously. According to
experiments C, E and F, when the sampling time is less than 0.05 s, the accuracy decreases
obviously. According to experiments E, G and H, accuracy is decreased when the sampling
frequency is lower than 4 kHz. In other words, there are only 60 samples in each fault type
and the sampling time is only half of the rotation cycle of the lowest speed signal. And
when the sampling length only includes 200 sampling points, the model can still maintain
good performance.
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Figure 9. Experimental results of model performance test.

4. Conclusions

Vibration signals of rolling bearings have the problems of overload information of
time-frequency image and difficulty in fault diagnosis. To solve the problems, we propose
a fault diagnosis method based on time-frequency compression fusion and residual time-
frequency mixed attention network. The proposed method is verified on the bearing dataset
of the University of Ottawa, and carries out the performance tests under different sample
sizes, sampling times and sampling frequencies. The experimental results show that
the time-frequency information of fast, slow and diffuse signals all contribute to the fault
identification of the model and the TFCF time-frequency image can give full play to the
performance of the diagnosis model. The residual time-frequency mixed attention module
reduces the information loss after feature matrix weighting, and focuses on the important
time-frequency information from the three dimensions of the TFCF image channel, time and
frequency, which accelerates the convergence speed of the model training and improves
the recognition accuracy to 99.86%. The proposed diagnosis model can not only solve the
fault diagnosis under normal working conditions, but also maintain good performance
under small sample size, short sampling time and small sampling frequency, and has broad
application prospects.
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