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Abstract: The rapid development of industrialization and urbanization has had a substantial impact
on the increasing air pollution in many populated cities around the globe. Intensive research has
shown that ambient aerosols, especially the fine particulate matter PM2.5, are highly correlated with
human respiratory diseases. It is critical to analyze, forecast, and mitigate PM2.5 concentrations. One
of the typical meteorological phenomena seducing PM2.5 concentrations to accumulate is temperature
inversion which forms a warm-air cap to blockade the surface pollutants from dissipating. This paper
analyzes the meteorological patterns which coincide with temperature inversion and proposes two
machine learning classifiers for temperature inversion classification. A separate multivariate regres-
sion model is trained for the class with or without manifesting temperature inversion phenomena, in
order to improve PM2.5 forecasting performance. We chose Puli township as the studied site, which is
a basin city easily trapping PM2.5 concentrations. The experimental results with the dataset spanning
from 1 January 2016 to 31 December 2019 show that the proposed temperature inversion classifiers
exhibit satisfactory performance in F1-Score, and the regression models trained from the classified
datasets can significantly improve the PM2.5 concentration forecast as compared to the model using a
single dataset without considering the temperature inversion factor.

Keywords: PM2.5; temperature inversion; classification; regression; forecast; machine learning

1. Introduction

The growth of economic and industrial development inevitably threatens the preser-
vation of the natural environment. One of the sustainable development goals is to promote
green trade, which produces low carbon levels during product manufacturing, transporta-
tion, use, and end-use disposal. Some of the production emissions are toxic, especially for
the particulate matter of diameter ≤ 2.5 µm (PM2.5), and they can significantly spoil human
health. Many researches have shown that PM2.5 concentrations are greatly related to respi-
ratory diseases [1] and cancer development [2]. It is reported by World Health Organization
(WHO) that nearly 3 million people were killed due to ambient PM2.5 in 2012 [3].

The apportionment of PM2.5 covers a wide range of chemicals such as sulfate, nitrate,
ammonium, carbonaceous compounds, crustal elements, organic compounds, and free
radicals [4]. These chemical compositions come from three main sources [5]: natural, an-
thropogenic, and secondary transformation. The natural source comes from environmental
soil dust, crustal elements, volcanic eruptions, sea salt, biomass, etc. The anthropogenic
source is emitted from the economic activities ranging from vehicle exhaust, burning, coal
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and gasoline combustion, to petrochemical production and steel refinery. The secondary
transformation source is contributed by photochemical reactions of precursors such as SO2
and NOx. The air pollution incurred by these sources may influence different-sized over
various durations. The size of the pollution area could be small such as incense burned
during temple worship. Vehicle traffic usually causes a line pollution along the roads. For
pollution resulting from volcanic eruptions or large petrochemical complexes, the area of
pollution coverage can be as large as a city.

PM2.5 pollution, once emitted from various sources, will drift in the air and transport
to downstream zones. Some particular geographic terrains such as valleys, basins, and
hillsides could easily trap the PM2.5 flow to collectively concentrate at local regions. Usually,
the concentration lasts for several hours and scatters away with wind flows. However,
it may last for several days if the weather condition prevents the concentration from
scattering. One such notorious weather condition is the temperature inversion which forms
a warm-air cap above the cooler ground surface, trapping the PM2.5 concentrations under
the warm-air cap.

Temperature inversion is a commonly appearing scenario in Taiwan and frequently
causes high PM2.5 concentrations at particular places. This paper chooses Puli township as
the study site because it is a basin surrounded by mountains and often sees temperature
inversion. We observe that there is high association between the occurrence of high PM2.5
incurred by temperature inversion and some weather patterns. One such pattern is that
there is no precipitation and the wind is relatively calm. If the temperature inversion
phenomenon can be recognized by analyzing the weather patterns, we speculate that
the estimation of PM2.5 concentration based on regression of weather variables would be
more accurate.

The contributions of this paper include the following. (1) Many researches have
shown that temperature inversion is one of the leading causes for observing high PM2.5
concentrations. Puli is a basin township which easily seduces temperature inversion. To
the best of our knowledge, there is no existing research which analyzes the meteorological
scenarios of temperature inversion for improving the PM2.5 prediction performance. This
paper presents the first proposal in this research direction. (2) To construct a more effective
model for PM2.5 concentration forecasting, two machine-learning-based classifiers, namely,
the CART (classification and regression trees) and CNN (convolutional neural networks),
are developed to distinguish the test days into two classes. One class includes the days with
temperature inversion, the other class includes the rest. The classification performances of
the two classifiers are compared in terms of various metrics. (3) The meteorological features
of the two training classes are contrasting and they have different relationships with the
PM2.5 concentrations. A separate regression model for PM2.5 forecasting is trained for each
group to enhance the overall prediction performance. (4) Our experimental results with the
Puli PM2.5 and meteorology datasets during the period from 2016 to 2019 show that the
models considering the temperature inversion factor reduce the forecast errors by 4–9%
and 2–7% in terms of RMSE and MAE, as compared to the original model.

The remainder of this paper is organized as follows. Section 2 reviews the relevant
researches on analyses of PM2.5 concentrations in Taiwan, temperature inversion phe-
nomenon, and existing PM2.5 estimation approaches. Section 3 elucidates the proposed
method for PM2.5 forecast. Section 4 presents the experimental results and comparative
performances. Finally, Section 5 concludes this work.

2. Literature Review
2.1. Analysis of PM2.5 Concentration in Taiwan

The west coast of central and southern Taiwan, which accommodates petrochemical
complexes, coal combustion power plants, industrial parks, and national highways, is
notorious as one of the heaviest-polluting regions in Taiwan [6]. Moreover, the PM2.5/PM10
ratio for central and southern Taiwan is around 61–67%, which is higher than the 54–59%
measured for northern Taiwan [7]. These studies show that the air pollution in central
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and southern Taiwan is not only higher than that in northern Taiwan, but its apportion-
ment is also more harmful to human health. Several studies have been conducted in
these regions to explore the pollution apportionment and transportation routes. The back
trajectory model was applied in [8] and it was found that winter aerosols concentrate at
Changhua county because of the northwestern wind passing over Mongolia, northern
China, and central-western Taiwan. Meanwhile, the southwestern wind in spring and
summer blows the soil and crustal elements in the air from the river banks and carries
the emissions from coal and oil combustions at the petrochemical complex and the power
plants. A case study of 22 polycyclic aromatic hydrocarbons (PAHs) was conducted in the
same place [2]. The receptor-based apportionment model is applied to analyze the PAH
compounds. The lifetime excess cancer risk (ECR) from inhalation exposure to PAHs is
4.7 × 10−5, which is nearly fifty times higher than the guideline limit (10−6) released by
United States Environmental Protection Agency (USA EPA). Hsu and Cheng [6] studied
the meteorological influence on PM2.5 concentrations in Yunlin County which is near to
two large-scale coal-fired power plants and one petrochemical complex. It is shown that
the weather pattern with a continental anticyclone or a stagnant local circulation results in
high PM2.5 concentrations from industrial production. Kaohsiung is another southern Tai-
wanese city which has high pollution concentrations due to industrialization. Kuo et al. [9]
studied the factors most influencing PM2.5 intensities in Kaohsiung and found that the
most abundant PM2.5 chemical components were SO2−

4 , NO−3 , elemental and organic car-
bon. SO2−

4 constitutes 29.8% of the PM2.5 mass and it is formed by the oxidation of SO2
emitted from diesel vehicles and coal/oil combustion which are strongly related to oil and
steel industries in Kaohsiung. A population-based study [10] conducted by Chang Gung
Memorial Hospital (the largest medical service system in Taiwan) in 2012 showed that
the number of emergency room visits for respiratory disease are highly associated with
the increase in ambient PM2.5 concentrations. This phenomenon is more significant for
southern Taiwanese districts.

Aside from the industrial production and traffic emissions, some particular anthro-
pogenic activities occasionally trigger pollution events. On every 9 January of the lunar
calendar, Taoists burn incense and joss papers at homes and temples to celebrate the
birthday of the First God. A case study [11] has shown that there is a rapid increase of
PM2.5 concentrations in almost all residential regions of Taiwan during the religion rit-
ual. In Chinese custom, families gather outdoors to attend moon-watching activities at
the Mid-Autumn Festival (MAF) Day (15 August of the lunar calendar). In Taiwan, the
moon-watching activities are a barbecue festival, and many people gather at households
or in the streets. Tsai et al. [12] studied the relationship between the MAF phenomenon
and the PM2.5 variations. The result shows that the PM2.5 mass concentration is the highest
during the MAF, followed by the period leading up to the MAF, and it is the lowest after
the MAF.

In addition to locally produced pollutions, long-range transported pollutions from
other countries significantly affect Taiwan’s air quality during different seasons and weather
conditions. For instance, every autumn pollutants are carried into Taiwan by the northeast
monsoon [13], and in spring the air quality of Taiwan is usually spoiled by north Asian
dust storms [14] and the ambient particles transported from northern China [15].

2.2. Temperature Inversion

Air pollution is more serious under particular atmospheric stagnation conditions.
Normally, the temperature in the troposphere (from 0 to 11,000 m elevation) decreases by
0.65 degrees Celsius for every 100 m of elevation. The temperature variation phenomenon
promotes the convection of aerosols (see Figure 1a). However, at occasional weather
conditions such as the radiation cooling at night, the cold air plunges down through
the warm air and the warm air forms a cap above the ground-level cold air, causing the
temperature layer to be inversed. Such temperature inversion will trap the convection of
the surface air limited below the warm-air cap and exacerbate the air pollution as shown in
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Figure 1b [16,17]. It was indicated in [18] that the PM2.5 concentration is raised up by 54%
due to the temperature inversion at the three observation sites investigated in their study.
Tran and Mölders [19] investigated the pollution days observed in Fairbanks, Alaska, and
they found that all of the 128 winter pollution days during the period between 2004 and
2009 are related to phenomenon of the temperature inversion.
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Figure 1. Temperature inversion. (a) Normal aerosol convection; (b) inhibited aerosol convection
under the warm air inversion layer.

Puli in Taiwan is a basin township surround by mountains 1000 to 2000 m tall, easily
encouraging temperature inversion at nights. Air pollution is therefore hard to dissipate
if the wind is calm. This motivates us to explore the relationship between meteorological
variables (air pressure, temperature, relative humidity, and wind speed) of temperature
inversion and the PM2.5 concentrations, in order to enhance the prediction accuracy by
discriminating between the days with and without temperature inversion. We hypothesize
that such a prevailing predictor for PM2.5 concentrations can be trained by partitioning the
training data into the two salient classes.

2.3. PM2.5 Forecasting

The existing PM2.5 forecasting approaches fall into three prevailing categories. (1) Re-
gression or autoregression methods: The regression methods require explanatory variables
in addition to the PM2.5 series itself, while the autoregression methods need only the PM2.5
series. Regression methods can be effective if the selected explanatory variables are infor-
mative and sufficient to describe the PM2.5 concentrations. The widely used explanatory
variables include wind speed and direction, precipitation, temperature, relative humidity,
atmospheric pressure, land use, traffic amount, road types, satellite images, to name a
few. The effectiveness of each explanatory variable depends on the climate ecology and
anthropogenic activities in the studied location. Both linear [20–22] and nonlinear [23–25]
regression models have been employed in the literature. Autoregression methods focus
on discovering the temporal trends contained in the PM2.5 time series. Autoregressive
integrated moving average model (ARIMA) was adopted in [26] to explore the short-term
time series and estimate the mean daily PM2.5 concentration. Generalized autregressive
conditional heteroscedasticity (GARCH) model was used in [27] to capture linear and
nonlinear panel information for PM2.5 concentrations forecasting. (2) Machine learning
methods: Among others, support vector machine (SVM) and artificial neural networks
(ANN) are the most popular ones. Mogollón-Sotelo et al. [28] constructed an SVM to
forecast PM2.5 concentrations in Bogotá which is a tropical city with complex terrains. The
SVM model is trained to represent the behavior of days with high PM2.5 concentrations and
those with fast changes in PM2.5 tendency. An SVM was developed in [29] for PM2.5 class
prediction. Three most relevant meteorological variables are extracted by measuring the
cosine similarity among records in the same PM2.5 class. With the identified meteorological
variables, the SVM is trained to make the classification. The training parameters of the
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SVM are optimized by the particle swarm optimization (PSO) algorithm to improve the
classification accuracy. A specific type of ANN named multiple layer perceptron (MLP) is
adopted in [30] to learn the relationship between PM2.5 concentration and a set of mete-
orological factors with satellite-derived AOD data. An ensemble model was established
in [31] to combine PM2.5 estimates from three machine-learning methods, namely, neural
network, random forest, and gradient boosting. A deep-learning long short-term memory
(LSTM) model was proposed in [32] for predicting daily PM2.5 concentration in China.
The spatiotemporal information of surrounding monitoring stations is used to adjust the
prediction model. Another deep learning network consisting of a CNN and an LSTM was
deployed in [33]. The CNN is designed to extract meteorological features from 14 sites
in Shanghai and the LSTM is used to model time dependence of pollutants. (3) Hybrid
methods. An increasing number of recent works developed hybrid approaches which
boost the performance by complementing the strengths and weaknesses of individual
models. In particular, regression has been hybridized with ANN [34] and SVM [27]. It
is worth noting that most hybrid methods combine complementing models to build a
stronger predictor. To the best of our knowledge, none has intended to combine contrasting
machine-learning models in various phases such as meteorological pattern classification
and PM2.5 concentration prediction as we have in our paper.

Different periods of training time span have been considered in the literature, ranging
from a couple of days covering a pollution event, a monsoon season, an entire year,
to a longer-term multiyear dataset [11,12,25,27]. Training on different periods of time
span may obtain distinct relationship between PM2.5 concentrations and the investigated
variables. For instance, the relationship between temperature and PM2.5 concentrations
varies with the investigated season. The plots for the data collected in Puli EPA supersite
for different seasons in 2016 manifest diverse temperature vs. PM2.5 patterns (see Figure 2a).
The PM2.5 concentrations generally grow linearly with the temperature in summer (see
Figure 2b), while the relationship converts to a complex nonlinear form in autumn as
shown in Figure 2c. If we use all data to express the relationship, the descriptive power of
the investigated variables will decrease. Analogously, training on different datasets having
distinct properties such as temperature inversion or stationary front, the resulted learning
model will perform differently on unseen data. Few studies have noticed this problem. In
this paper, two training datasets are used to produce more descriptive-power relationship
functions for the designated datasets. One training class includes the data for those days
in a year which belong to the detected temperature inversion class, the other contains
data in the seven days immediately preceding the test day. In other words, we consider
temperature inversion as a specific type of meteorological phenomenon and an effective
PM2.5 forecasting model can be trained on such instances. While for the days without
temperature inversion, the relationship between PM2.5 concentration and meteorological
variables is more influenced by the short-term data in the preceding week.
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3. Proposed Methods
3.1. Materials

As seen in Figure 3a, Puli is located in central Taiwan and is to the east of two
potential pollution sources, the largest coal combustion power plant in Taichung city and
a petrochemistry complex in Yunlin county. The landscape of Puli is a basin sitting at
100 m above sea level and surrounded by mountains. The mountains climb up from
the west to the east of Puli with heights from 1000 to 2000 m, as shown in Figure 3b.
As there is a river going across Puli, the main inlet for the external pollutions flowing
into the basin is through the west river valley (indicated by red arrow). The highway 6,
which is the major transportation route carrying goods from the west into Puli, was
built along the river. The busy highway traffic also produces PM2.5 concentrations. It
is often observed that once the pollutants arise, they last longer in the Puli basin area
than in the western metropolitan areas. This situation gets even worse in those days with
temperature inversion. As the Taiwan Environmental Protection Administration (Taiwan
EPA) deployed only one PM2.5 monitoring supersite in Puli township (see the red dot in
Figure 3b), we thus collected the PM2.5 and the meteorological hourly data measured at the
supersite (https://www.epa.gov.tw/ accessed on 10 December 2021). The time span of the
collected data is between 1 January 2016 and 31 December 2019. The Taiwan EPA supersite
applies the beta attenuation monitoring (BAM) technique for PM2.5 measurement (https:
//airtw.epa.gov.tw/cht/EnvMonitoring/Central/Tools.aspx accessed on 10 December
2021). The BAM employs the energy absorption of beta radiation by suspended particles
extracted from the air flow. The attenuation caused by suspended particles is exponentially
dependent on the particle mass in the sample. We obtained the Puli meteorological dataset
from the Taiwan Central Weather Bureau (http://e-service.cwb.gov.tw/HistoryDataQuery/
accessed on 10 December 2021) which tallies atmospheric pressure, temperature, relative
humidity, wind speed and direction, and precipitation.

https://www.epa.gov.tw/
https://airtw.epa.gov.tw/cht/EnvMonitoring/Central/Tools.aspx
https://airtw.epa.gov.tw/cht/EnvMonitoring/Central/Tools.aspx
http://e-service.cwb.gov.tw/HistoryDataQuery/
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tion sources. (b) Geography of Puli township and the Taiwan EPA supersite (located at the Puli
middle school).

3.2. Feature Engineering

To select effective features for classifying the days into two classes, i.e., the days with
and without temperature inversion, we consulted meteorologists to learn about commonly
seen meteorological phenomena when temperature inversions arise. The prevailing phe-
nomena are as follows. We usually see relatively high temperature around noon and
relatively low temperature at night. The difference between the temperature at noon and at
night is large as compared to other days in the same season. The correlation between the
phenomena and the temperature inversion is more significant when the relative humidity
is high and the wind is calm at night and there is no precipitation. However, the relative
highs and lows for the meteorological measures vary from month to month. We thus ap-
plied k-means algorithm in Scikit-learn to automatically label the meteorological data into
three classes according to individual monthly value ranges. For each of the meteorological
measures (temperature, relative humidity, and wind speed) and PM2.5 observations, we
collected the hourly data within the same month and the k-means algorithm was used to
label the hourly data for each measure into three classes: high (colored in red), middle
(uncolored), and low (colored in green). However, the meteorological patterns depicted by
meteorologists are weak. For example, the time period for measuring the noon temperature
could be flexible. We may see relatively high temperature span through 11:00 a.m. to
2:00 p.m., or from 12:00 a.m. to 3:00 p.m. Both phenomena can be considered as relatively
high noon temperature. The same situation applies to other meteorological patterns. In
order to obtain ground-truth values of temperature inversion, we manually labeled each
day as being with and without temperature inversion according to these weak patterns.

Figure 4 shows the data labeling for two plausible examples of temperature inversion
phenomena. The left example is from 2016, the right one 2017. Both examples show that the
temperature around noon was relatively high and started to cool down in the evening, and
reached its monthly low range in the midnight. An opposite phenomena was observed for
relative humidity, which showed a monthly low around noon and monthly high at night.
The PM2.5 collectively concentrated in the afternoon due to temperature inversion and the
conditions of calm wind at night and no precipitation barricade the PM2.5 concentrations
to disperse. The PM2.5 value reached its monthly highs before evening and usually stayed
in this high class for more than eight straight hours. Conspicuously, the previously-noted
phenomena about temperature, relative humidity, wind speed, and precipitation are salient
features for classifying temperature inversion.
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We further divided the days in 2016 and 2017 into two groups, the days with and
without the noted meteorological phenomena, respectively. For each group, the mean
hourly PM2.5 concentration was evaluated. It is seen in Figure 5 that, for both years, the
mean hourly PM2.5 value with the noted phenomena was higher than that without the
meteorological phenomena. The difference between the mean values of the two groups
is more significant after evening and before dawn. This reveals that the two groups had
very different conditions for raising PM2.5 concentrations. We believe that if the two
groups of days were separately analyzed, the prediction of PM2.5 concentrations would be
more accurate.
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3.3. Temperature Inversion Classification

With the preliminary results of feature engineering, we selected the following features
for designing the temperature inversion classification models: three categorical features
(the labeling of hourly temperature, relative humidity, and wind speed, as high, middle,
or low determined by k-means) and two numerical features (precipitation and PM2.5
concentrations in the immediate previous day). Two classification models, CART and CNN,
were chosen for comparative performance analyses.

CART [35] is an advanced decision tree algorithm. It can be applied to accomplish
classification (with categorical target value) or regression (with continuous target value)
learning tasks. CART is widely used because it is provided in the Scikit-learn library. The
classification by CART proceeds as follows. A binary tree is grown to a specified maximum
depth. At each level of depth, the feature which minimizes the Gini impurity is chosen to
branch the inner node with an appropriate threshold into dichotomies. The Gini impurity
is an estimate of the probability that a randomly chosen sample is misclassified. After the
classification tree is fully grown, a pruning step with cross-validation is applied to reduce
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the tree complexity. Because the CART implementation provided by Scikit-learn currently
does not support categorical variables, we converted our categorical features (temperature,
relative humidity, and wind speed) to numerical ones by redefining them as the number of
hours that each individual feature is labeled as each of the range classes (high, middle, and
low). The previous day 24 h PM2.5 concentrations were replaced by their mean value to
reduce the number of similar features. Figure 6 shows the learned decision tree from the
collected data in 2016 where three days had missing values and were removed and the data
of the remaining 363 days were used as the training data. It is seen that the most salient
rule for labeling the days as temperature inversion is as follows.
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No precipitation, the previous day mean hourly PM2.5 concentration is above 34, the number
of low-wind-speed hours is less than 19, the number of high-temperature hours is greater than 4,
and the number of high relative humidity hours is less than 14.

The second most significant rule is as follows.
No precipitation, the previous day mean hourly PM2.5 concentration is between 18 and 34,

and there is no high wind speed hours.
The CNN [36] has emerged as one of the main research streams in deep learning. A

CNN adds several convolution layers in front of traditional neural networks such as the
fully-connected multilayer perceptron. The convolution layer applies local convolution
operations with different kernels/filters such that the local features contained in the original
input image can be automatically extracted. The salient responses of these local features are
retained by pooling operations. By concatenating several convolution layers, the features of
various details and resolutions are learned. These features are fed forward to the traditional
fully-connected networks to learn the weights and bias for the classification. Due to the
increasing computing capability of processors such as GPUs, large CNN architectures
which are able to learn classification for millions of images have been proposed. Ever since
AlexNet [37] won the first prize of ILSVRC 2012, the development of CNN-based applica-
tions has been overwhelming. AlexNet improves the error rate by 10 percent as compared
to the champion in ILSVRC 2011. AlexNet consists of five convolution layers followed by
a two-layer fully-connected neural network. More recently, sophisticated CNNs such as
GoogLeNet [38], ResNet [39], and SENet [40], have prevailed the ILSVRC competitions.

The design of our CNN architecture is as follows. The input layer receives data
instances of 5 × 24 images which is composed of five selected features collected in straight
24 h. The five features are the temperature, relative humidity, wind speed, precipitation,
and the previous day PM2.5 concentrations. To accommodate monthly relative range, the
features are encoded into numerical codes as 1 (low range), 2 (middle range), and 3 (high
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range) determined by k-means. Following the input layer, two repetitions of convolution
layer and pooling layer are deployed. In the convolution layer, six 3 × 3 convolution
kernels are applied to generate six feature maps with the ReLU activation function. Each
feature map then goes through the max-pooling layer to extract the salient features. The
same convolution-pooling architecture is constructed again to extract more generalized
feature maps. Next, the feature maps are flattened to form a one-dimensional vector which
is fed into the fully-connected network to produce the final output classification.

We trained the constructed CNN with the entire 2016 data whose 363 meteorological
records were randomly assigned into training set and validation set respecting the size
ratio of 8:2. Figure 7 shows the learning curve of the two sets. We observed that the
classification accuracy of the training set improved as the number of epochs increased,
while the classification accuracy of the validation set stopped improving after 25 epochs. In
order to prevent over-fitting to the training set, the training of our CNN model terminated
at the 25th epoch.
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3.4. Multivariate Regression

As previously noted, we consulted meteorologists to manually partition the days in
our collected data into two classes. One class (referred to as Temp_inv) included those with
temperature inversion phenomena and the other class (referred to as Normal) contained
those without temperature inversion. To take advantage of the temperature inversion factor
in the estimation of PM2.5 concentration, we used two different training datasets according
to the classification result of the test day. If the test day was classified by the classifier
as Temp_inv, the regression with the training dataset including all the records manually
labeled by experts as Temp_inv in 2016 was used. Otherwise (i.e., the test day was classified
by the classifier as Normal), the regression with the training dataset which consisted of
records of a short period of days preceding the test day was employed. The reason for
adopting different lengths of training dataset is that the temperature inversion occasionally
appears under particular meteorological phenomena and we collected sufficient such long-
term instances in a year for obtaining a stable regression. For the test days without the
temperature inversion phenomena, the relationship between its PM2.5 concentration and
meteorological features closely resembled that observed in short-term preceding days. The
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best size of the short-term training dataset is verified in our experiments and will be noted
in Section 4.2.

A multivariate linear regression function was trained with the designated training
set according to the classification result (either Temp_inv or Normal) of the test day. The
regression function learned the relationship between the PM2.5 concentration and the
referenced meteorological variables. The form of the multivariate linear regression function
is as follows.

ŷ(t) = w0 + w1x1(t) + w2x2(t) + w3x3(t) + w4x4(t) (1)

where ŷ is the estimated PM2.5 concentration, x1, x2, x3 and x4 indicate air pressure, temper-
ature, relative humidity, and precipitation measured at time t, respectively. The task was
to learn the optimal regression coefficients (wi) resulting in the least mean squared error
(LMSE) between ŷ and the actual PM2.5 concentration y over the duration time period of
the adopted training dataset, viz., ∑

t
(y(t)− ŷ(t))2/∑

t
1.

The learning task can be accomplished by applying a feasible optimization algo-
rithm. In particular, the constriction-factor particle swarm optimization (CFPSO) [41] was
deployed in this paper to obtain the optimal regression coefficients. Our CFPSO is as
follows. A swarm of S particles is generated at random where particle i is represented
as Pi = (wi0, wi1, wi2, wi3, wi4), i = 1, 2, . . . , S. Hence, each particle is a candidate set of
regression coefficients. The PSO improves the swarm intelligence by memorizing the
best candidate set pbesti seen by particle i, and the best candidate set gbest seen by all the
particles. The particles iteratively fly in the candidate set space by reference to pbesti and
gbest through each dimension j as follows.

wij ← + 0.729 vij + 1.496 r1j (pbestij − wij) + 1.496 r2j (gbestj − wij) (2)

where r1j and r2j are random real numbers drawn from U(0, 1).
The CFPSO algorithm terminated with a maximal number of iterations or when the

best candidate set gbest of the entire swarm cannot be improved further after a sufficiently
large number of iterations.

4. Experimental Results and Comparative Performances

In this section, we report the experiments for temperature inversion classification
and PM2.5 estimation. The performance obtained by various algorithms and strategies are
compared. The platform for conducting the experiments was a Note Book with a 2.4 GHz
CPU and 8 GB RAM. All programs were coded in Python 3.6.8 and the Scikit-learn package.

4.1. Temperature Inversion Classification

As described in Section 3.3, CART and CNN were developed to perform the tem-
perature inversion classification. In the machine learning literature, the commonly used
measures for evaluating the performance of a two-class (positive or negative) classifier are
defined by the confusion matrix as illustrated in Figure 8.
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Several useful classification performance metrics such as accuracy, precision, recall,
and F1-Score can be evaluated from the confusion matrix as follows.

Precision = TP/(TP + FP), (3)

Recall = TP/(TP + FN), (4)

Accuracy = (TP + TN)/(TP + FP + FN + TN), (5)

F1− Score = 2× Precision× Recall/(Precision + Recall). (6)

Each metric gauges the classification performance from a different perspective. Preci-
sion focuses on the effectiveness of the samples which the classifier recognizes as positive,
while recall emphasizes how many true positive samples are correctly recognized by the
classifier. Precision and recall are contrasting measures. A perfect recall can be obtained at
the cost of reduced precision by letting the classifier recognize more samples as positive.
Accuracy reports the correct recognitions on both positive and negative classes from all
test samples. Accuracy could be a biased measure if the data size of the two classes differs
significantly. F1-Score is a balanced measure by taking into account both precision and
recall simultaneously.

As the time span of our data collected from Taiwan EPA (https://www.epa.gov.
tw/ accessed on 10 December 2021) is between 1 January 2016 and 31 December 2019,
we used all days in 2016 as the training set for the classifiers and randomly selected 72
test days (two days in each month) from 2017 to 2019 to construct the test set. Table 1
shows the comparative performances between CART and CNN. It can be seen that CART
outperformed CNN on almost all classification measures across the three test years. The
only two exception cases are the recall in 2017 and the precision in 2018. More importantly,
CART surpassed CNN in F1-Score for all cases, indicating CART is more suitable than
CNN for temperature inversion classification on our dataset.

Table 1. Comparative performances between CART and CNN for temperature inversion classification.

2017 2018 2019

CART CNN CART CNN CART CNN

TP 10 11 10 6 9 7
FP 0 2 2 1 0 1
TN 9 7 9 10 12 12
FN 5 4 3 7 3 4

Precision 1.00 0.85 0.83 0.86 1.00 0.88
Recall 0.67 0.73 0.77 0.46 0.75 0.64

Accuracy 0.79 0.75 0.79 0.67 0.88 0.79
F1-Score 0.80 0.79 0.80 0.60 0.86 0.74

4.2. PM2.5 Concentration Estimation

After training the classifiers, namely, CART and CNN, each test day could be firstly
labeled as the one with or without temperature inversion. Secondly, the hourly PM2.5
concentration of the test day was estimated by the regression with the training set according
to the test day’s label. If the test day was in the temperature inversion class, the training set
including all days with temperature inversion in 2016 was used. Otherwise, a short period
of training days immediately prior to the test day was employed as the training set.

To evaluate the accuracy of the PM2.5 estimation, the performance measures, the rooted
mean square error (RMSE) and the mean absolute error (MAE), which have been widely
used in the literature, were adopted in this paper and they are defined as follows.

RMSE =
√

∑
t
(y(t)− ŷ(t))2/∑

t
1, (7)

https://www.epa.gov.tw/
https://www.epa.gov.tw/
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MAE = ∑
t
|y(t)− ŷ(t)|/∑

t
1, (8)

where t is the duration of test time in number of hours.
Five different forecasting strategies were compared. As noted in Section 3.2, the days

in 2016 were manually labeled by experts with two classes, the class with temperature
inversion (referred to as Temp_inv) and the class without the phenomenon (referred to as
Normal). We noted the results by an expert, which were then used to train CART and CNN,
as described in Section 3.3. So we had three classification models (Expert, CART and CNN)
which were able to classify a test day into a class (Temp_inv or Normal). For comparison, we
further built two dummy classifiers, AllTemp and AllNormal, which always label the test
day as Temp_inv or Normal, respectively. The PM2.5 concentration forecasting was made by
multivariate regression as described in Section 3.4. If the test day was classified as Temp_inv
by the deployed model, the regression trained on the days in Temp_inv of 2016 was used
to make the forecast. Otherwise, the regression trained on a short-term period of days
preceding the test day was employed to predict the PM2.5 concentration.

To verify the best length of the short-term training dataset for forecasting the PM2.5 of a
test day recognized as Normal, we experimented with five, six, and seven days, respectively,
to see which training length gives the best performance. The performance of the forecasting
results with the test days in the three test years ranging from 2017 to 2019 is tabulated in
Tables 2 to 4. Several implications can be drawn from the results. (1) It is noted that the
experiments with various length of short-term training dataset only influenced Expert,
CART, CNN, and AllNormal. The model AllTemp always refers to the long-term training
dataset in 2016 and it will not be affected by varying short-term training length. It is
seen that Expert and CART manifest the best performance on all cases when the length
of short-term training dataset is set to seven days preceding the test day. Although CNN
and AllNormal didn’t always get better results with seven days on all cases, they had the
best performance overall with seven-day training dataset. The exceptions were as follows.
CNN showed the best MAE result with six days in 2018 and 2019, while AllNormal gave
the best 2019 MAE performance when the length of short-term training was set to five days.
Considering the overall comparative performances, a seven-day short-term training dataset
was employed in our models. (2) In most cases, Expert, CART and CNN outperformed
AllNormal and AllTemp on both RMSE and MAE, meaning that the classification of the
test day for temperature inversion did improve the performance of the subsequent PM2.5
forecast. If we compare the mean performance of Expert, CART and CNN, which consider
the temperature inversion, to that of AllNormal, the forecast error was reduced by 4~9%
and 2~7% in terms of RMSE and MAE. The improvement made by temperature inversion
classification was significant. (3) It can be seen that AllNormal surpassed AllTemp on all
cases in terms of both RMSE and MAE. This was because the number of days deemed to be
under temperature inversion phenomenon was less than one third of all days in the entire
year, and AllNormal made more correct classifications than AllTemp and thus obtained
better forecast results. (4) It is natural to assume that the forecast assisted by human experts
is likely to be superior to that by CART or CNN, because we consider the results of experts
as our ground-truth values. This assumption is quite true in 2018 and 2019, but if we
look at the forecast result in 2017, CNN makes the best forecasts, while CART and Expert
are comparable. With a further investigation, we found that in 2017 Puli township had
significantly more pollution days than in 2016, 2018 and 2019. Some of the pollution days
were due to external sources instead of temperature inversion as will be noted. These cases
incurred large forecast errors for the experts. On the contrary, CART and CNN were not
perfect classifiers like Expert; they sometimes misclassified external sources as temperature
inversion, which unexpectedly resulted in a better forecast. However, we cannot consider
CART and CNN as better classifiers than Expert just based on 2017 results because the
Expert was the ground-truth for training the classifiers. The reason for employing CART
and CNN was that they can reduce the manual effort of experts labeling the records, and
make the recognition of temperature inversion automatic.
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Table 2. PM2.5 forecast performance of various model strategies with short-term training in five days.

Expert CART CNN AllNormal AllTemp

2017 RMSE 16.42 16.13 16.32 16.37 16.23
MAE 12.36 12.29 12.34 12.35 12.4

2018 RMSE 9.01 9.21 9.74 10.37 11.97
MAE 6.56 6.88 6.87 7.34 8.58

2019 RMSE 7.8 8.59 8.59 8.95 9.7
MAE 6.05 6.48 6.74 6.77 7.21

Table 3. PM2.5 forecast performance of various model strategies with short-term training in six days.

Expert CART CNN AllNormal AllTemp

2017 RMSE 15.68 15.63 15.18 16.02 16.08
MAE 11.78 11.77 11.39 11.89 12.14

2018 RMSE 8.74 8.99 9.22 10.52 11.59
MAE 6.65 6.87 6.61 7.77 8.44

2019 RMSE 7.77 8.64 8.61 9.32 8.92
MAE 5.93 6.55 6.73 7.05 7.21

Table 4. PM2.5 forecast performance of various model strategies with short-term training in
seven days.

Expert CART CNN AllNormal AllTemp

2017 RMSE 15.01 14.97 14.01 15.32 16.63
MAE 11.42 11.56 10.63 11.43 13.08

2018 RMSE 7.68 8.18 8.34 8.92 11.24
MAE 6.33 6.66 7.09 7.16 8.64

2019 RMSE 7.65 7.74 7.56 8.32 8.45
MAE 5.8 6.27 6.89 6.78 6.85

One of the typical events caused by external pollutions was on 10 March 2017. We
observe there existed a high correlation between the pollution events in Puli and Lunbei
(see Figure 3a). Lunbei is near to a large petrochemical complex and it is 65 km southwest
of Puli. A river goes between the two townships and forms a potential tunnel for pollution
transportation. Table 5 shows the hourly PM2.5 concentration (µg/m3) for both townships
and the wind speeds (m/s) and wind directions (in 360 degrees) observed at Lunbei in the
same day. It is seen that the PM2.5 concentration measured at Lunbei rose since from hour
0 and reached its daily high 119 µg/m3 at hour 9. It then gradually decreased to normal
at hour 17. The PM2.5 concentration measured at Puli showed similar trends but with a
time lag of about 10 h. The concentration rose from hour 14 and reached its daily high
of 127 µg/m3 at hour 20 and 21. It remained above 100 µg/m3 until midnight. The main
wind direction observed at Lunbei during hour 10 and hour 12 was west or southwest with
speeds between 0.9 and 2.2 m/s. If we divide the straight distance (65 km) between the
two townships by the time lag (10 h), the transportation speed is 1.64 m/s, which is close
to the wind speed during the same period. Actually, the transportation speed was a bit
higher than 1.64 m/s since the river valley is a curved route, so the two phenomena highly
coincided with each other.



Appl. Sci. 2022, 12, 71 15 of 17

Table 5. Relationship between pollution events in Puli and Lunbei.

Hou r Puli PM2.5 Lunbei PM2.5 Wind Speed Wind Direction

0 51 68 0.0 0
1 53 76 0.6 39
2 48 79 0.9 67
3 46 90 0.3 112
4 44 88 1.2 117
5 41 91 1.2 126
6 41 93 0.0 0
7 44 100 0.0 0
8 46 114 0.4 76
9 48 119 1.0 69
10 56 118 0.9 183
11 53 103 2.2 167
12 46 84 2.0 204
13 41 75 2.5 311
14 33 94 2.4 316
15 33 85 1.8 341
16 54 62 3.1 20
17 96 27 2.7 1
18 123 19 3.3 6
19 126 22 4.0 17
20 127 18 3.6 14
21 127 12 4.1 19
22 124 16 3.6 19
23 116 12 2.8 31

The pollution event incurred by external sources definitely cannot be correctly mod-
eled by local climate ecology such as temperature inversion. Our future research will be
focused on finding correlated monitoring stations as forecast regulators. For example, the
monitoring station at Lunbei may serve as a regulator for the Puli PM2.5 forecast. If the test
day for Puli is classified as normal, then the PM2.5 measured at Lunbei with some hours
ahead (which can be calculated from wind directions and speeds) can be used as an extra
variable in the regression to adjust the forecast.

5. Conclusions

In this paper, we have proposed an improved model for PM2.5 forecasting. The
model consists of two phases. In the first phase, a temperature inversion classifier is
trained. We chose CART and CNN as the potential classifier for comparison on the Puli
dataset. In the second phase, the test day is labeled by the employed classifier as either
the temperature inversion class or the other. If it is in the temperature inversion class,
the regression trained with the temperature inversion dataset is adopted to make the
PM2.5 forecast. Otherwise, the regression trained with the seven days prior to the test
day is used to predict the PM2.5 concentration. The experimental results show that CART
outperforms CNN for temperature inversion classification on the Puli dataset. With the
classifiers, the test day for PM2.5 forecast is subject to the regression trained with the correct
class. The forecast experiments tested on the Puli meteorology dataset during 2017 to 2019
show that the models considering the temperature inversion factor can reduce the forecast
errors by 4–9% and 2–7% in terms of RMSE and MAE, as compared to the original model.
However, there are some limitations regarding this research. The main meteorological
patterns leading to temperature inversion vary from place to place. The classifier should be
retrained with the dataset collected for the investigated location. Furthermore, our current
forecast model based on temperature inversion classification may under-forecast PM2.5
when external pollution sources arise. Our future research is directed to finding correlated
PM2.5 monitoring stations along the pollution transportation route as forecast regulators to
adjust our model.
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