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Abstract: Container terminals (CTs) play an important role in the modern logistics and transportation
industry. The utilization of automated guided vehicles (AGVs) can be effectively facilitated by
reducing their empty running. The existing strategies cannot guarantee the full load of AGVs during
their transportation because of the complex constraints of container scheduling. This work proposes
a double-cycling AGV scheduling model that ensures a full load of AGVs between the quayside and
the yard. The objective is to minimize the total waiting time of AGVs and ensure a high loading
rate of AGVs by scheduling loading/unloading containers. Furthermore, it takes the randomness
of the quay crane’s operational time into consideration. By assigning a time interval to AGVs’
arrival at a quayside, a container scheduling sequence is obtained based on a Hybrid Particle Swarm
Optimization (HPSO) algorithm with a penalty function. Via experiments, it shows that the proposed
model can obtain the least number of AGVs for container transportation, minimize AGVs’ total
waiting time, and ensure the high loading rate of AGVs.

Keywords: container terminals (CTs); automated guided vehicles (AGVs); hybrid particle swarm
optimization (HPSO) algorithm; double-cycling; container scheduling sequence

1. Introduction

Maritime transportation plays a vital role in the global economy, trade, and cultural
exchanges as a basic logistic mode. Container terminals (CTs) were developed as one of
the most critical components in logistic transportation systems. CTs consist of three major
facilities: quay cranes (QCs), yard cranes (YCs), and automated guided vehicles (AGVs).
AGVs cooperate with QC and YC operations. Effective task scheduling of AGVs is the key
to reducing the operating cost of CTs. In the terminal’s traditional transportation mode, it
is essential to ensure the working efficiency of the quay crane. Most terminals use more
AGVs to avoid waiting for the quay crane. However, this will increase the waiting time of
AGVs, thus reducing their utilization rate. Furthermore, the complex constraints among
quay cranes, yard cranes, and AGVs further deteriorate the utilization of AGVs.

Many studies focused on the real-time scheduling of AGVs over the past few decades.
For example, Mohammad and Saeed proposed a mathematical model composed of a job
shop scheduling problem and a conflict-free routing problem [1]. The objective was to
minimize AGVs’ delay time and achieve multi-AGV integrated scheduling. A two-stage ant
colony algorithm was proposed to solve it. Angeloudis and Bell studied job assignments of
AGVs in CTs under various uncertainty conditions [2]. A flexible algorithm for real-time
AGV scheduling was proposed. Luo et al. designed an algorithm to prevent AGVs from
collisions based on labeled Petri nets [3]. Ji et al. studied the combinatorial optimization of
two problems in the synchronous loading and unloading operation mode of the automated
container terminal. They designed two bi-level optimization algorithms based on a conflict
resolution strategy [4]. Wang and Zeng investigated the AGV dispatching and routing
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problem with multiple bidirectional paths to generate conflict-free routes. A mixed-integer
programming model was formulated to minimize the completion time of all jobs. A tailored
branch-and-bound algorithm was developed to solve the problem [5]. Zhong et al. studied
a conflict-free AGV path planning problem and rail-mounted gantry crane scheduling
problem [6].

In terms of AGVs’ offline path planning, Graziana et al. showed how timed Petri
nets can be efficiently used to solve problems related to resource planning in intermodal
freight transport terminals. They considered a real case study and simulated it based
on the timed Petri net model of the terminal [7]. Rashidi and Tsang formulated an AGV
scheduling problem as a least-cost flow model [8]. They proposed an extended Network
Simplex Algorithm (NSA+). Hu et al. analyzed a container-cluster operation and an optimal
scheduling strategy of the yard truck [9]. A multi-objective mathematical programming
model was established and then solved by a genetic algorithm. Niu et al. proposed a
cooperative strategy for scheduling trucks to minimize the total delay time of requests and
the travel time of yard trucks [10]. They applied a particle swarm optimization algorithm to
solve the problem. The studies, as mentioned above, significantly improved the utilization
of AGVs and the operational efficiency of CTs, but they cannot guarantee a full load and
ensure the least total waiting time of AGVs during their transportation. Hence, we propose
a double-cycling AGV route planning model in this work to maximize the loading rate and
minimize the waiting time of AGVs during their transportation.

In CTs, AGVs cooperate with the working of QCs and YCs. The work efficiency
of QCs directly affects the berth time, which is also an important research topic. Many
studies focused on an efficient quay crane scheduling problem (QCSP) under various
complex conditions. Huang and Li proposed a bounded two-level dynamic programming
algorithm aiming at a QCSP [11]. A method was proposed to evaluate the practicability
of the algorithm. Ji et al. considered optimizing a loading sequence in CTs [12]. A model
was established to integrate the loading sequence and a rehandling strategy under parallel
operations of multi-quay cranes. An improved genetic algorithm was proposed to solve
the model. Zhang and Kim attempted to minimize the operational cycle time of a QC for
unloading and loading containers in a ship bay [13]. They formulated a QCSP as a mixed-
integer programming model and solved it using a hybrid heuristic approach. Nguyen
and Kim compared various pooling strategies for constructing the pool [14]. Heuristic
algorithms were evaluated in terms of the total delay time of QC operations and the total
travel distance of AGVs. Zhen et al. studied an integrated optimization QCSP and yard
truck scheduling problem (YTSP) in CTs [15]. A mixed-integer programming model was
formulated and solved by a particle swarm optimization-based method. Zhang et al.
extended the QCSP by considering the stability of containers and proposed a QCSP with
stability constraints [16]. A bi-criteria evolutionary algorithm was proposed to solve it.
Most of the above QC scheduling methods fail to consider the impact of uncertain factors,
especially the tide fluctuation and manual operation, on QC transportation tasks, with a
few exceptions (Zhen, 2014 [17]; Sheikholeslami and Ilati, 2018 [18]). Uncertainties can
be good or bad for a transportation system (Wang and Wu, 2021 [19]), and we analyze
uncertainties in our model.

The dispatch of YCs is another crucial part of CTs. Most researchers combine the
scheduling of YCs and AGVs to formulate the model closer to reality. Zheng et al. investi-
gated single YC scheduling to minimize the total tardiness of tasks and focus on the case
with uncertain release times of retrieval tasks [20]. A two-stage stochastic programming
model was proposed, and a genetic algorithm and a rule-based heuristic were developed
to solve it, especially for large-scale instances. Ng and Mak studied the scheduling of
a YC to perform a given set of loading and unloading tasks with different ready times,
which minimizes the sum of the task waiting time [21]. A branch and bound algorithm
was proposed to solve it. Some studies focus on a yard crane scheduling problem (YCSP)
under various conditions. Javanshir et al. studied a YCSP among different blocks in CTs to
minimize cranes’ total travel time and the total delayed workload [22]. It was formulated
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as a mixed-integer programming model and solved by a branch-bound method. He et al.
addressed a YCSP with the uncertainty about the vessels’ arrival time and volumes [23]. It
optimized the total delay to the estimated ending time of all task groups based on a genetic
algorithm-based framework combined with a three-stage algorithm.

In CTs, a double-cycling scheduling model of QCs and YCs requires that a crane
transports a container, unloads it, and returns by taking another container. Meanwhile,
AGVs transport a container to its destination and bring another one back. At present,
double-cycling strategies are used in QCSP, YCSP, YTSP, and sequencing the loading of
the container (i.e., Container Sequencing Problem, CSP, which refers to sequencing the
loading/unloading of the container in the yard [24]), as shown in Table 1. Most of these
studies considering a double-cycling scheduling mode do not specifically consider the
uncertainty of QC operation. Most of these studies do not obtain specific AGV scheduling,
including which containers should be transported by each AGV and the sequence of
transporting these containers by an AGV. In this work, a double-cycling model is proposed
to realize the full load of AGVs by scheduling loading/unloading containers to minimize
the waiting time of the AGVs. A hybrid particle swarm optimization (HPSO) algorithm
with a penalty function is used to solve this issue.

Table 1. The problems solved by using double-cycling strategies.

Studies Scheduling Problem Uncertainty
Considered?

AGV Scheduling Sequence
Obtained?

Luo and Wu, 2015 [25] QCSP with YCSP No Yes
Zheng, Pang, Liu, and Xu, 2019 [26] QCSP with CSP No No

Cao et al., 2018 [27] Integrated QCSP-YTSP No Yes
Liu et al., 2015 [28] QCSP with CSP No No

Wang and Li, 2015 [29] QCSP with CSP No No
Nguyen and Kim, 2010 [30] YTSP Yes No

Meisel and Wichmann, 2010 [31] QCSP with CSP No No
Goodchild and Daganzo, 2006 [32] QCSP Yes No

Ahmed, Mohammed, Zayed, Alfalah
and Alkass, 2021 [33] Integrated QCSP-YTSP-YCSP Yes No

Our Work Integrated QCSP-YCSP Yes Yes

The rest of this paper is organized as follows. Section 2 describes a double-cycling
model and proposes a container scheduling sequence based on an HPSO algorithm.
Section 3 shows experimental results. Section 4 concludes this paper and discusses the
future work.

2. Materials and Methods
2.1. AGV Double-Cycling

This section describes the double-cycling model. Relevant assumptions are made for
QC, AGV, and YC. The related constraints are given.

2.1.1. Problem Description

In a CT, QCs, YCs, and AGVs are, respectively, responsible for loading/unloading
containers on ships, loading/unloading containers in the yard, and transporting containers
between the quayside and the yard. This work proposes a double-cycling scheduling model.
An AGV carries a container at the quayside, drives to the yard to unload it, takes another
one from the yard, and returns to the quayside for unloading. Such a process is repeated to
finish the handling of containers at CTs. First, we present the following assumptions:

1) Two QCs are used for loading and unloading containers on ships. One is responsible
for loading containers from an AGV to a vessel, and another QC is responsible for
unloading containers from a vessel to an AGV. After unloading at the first QC, AGVs
run empty to the other QC for loading and finally drive to the yard. After unloading
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at the yard, AGVs run to the next yard for loading and eventually go to the quayside.
Notice that more QCs can be divided into several pairs.

2) Tidal fluctuation and other factors will cause ship instability, resulting in QC op-
erations not being fully automated. At present, most QC operations need manual
assistance, resulting in the uncertainty of QC operation time. Etsuko mentions that the
QC operation time roughly conforms to Gaussian distribution [34]. The probability
is that the distributed value in (µ − 2σ, µ + 2σ) is 0.9544, so we assume that QC
completes the transportation of containers within the time (t + µ − 2σ, t + µ + 2σ),
where t is the QC operation time.

3) AGVs travel at a uniform speed during their transportation.
4) When transporting a container, the YC and the YC’s spreader are required to reach the

position of the container. To save time, YC can be prepared before the arrival of an
AGV [35], adopted in our work.

We set up two fixed bays on the ship for storing containers that need to be unloaded
and loaded, respectively. Notice that more bays can be divided into several pairs. AGVs
are fully loaded in and out of the yard and quayside, thus realizing the double-cycling of
AGVs. It is the basic constraint of the model. Figure 1 show the flow chart of this work.
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Figure 1. A double-cycling AGV scheduling mode.

The second constraint is that no delay of QCs should be guaranteed. QC operational
uncertainty leads to an uncertain time when an AGV arrives at the quayside. The latest
time required for an AGV to arrive at the quayside (LTQ) is considered. Because the time of
QC transporting containers conforms to the Gaussian distribution with parameters (µ, σ2),
LTQ is the moment when the QC finishes the transportation of the previous container.
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To make the algorithm and model more concise, we chose task points to represent the
transport of containers. A task point represents a container with its current position and
destination information. We give a detailed definition of the task point in Section 2.1.2.

2.1.2. Mathematical Model

Let N = {1, 2, . . . } represent the set of natural numbers, and Nm= {1, 2, . . . , m}. The
related symbols and decision variables are defined as follows in Tables 2–4.

Table 2. The symbols and their definitions.

Symbol Definition

M

M = {m1, m2, . . . , mn} is a set of task points, where mi =
{

Pi
1, w, Pi

2, Ti

}
, n is the number of task points.

For containers to be unloaded from ships, Pi
1 representsthe position of container ion the ship, wrepresents that

container i will be loaded at yard w, and Pi
2represents the destination of container i in the yard. For containers

to be loaded onto ships, Pi
1represents the destination of the container inthe ship, wrepresents that container i will be

unloaded at yard w, and Pi
2 represents the position of container ion the yard. Ti represents the LTQ of container i;

X a set of unloading task points that represent unloading the containers in the ship onto the yard;
Y a set of loading task points that represent loading the containers in the yard onto the ship;
l the number of AGVs;
ag the g-th AGV where 1 ≤ g ≤ l;
mb a virtual begin task point;
me a virtual end task point;
VQ average movement speed of QC;
∆ti average time of QC spreader grasping container i;
Dq

i the distance that a QC moves to from the position of the AGV to the position of container i;

Ci

a time− interval conforming to the Gaussian distribution, including the minimum and maximum time taken by QC to

transport container i, where Cii =
(

Ci
1 , Ci

2), Ci
1 and Ci

2 are the minimum time and maximum time for QC to transport
container i transportation, respectively;

VY moving speed of YC;

DY
ij

the moving distance of the YC from the position of container i to the position of container j. It represents the distance
from the I/O point to the position of container j when i = 0; it represents the distance of the YC moved from the position
of container i to the I/O point when j = 0;

Vy movement speed of spreader;

Dy
ij

the moving distance of the YC’s spreader from the position of container i to the position of container j. It represents the
distance of the spreader moving from the I/O point to the position of container j if i = 0; it represents the distance of the
spreader moved from the position of container i to the I/O point if j = 0;

Gy the speed at which the YC’s spreader moves up and down;
di the distance of the YC’s spreader moves to grab the container i;
Tq

i time taken by QC to transport container i;
Ty time required by the spreader to transport a container at the I/O point;
Tl

i time is taken by YC to load the container i;
Tul

i time is taken by YC to unload the container i;
Tg Tg ={t1, t2, . . . , t|Z| + 1}, where tg is the waiting time of ag;
Hij the empty running time of an AGV loading task point mi after unloading task point mj at the yard;
T the time interval between two consecutive AGVs exiting the quayside;
Tq1

i
the waiting time before task point i is unloaded at the quayside;

Tq2
i

the waiting time before task point i is loaded at the quayside;
T1

i the waiting time before task point i is unloaded in the yard;
T2

i the time taken for task point i to be unloaded in the yard;
T3

i the waiting time before task point i is loaded in the yard;
T4

i the time taken for task point i to be loaded in the yard.
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Table 3. The symbols used in the algorithm and their definitions.

Symbol Definition

Q particle swarm size;
T current iteration index;
tmax maximum iteration;
P particle fitness;

pBest
personal best position, a set of the coding schemes in our algorithm. The personal
best position means the optimal scheduling sequence for each particle in the
algorithm iteration process;

gBest global best particle.

Table 4. The decision variables and their definitions.

χi
j =

{
1 , an AGV transports task point j after task point i
0, otherwise

αg =

{
1, ag is fully loaded to drive out of the yard
0, otherwise

βg =

{
1, ag is fully loaded to drive out of the quayside
0, otherwise

γw
i =

{
0, the YC cannot be prepared in advance at yard w
1, the YC can be prepared in advance at yard w

δi =

{
1, task point i is transported to the quayside
0, task point i is transported to the yard

εi
w =

{
1, container i is loaded at yard w
0, container i is unloaded at yard w

ε =

{
1, an AGV loads containers at the same yard after unloading
0, an AGV loads containers at a different yard after unloading

The double-cycling model considers not only the efficiency of the QC but also the
waiting time of AGV. The objective function is the shortest waiting time for AGVs:

min ∑l
1 Tg (1)

where Tg is the waiting time of ag.
The constraints are defined as follows:

∑ χ
j
i = 1, ∀Mi ∈ M + {me} (2)

∑ χ
j
i = 1, ∀Mi ∈ M + {mb} (3)

∑ χx
x′ = 0, ∀Mx, Mx′ ∈ X (4)

∑ χ
y
y′ = 0, ∀My, My′ ∈ Y (5)

αk = 1, ∀ k ∈ Nm (6)

βk = 1, ∀ k ∈ Nm (7)

Ci
1 = (µ− 2σ) + VQ/Dq

i + ∆ti (8)

Ci
2 = (µ + 2σ) + VQ/Dq

i + ∆ti (9)

Ci
1 < Tq

i < Ci
2 (10)

Tl
i =

{
DY
(i−1)0
VY

+ TG , γw
i = 0

TG , γw
i = 1

(11)
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Tul
i =

 max
(

DY
(i−1)i
VY

,
Dy
(i−1)i
Vy

)
+ 2 di

Gy
+ max

(
DY

i0
VY

, Dy
i0

Vy

)
+ TG, γw

i = 0

TG , γw
i = 1

(12)

Ti = ∑i−2
0 Tq

k + Ci−1
2 , δi = 1 (13)

Ti
j = Tq

j +
Dq

i
VQ

(14)

Tq1
i = Tq1

i−1 + Tq
i−1 +

Dq
i

VQ
(15)

Tq2
i = Tq2

i−1 + Tq
i−1 +

Dq
i

VQ
(16)

T1
i =


0 , γw

i = 1
max

(
T3

i−1 + T4
i−1 − T, 0

)
, εi−1

w = 1, γw
i = 0

max(T1
i−1 + T2

i−1 +
DY
(i−1)0
Vy
− T, 0), εi−1

w = 0, γw
i = 0

(17)

T2
i =


TG , γw

i = 1
TG , εi−1

w = 1, γw
i = 0

max(
DY
(i−1)0
VY

,
Dy
(i−1)0
Vy

) + TG, εi−1
w = 0, γw

i = 0
(18)

T3
i =


max

(
DY

0(i−1)
VY

,
Dy

0(i−1)
Vy

)
+ di

Gy
+ TG , ε = 1

Hi(i−1) , γw
i = 1, ε = 0

max(T3
j + T4

j − Pij, 0), ε
j
w = 1, γw

i = 0, ε = 0

max(T1
j + T2

j − Pij, 0), ε
j
w = 0, γw

i = 0, ε = 0

(19)

T4
i =



max
(

DY
(i−1)i
VY

,
Dy
(i−1)i
Vy

)
+ 2 di

Gy
+ max

(
DY

i0
VY

, Dy
i0

Vy

)
+ TG , ε = 1

TG , γw
i = 1, ε = 0

max
(

DY
0i

VY
, Dy

0i
Vy

)
+ 2 di

Gy
+ max

(
DY

i0
VY

, Dy
i0

Vy

)
+ TG, ε

j
w = 1, γw

i = 0, ε = 0

max
(

DY
ji

VY
,

Dy
ji

Vy

)
+ 2 di

Gy
+ max

(
DY

i0
VY

, Dy
i0

Vy

)
+ TG, ε

j
w = 0, γw

i = 0, ε = 0

(20)

Equations (2)–(5) describe the container transportation mode at CTs, where (2) denotes
that all task points, including the virtual end task point, have only one prefix task point;
(3) shows that all task points, including the virtual, begin task point, have only one suffix
task point; and (4) indicates that all the unloading task points’ prefixes and suffixes are
not unloading task points. Equation (5) suggests that all loading task points’ prefixes and
suffixes are not loading task points. Equations (6) and (7) describe the double-cycling
mode, indicating that all AGVs driving out of the yard and the quayside must be fully
loaded, respectively. Equations (8) and (9) describe the minimum and maximum time
for QC to transport container i. The minimum time is the average time needed by the
QC transporting container i minus a time-interval conforming to the Gaussian distribu-
tion. The maximum time is the average time needed by the QC transporting container
i plus a time-interval conforming to the Gaussian distribution. Equation (10) describes
the uncertainty of the QC operation, indicating that no matter the loading operation or
unloading operation, the QC completes the transportation of container i within the time
interval [Ci

1, Ci
2]. Equations (11) and (12) describe the loading time and unloading time

of a container in the yard. Equation (11) represents the loading time of a container: 1) if
the YC cannot be prepared in advance, the YC must move from the position of the pre-
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vious container to the I/O point to transport the container. Thus, the loading time of a
container is the summation of the time that the YC moves to the I/O point plus the time
that the spreader transports a container; and 2) if the YC can be prepared in advance, the
loading time of a container is the time needed by the spreader transporting a container.
Equation (12) represents the unloading time of a container: 1) if the YC cannot be prepared
in advance, the YC moves from the position of the previous container to the position of the
target container. Thus, the unloading time of a container is the total time needed by YC
reaching the target container, the spreader grabbing the container, the YC moving to the
I/O point, and the spreader transporting a container at the I/O point; 2) if the YC can be
prepared in advance, the unloading time of a container is the time needed by the spreader
transporting a container. Equation (13) describes LTQ. For container i, LTQ is the moment
when the QC completes transporting container i − 1. Equations (14) and (15) describe the
situation of AGVs entering and leaving the quayside. Equation (14) indicates the time
span between two consecutive AGVs driving out of the quayside. The time interval is
the loading time of the second AGV in the quayside. Equation (15) indicates the waiting
time before task point i is unloaded at the quayside. The waiting time is the previous task
point’s waiting time before unloading plus the unloading time of the previous task point.
Equation (16) indicates the waiting time before task point i is loaded at the quayside. The
waiting time is the previous task point’s waiting time plus the previous task point’s loading
time. Equations (17)–(20) describe the situation of AGVs entering and leaving the yard.
Equation (17) indicates the waiting time of task point i before it is unloaded in the yard. It
describes two cases: 1) if the YC can be prepared in advance, the waiting time is 0; 2) if the
YC cannot be prepared in advance, there are two situations: if the YC is loading a container,
the waiting time is the previous task point’s waiting time plus the previous task point’s
loading time minus the time interval between two consecutive AGVs driving out of the
quayside. If the YC is unloading a container, the waiting time is the previous task point’s
waiting time plus the previous task point’s unloading time minus the time interval from
the arrival at the yard at the previous task point. Equation (18) depicts the time taken
for task point i to be unloaded in the yard. Specifically, 1) if the YC can be prepared in
advance, the unloading time is the time needed by the spreader transporting a container
at the I/O point; 2) if the YC cannot be prepared in advance, there are two situations. If
the YC’s previous operation is a loading operation, the YC stops at the I/O point after
transportation, and the unloading time is the time the spreader transports the container.
If the YC’s previous operation is an unloading operation, the unloading time is the time
needed by YC moving to the I/O point plus the spreader transporting a container at the
I/O point. Equation (19) describes the waiting time before task point i is loaded in the yard.
Specifically, 1) if AGVs are loaded in the same yard, the waiting time is the time needed by
YC moving to the I/O point after the unloading; 2) if the AGVs are loaded in another yard,
there are two situations. When the next target yard’s YC can be prepared in advance, the
waiting time is the time needed by the AGV running empty to the target yard. When the
next target yard’s YC cannot be prepared in advance, there are also two situations: if the
YC is loading a container, the waiting time is the previous task point’s waiting time plus
the task point’s loading time minus the empty running time of AGV; if the YC is unloading
a container, the waiting time is the previous task point’s waiting time plus the previous task
point’s unloading time minus the empty running time of the AGV. Equation (20) depicts
the time taken for task point i to be loaded in the yard. Specifically, 1) if the AGV is loaded
in the same yard after unloading, the loading time is the time needed by the YC moving
to the position of the container and transporting it, the YC moving to the I/O point, and
the spreader transporting a container at the I/O point; 2) if the AGV needs to be loaded in
other yards after unloading, there are two situations. If the YC can be prepared in advance,
the loading time is the time needed by the spreader transporting a container at the I/O
point. If the YC cannot be prepared in advance, there are two situations. If the YC is loading
a container, the loading time is the time needed by the YC to move to the position of the
target container and transport it. If the YC is unloading a container, the loading time is the
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time needed by the YC moving to the target container and transporting it, the YC moving
to the I/O point, and the spreader transporting a container at the I/O point.

2.2. HPSO Algorithm with Penalty Function

This paper aims to find an appropriate container scheduling sequence. It minimizes
the total waiting time of AGVs and satisfies the double-cycling constraint and the LTQ
constraint. Obviously, it is an NP-hard problem. Hence, we propose a hybrid particle
swarm optimization (HPSO) algorithm with a penalty function. According to the tradi-
tional particle swarm optimization (PSO) algorithm, HPSO updates particle position by
tracking the extreme value. It introduces crossover and mutation operations. The HPSO
algorithm searches for the optimal solution using crossover, global crossover, and mutation
operations [36].

2.2.1. Individual Coding

The algorithm adopts a single chromosome encoding method. Each particle includes
a coding scheme. First, Z denotes a set of segmentation numbers, |Z| = l − 1, where
|Z| represents the number of elements in set Z. A chromosome is denoted as S = <x1,
. . . , xi, . . . , y1, . . . , yj, . . . , z1, . . . , zo>, where x1–xi ∈ X are the indexes of unloading task
points, y1–yj ∈ Y are the indexes of loading task points, and z1–zo ∈ Z are the segmentation
numbers. The segmentation numbers are used to segment the chromosome to obtain
scheduling sequences of AGVs.

For example, we assume that an unloading task point set is {x1, x2, x3, x4, x5}, a loading
task points set is {y1, y2, y3, y4, y5}, and a segmentation number set is {z1, z2, z3}. The
chromosome is S = <x1, x2, x3, x4, x5, y1, y2, y3, y4, y5, z1, z2, z3>. The three segmentation
numbers divide the chromosome into four parts, as shown in Figure 2. Each part represents
a scheduling sequence of an AGV, denoted by S1–S4, respectively. S1’s scheduling sequence
is <x4, y2>, S2’s scheduling sequence is <x5, y4>, S3’s scheduling sequence is <x1, y1, x3,
y3>, and S4’s scheduling sequence is <x2, y5>. The AGVs’ scheduling sequence is shown in
Figure 3.
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2.2.2. Particle Fitness

The particle fitness is denoted by P. A penalty function is used to calculate P for
searching for the problem’s optimal solution. We have:

P =

{
a ∗ Pq + T , k = 0

k ∗ Pu , k > 0
(21)

where k represents the number of task points that do not conform to double-cycling, a
represents the number of task points that do not conform to LTQ, Pq denotes a penalty
coefficient for the LTQ, and Pu denotes a penalty coefficient for the double-cycling.

Particle fitness P includes 1) all AGVs’ waiting time and 2) the penalty value of task
points in the scheduling sequence that do not conform to the LTQ. A solution may not meet
the basic constraint of double-cycling, so before calculating P, the scheduling sequence
should be judged whether it meets the basic constraint of double-cycling. If not, the particle
fitness P is adjusted to the k ∗ Pu. The smaller the particle fitness, the better the scheduling
sequence. We present an algorithm to solve the double-cycling model based on the HPSO
algorithm in Algorithm 1. A flow chart of the algorithm is shown in Figure 4.

Algorithm 1 AGV double-cycling algorithm

Procedure HPSO
Input: Unloading task point set X, loading task point set Y, AGV number l, population size q,
maximum iteration number tmax, the LTQ penalty coefficient Pq, the double-cycling penalty
coefficient is Pu, particle fitness P, personal best position pBest, and global best particle gBest.
Output: gBest
for each particle i

Randomly Initialize a coding scheme Si for particle i
Calculate the fitness of particle i and set pBesti = Si

end for
gBest = min {pBesti}

while t < tmax
for I = 1 to q

Perform individual crossover, global crossover, and mutation operations to update the
coding scheme of particle i

Calculate the fitness of particle i
if fitness (Si) < fitness (pBesti)

pBesti = Si;
if fitness (pBesti) < fitness (gBest)

gBest = pBesti;
end for
t = t + 1;

end while
print gBest

end procedure
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3. Results

Matlab_R2019a was used to solve the double-cycling model. First, we randomly
generated a container scheduling sequence. In this work, a queue was formulated for
each QC or YC. The task points were arranged in queues according to the container’s
transportation order of the container scheduling sequence. The waiting time of the task
points and the number of task points that did not meet the LTQ were calculated according
to the relationship among the task points in the queue. Then, the scheduling sequence with
the least number of task points that did not meet the LTQ and the least AGV waiting time
were obtained using an HPSO algorithm. We then analyzed some critical parameters.

Corresponding waiting areas were set up at the quayside and the yard for storing
AGVs that needed to wait. AGVs in the waiting area could turn off the engine or keep the
engine on for waiting according to the estimated waiting time. The waiting time of the AGV
that remained after starting the engine was a key to be considered in the double-cycling
model. Table 5 show the data obtained in Qingdao Port from our field investigation.

Table 5. The data obtained in Qingdao Port.

Speed of QC 50 m/min
Speed of QC spreader 240 m/min
Grasping speed of QC spreader 180 m/min
Average time for QC to transport containers 60 s
Average travel time from the quayside to the yard 30 s
Speed of YC 270 m/min
Speed of YC spreader 180 m/min
Grasping speed of YC spreader 60 m/min
Average time for YC to transport containers 74 s
Speed of AGV 3 m/s
AGV travel time between two YCs 15 s
AGV travel time between two QCs 15 s
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Table 6 show experimental results considering the total waiting time of the AGVs
(Total Waiting Time), the number of task points that did not conform to LTQ (Not-Conform
LTQ), the number of task points that did not conform to double-cycling (Not-Conform
Double-cycling), and the fitness value.

Table 6. Results of multiple experiments in our double-cycle model.

Experiment
Round

Not-Conform
Doble-Cycling

Not-Conform
LTQ Fitness Value Total Waiting

Time (s)

1 0 0 944 944
2 0 0 1012 1012
3 0 0 939 939
4 0 0 941 941
5 0 0 965 965
6 0 0 1020 1020
7 0 0 1032 1032
8 0 0 1055 1055
9 0 0 960 960
10 0 0 1073 1073
11 0 1 1989 989
12 0 4 41,043 1043

First, a time disturbance that conformed to the Gaussian distribution was added to the
QC operation time. We randomized the assignment according to the Gaussian distribution,
so the results were not the same each time. In the double-cycling model, the experimental
results showed that most scheduling sequences satisfy both double-cycling and LTQ. This
work simulated the time disturbance existing in the QC operation, so a few experimental
results failed to satisfy LTQ at all task points on the basic constraint of double-cycling.
The number of task points that did not conform to LTQ was significantly higher in the
last experiment than in other experiments. This situation was generally caused by the
significant difference in the QC operation time in the last experiment and other experiments’
QC operation time, resulting in a severe phenomenon of AGV delays. The QC operator
caused the time disturbance of QC operating time. Therefore, we think that the AGV could
not reach the quayside in time due to the operator’s operation error. This part of the data
should be discarded or recalculated. However, according to the experimental results in
Table 6, there exists the phenomenon that some AGVs’ scheduling sequence was empty
in the optimal scheduling sequence, which led to resource waste. To further improve the
efficiency of the double-cycling system, this work continued to consider the influence of
the number of AGVs on the efficiency of the double-cycling system. Tables 7–11 show the
experimental results of changing the number of AGVs under a different number of task
points on the base constraint of double-cycling, including the total waiting time of AGV
and the number of task points that do not conform to LTQ. We selected three experimental
results for each number of AGVs.
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Table 7. The experimental results of different number of AGVs at 10 task points.

Number of
AGVs

Number of Task
Points

Experiment
Round

Total Waiting
Time (s)

Not-Conform
LTQ

2 10
1 428 4
2 496 4
3 557 5

3 10
1 449 0
2 405 0
3 478 0

4 10
1 511 0
2 481 0
3 527 0

Table 8. The experimental results of different number of AGVs at 20 task points.

Number of
AGVs

Number of Task
Points

Experiment
Round

Total Waiting
Time (s)

Not-Conform
LTQ

3 20
1 1122 4
2 1110 6
3 1086 5

4 20
1 1005 0
2 1061 0
3 1004 0

5 20
1 973 0
2 929 0
3 944 0

6 20
1 1086 0
2 1112 0
3 1061 0

Table 9. The experimental results of different number of AGVs at 30 task points.

Number of
AGVs

Number of Task
Points

Experiment
Round

Total Waiting
Time (s)

Not-Conform
LTQ

4 30
1 2014 0
2 2001 7
3 1955 2

5 30
1 1903 0
2 1890 0
3 1910 0

6 30
1 1818 0
2 1839 0
3 1829 0

7 30
1 1847 0
2 1861 4
3 1823 0

8 30
1 1843 0
2 1857 0
3 1928 0
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Table 10. The experimental results of different number of AGVs at 40 task points.

Number of
AGVs

Number of Task
Points

Experiment
Round

Total Waiting
Time (s)

Not-Conform
LTQ

4 40
1 2689 0
2 2721 5
3 2717 1

5 40
1 2498 0
2 2444 0
3 2400 0

6 40
1 2679 0
2 2687 0
3 2624 0

7 40
1 2634 0
2 2618 0
3 2622 0

8 40
1 2584 0
2 2653 0
3 2678 0

Table 11. The experimental results of different number of AGVs at 50 task points.

Number of
AGVs

Number of Task
Points

Experiment
Round

Total Waiting
Time (s)

Not-Conform
LTQ

5 50
1 3387 0
2 3453 2
3 3501 12

6 50
1 3398 0
2 3296 0
3 3438 2

7 50
1 3420 0
2 3369 0
3 3434 0

8 50
1 3333 0
2 3308 0
3 3610 0

For the different number of task points, we set different numbers of AGVs to transport
them. The number of AGVs was gradually reduced until the constraint of conforming
to LTQ could not be satisfied at all task points in most experiments, and the number of
AGVs was set as the lower bound to transport the number of task points successfully. The
number of AGVs was gradually increased until some AGVs’ scheduling sequence was still
empty in most experiments, and the number of AGVs was set as the upper bound under
the number of task points. Tables 7–11 show that for different numbers of task points, there
was a corresponding number of AGVs to ensure that all task points met LTQ and had the
minimum waiting time. For the number of task points in Tables 7–11, the appropriate AGVs
were 3, 4, 5, 5, and 6, respectively. Too few AGVs will increase the number of task points
that do not conform to LTQ, and too many AGVs will result in an increase in the waiting
time of AGVs. Therefore, only an appropriate number of AGVs can improve the efficiency
of the double-cycling model and make full use of transportation resources. In the real world,
we can deal with containers on a ship layer by layer to break down a significant problem
into more minor ones, and our model can then be applied. As mentioned above, the time
disturbance of QC operation obeys different Gaussian distributions. This work discusses
the influence of QC operations conforming to different Gaussian distribution models on the
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double-cycling system. Table 12 show the experimental results under different Gaussian
distributions with 30 task points and five AGVs.

Table 12. The influence of QC conforms to different Gaussian distributions with 30 task points and
5 AGVs.

Experiment
Round

µ=4, σ=4 µ=4, σ=8 µ=8, σ=8 µ=8, σ=16

Total
Waiting
Time (s)

Not-
Conform

LTQ

Total
Waiting
Time (s)

Not-
Conform

LTQ

Total
Waiting
Time (s)

Not-
Conform

LTQ

Total
Waiting
Time (s)

Not-
Conform

LTQ

1 1813 0 1681 0 1871 0 2120 0
2 1797 0 1776 0 1845 0 2265 2
3 1695 0 1742 0 1876 0 1969 0
4 1782 0 1916 0 1947 0 2071 0
5 1861 0 1790 0 2067 2 1663 0
6 1882 0 1847 0 1914 0 1870 0
7 1831 0 1943 0 2221 0 2260 4
8 1849 0 1733 0 2020 4 1977 0
9 1812 0 1845 0 1851 0 2309 2

10 1821 0 1912 0 2019 0 1965 1

The smaller the µ and σ mean QC operator’s operation experience more affluent, and
the smaller the time disturbance of the QC operation is. When µ = 4, σ = 4, the AGV’s
waiting time fluctuates around 1814 s, with almost no QC delay. With the increase of µ and
σ, the AGV waiting time fluctuates, and the QC delay becomes more and more frequent.
The rise of σ leads to the increase of the time disturbance of QC operation, resulting in the
AGV waiting time and the number of task points that do not conform to LTQ fluctuating
significantly. The increase of µ postpones the time disturbance interval of QC operation,
resulting in the AGV waiting time being longer. The experimental results show that the
more experienced the QC operator is, the lower the AGV waiting time and QC delay times.

According to the model presented and relevant experimental results in this work, as
long as the information of the task points set can be obtained, the iterative calculation of the
task points set can be carried out in advance. The optimal container scheduling sequence is
selected by adjusting the relevant factors, which proves the feasibility of the double-cycling
model in practical situations. In the real world, we only need to consider the top layer of
containers in the ship to break down the large problem into several small sub-problems.
The sizes of the experiments conform to the real situation.

To ensure that the HPSO algorithm is excellent, the Simulated Annealing (SA) algo-
rithm and Genetic Algorithm (GA) are designed for comparison in this work. It assumes
that the success rate is S and the total number of experiments is E, where the number
of successfully obtaining scheduling sequences that satisfy both LTQ and double-cycling
constraints is e. The algorithm’s success rate is:

S =
e
E
× 100% (22)

Tables 13–15 show that the three algorithms are compared with the success rate under
the different number of task points and the success rate under the different numbers of
µ and σ. Table 15 show the average execution time of the algorithm under the different
number of task points.

Table 13 show that HPSO has the highest success rate in obtaining effective solutions.
Table 14 show that HPSO has the most stable performance under different time disturbances.
Table 15 show the HPSO algorithm takes the least time.
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Table 13. The success rate of the algorithm under different number of task points.

Number of Task Points GA HPSO SA

12 90.19% 98.41% 88.23%
16 86.27% 98.33% 80.39%
20 84.31% 98.27% 75.55%
24 76.47% 96.07% 68.62%

Table 14. The success rate of the algorithm under different µ and σ.

(µ, σ) GA HPSO SA

(4, 4) 88.46% 98.38% 87.23%
(4, 8) 86.27% 98.50% 85.10%
(8, 8) 82.35% 98.30% 82.22%
(8, 16) 78.43% 98.14% 74.5%

Table 15. The average execution time of the algorithm under different number of task points.

Number of Task Points GA HPSO SA

12 25.96 s 12.85 s 32.76 s
16 28.87 s 14.82 s 41.13 s
20 42.65 s 17.12 s 69.50 s
24 65.42 s 18.24 s 113.38 s

Meanwhile, Tables 13–15 show when the values of the µ and σ are small, the success
rate is high. With the increase of the values of µ and σ, the algorithms’ success rate gradually
declines, and the average execution time of the algorithms is more extended. Only the
HPSO algorithm maintains a 90% success rate and a short average execution time. The
reason for this result is the uncertainty of the QC operation. If the number of task points or
the value of µ and σ increases, the transportation uncertainty on the quayside increases,
resulting in an increasing number of task point sequences that cannot satisfy LTQ and
double-cycling constraints.

4. Conclusions

To improve the utilization rate of AGVs in the process of CTs, this work proposes
a double-cycling AGV scheduling model, which specifies that AGVs should enter and
exit the yard and quayside with the full load during transportation. It reduces the empty
running and minimizes the total waiting time of AGVs. The uncertainty of QC’s operation
time is also considered. The container scheduling sequence is obtained by arranging the
loading and unloading of containers based on the HPSO algorithm with a penalty function.
The double-cycling mode can be adopted whenever containers need to be loaded and
unloaded simultaneously. If the numbers of loading task points and unloading task points
are not equal, we can choose some of the task points and use the double-cycling mode. We
can adopt a multi-QC transportation mode for other complicated cases, and the QCs are
divided into groups by the divide-and-conquer strategy. Each group has two quayside
cranes for loading and unloading, respectively. The proposed model and algorithm are still
key to realizing double cycling. More heuristic algorithms [37–47] will be used to solve the
proposed problem in our future work.
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