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Abstract: Enlarging or reducing the antenna beam width of antennas can improve the positioning
capability of detection systems. A miniaturized and easily fabricated ultra-wideband (UWB) antenna
system for long-distance electromagnetic detection is proposed in this article. Two ultra-wideband
Vivaldi antennae were designed. One was the transmitting antenna with a beam width of 90◦ or
above, the other was a narrow beam antenna array with beam width less than 10◦, as a receiving
antenna. Both proposed antennae feature broadside gain diagrams with stable radiation patterns and
wideband impedance matching in the frequency range between 2.5 GHz and 4 GHz. After detecting
their frequency and time-domain behaviors, the detection system can achieve measurements covering
a radius of 30 m.

Keywords: Vivaldi antennas; wideband antennas; electromagnetic detection

1. Introduction

Ultrawideband (UWB) antennas have been increasingly applied in wireless commu-
nication, biomedical detection, and radar systems in recent years [1–6]. As a tapered slot
antenna, the Vivaldi antenna is well-known for its high gain, directive radiation pattern,
planar structure and fairly wide bandwidth [7], and it is one of the best options for the
UWB technology [8,9]. Its small transverse spacing makes it a good candidate for antenna
arrays [10]. The Vivaldi antenna can be classified into the category of end fire traveling
wave antennas, has theoretically infinite bandwidth [11], and can be used to form an ultra-
wideband antenna system [12]. However, the Vivaldi antenna requires a large antenna
size to achieve excellent performance in the low-end working band [13,14]. The width
of a Vivaldi antenna should reach at least one half-wavelength so as to achieve effective
radiation, according to the research work in [15].

In order to reduce the size of the Vivaldi antenna and to further optimize it, some
scholars have put forward many new strategies. To be specific, in [8], the feeding part is
improved to realize miniaturization. The antenna in [8] aims to increase the area of feeding
part and adopt feed with stepped structure. In [16,17], radiation parts are improved. The
antenna in [16] is seen to open unequal semicircle slots, while that in [17] can be witnessed
to open multiple rectangular slots on the edge of the radiation part, which helps improve
antenna gain. The antenna in [18] reflects the method of increasing the length of the
dielectric substrate to improve the directivity, and the antenna in [19] has an enhanced gain
over whole frequency band by adding an additional structure that supports spoof surface
plasmon polaritons (SSPP) as the parasitic element. When compared with several antennae,
the antennae in [8,20] perform better with miniaturization, but their performance with
regard to the direction and gain is far from scholars’ satisfaction. The antennae in [16–19]
have higher antenna gain, while they cannot meet scholars’ expectations in miniaturization.
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This article designed a set of receiving and transmitting antennas based on Vivaldi
antennae, and built a long-distance electromagnetic detection system. In the target detection
test, the transmitting antenna is used as illumination feed, and the receiving antenna obtains
the signal reflected by the target from scanning angle to find the target and the azimuth
angle. Then, with the Time Domain Transmissometer (TDT) measurement results, the
target position is judged.

The working frequency band of the detection system is 2.5~4 GHz. According to the
working principle of the detection system, the beamwidth of the transmitting antenna
needs to cover a wide angle to ensure that the target under test can receive and reflect
the signal radiated by the transmitting antenna. Therefore, the half-power beamwidth
(HPBW) of the transmitting antenna should be larger than 90◦. Correspondingly, in order
to quickly and accurately determine the azimuth angle and judge the position of the target,
the beamwidth of the receiving antenna is required to be as narrow as possible and have
good directivity. Therefore, the receiving antenna should be a typical one that has narrow
HPBW and good directional performance and that should also be miniaturized. To achieve
long-distance detection, the target detection system should have a high transmitting power,
and the antennae should be characterized by boasting better impedance matching and
higher gain performance [21].

2. Antenna Configuration Design and Performance
2.1. Ultra-Wideband Wide Beam Antenna

In general, the bandwidth of a traditional Vivaldi antenna is determined by the
transition from the feeding microstrip line to the slot line and the dimensions of the
antenna. For the planar slit gradient antenna, the spacing of the narrow end of the slot
line opening determines the highest working frequency, while the spacing of the wide end
determines the lowest working frequency [22]. Considering that the working frequency
range is 2.5~4 GHz, the end width of the slot line can be set as 50 mm and the starting
end width can be set as 2 mm. Since the radiation of the antenna is generated by the
current extending along the gradient slots on both sides [23], widening the width of the
antenna will make the current flow through a longer path and generate a wider main beam.
However, it also affects the impedance of the antenna. By further optimized simulation,
the width of the antenna’s metal sheet can be obtained.

Figure 1 shows the configuration of the proposed transmitting antenna. The antenna
is fabricated on a 150 × 150 × 1.6 mm FR4 substrate with a dielectric constant of 4.3. The
structure of the Vivaldi antenna is composed by dielectric substrate, metal ground plane,
and feeding microstrip transmission line. The exponential tapered slot, which is on the
ground plane, can be expressed as:

y = C1eax + C2 (1)

C1 =
y2 − y1

eax2 − eax1
(2)

C1 =
y2 − y1

eax2 − eax1
(3)

where (x1, y1), (x2, y2) are the peak and bottom point, respectively, of the exponential
tapered shape and a is the exponential factor of the antenna. The optimized dimensions of
the proposed antenna are tabulated in Table 1.
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Figure 1. Structure of the transmitting antenna.

Table 1. Transmitting Antenna parameters (mm).

Parameter Value

Xd 32.0
Yd 12.0
l3 22.8

wh 1.0
l4 112.5

w3 48.0
w 150.0
l 150.0

Xd and Yd are the short axis and long axis of the elliptical resonator cavity, respec-
tively. The values l3 and wh are the length and width of the rectangular transitional slot,
respectively. The value l4 is the length of the gradient slot, while w3 is the widest width of
the gradient slot.

After optimizing the parameters of feed line structure, the working frequency range
was 1.4–8 GHz. As shown in Figure 2a, the return loss of the simulated and measured
antenna was adjusted to −10 dB over the frequency band from 1.4 GHz to 8 GHz. Further-
more, the simulated and measured normalized E-plane radiation patterns of the antennae
operating at different frequencies are shown in Figure 3. Higher-order modes are generated
at higher frequencies, resulting in some ripples in the radiation patterns, which is observed
in Figure 3. The measured and simulated beam width of the transmitting antenna with
structure at different frequencies are shown in Table 2. The antenna is a wide beam antenna
and the half-power beamwidth (HPBW) can be maintained above 90◦ in the frequency
range 2.5–5 GHz, and the maximum beam width is 122◦. What is worth mentioning is
that the gain is shown in Figure 2b, which is greater than 3.26 dBi and that the directivity
consistency is good.
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Figure 2. (a) Return loss of the measured and simulated transmitting antenna. (b) The gain of the
simulated transmitting antenna.
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Figure 3. Simulated E-plane radiation patterns of the transmitting antenna with structure at
(a) 2.5 GHz; (b) 3 GHz; (c) 3.5 GHz; and (d) 4 GHz; (e) 5 GHz; (f) 6 GHz.

Table 2. The beam width of the transmitting antenna at different frequency.

Frequency/GHz HPBW (Measured)/◦ HPBW (Simulated)/◦

2.5 GHz 108◦ 122.3◦

3 GHz 122◦ 128.3◦

3.5 GHz 109◦ 120◦

4 GHz 90◦ 91.9◦

5 GHz 95◦ 104.7◦

6 GHz 86◦ 91.8◦

2.2. Ultra-Wideband Narrow Beam Antenna

To ensure the detection accuracy of the detection system, the receiving antenna should
be featured by owing ultra-wideband, narrow beam and high gain performance. Therefore,
the beam width of the antenna unit was required to be reduced.

For Vivaldi antennae, the main solutions for reducing the antenna beam width in-
cluded adding a director and slotting the metal patch. It should be noted that both methods
will affect the standing wave ratio of the antenna. The antenna adopting a gradual slotting
method yields better results in the direction of the main beam when compared with the
method of ordinary slotting, and such a method can help increase the gain of the antenna.
At the same time, the triangular director of the antenna can also help increase the gain of
the antenna and reduce the beam width of the antenna.

To improve radiation characteristics of the antenna, a series of symmetric slots were
installed in the extremities of the antenna. The modifications are shown in Figure 4. The
modified antenna with optimized slots can secure a compact structure with improved
radiation patterns and better impedance bandwidth. Each slot operates as an RLC resonator
where the resonant wavelength can be estimated by the following expression:

l =
λ0

4

√
2

1 + εr
(4)

where l is the length of slot and εr is dielectric constant of the substrate.
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Figure 4. Vivaldi narrow-beam antenna structure (front and back).

After CST modelling and multiple simulation analysis of the parameters, the final
optimized triangular slot height registered 8 mm and the width was recorded as 4 mm.
The length of the triangle slot adopted an arithmetic sequence, and the minimum slot
height is 5 m. The height difference between two adjacent rectangles is 3 mm. At the
same time, three additional triangular slots are opened near the wide side of the antenna,
which can contribute a lot without affecting other electrical properties of the antenna. The
final optimization results of the various parameters of narrow-beam antenna are shown in
Table 3.

Table 3. Final optimization results of the parameters of Vivaldi narrow-beam antenna (mm).

Parameter Value Parameter Value

W 55 d5 8
L 82 l1 5
a 4 l2 8
b 8 l3 23
R 4 R1 6
d1 9 w 1
d2 7.5 C1 20.6
d3 1.5 C2 16
d4 2.5

The final model of the designed ultra-wideband narrow-beam Vivaldi antenna was
simulated. As shown in Figure 5a, the return loss of the simulated narrow beam Vivaldi
antenna was adjusted to −10 dB over the frequency band from 2.5 to 8.5 GHz. The simulated
E-plane radiation pattern of the antenna at different frequencies are shown in Figure 6. In
addition, the HPBW of the antenna with structures at different frequencies are shown in
Table 4. It also lists out the comparison between the proposed antenna and other published
related antennas. From Table 4, the proposed Vivaldi narrow-beam antenna structure
was smaller in dimension than the antennae as reported in [19,24–28]. In addition, the
comparative results show the improvement in maintaining an HPBW less than 70◦ in the
frequency range between 2.5 and 8 GHz. The HPBW of proposed antenna is smaller than
the antennas in [19,24,27], and the bandwidth is larger than the antennas in the others.
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Meanwhile, the minimum beam width is 59.4◦. What’s more, Figure 5b show the gain of
the proposed antenna, which is greater than 4.54 dBi and the directivity consistency is good.
According to the characteristics, the proposed antenna can be an excellent candidate for the
array element of the receiving antenna in an ultra-wideband Vivaldi antenna system.
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Table 4. Comparison between proposed antenna and literature.

Ref. No. Dimension
(mm2)

Operating
Frequency

HPBW

2 GHz 3 GHz 4 GHz 5 GHz 6 GHz 7 GHz 8 GHz

[24] 120 × 90 2–5 GHz 130 - 75 65 - - -
[19] 200 × 80 3–14 GHz - 85◦ - - - 50◦ -
[25] 297 × 190 0.6–3.2 GHz 51.4◦ 55◦ - - - - -
[26] 258 × 150 0.5–6 GHz 48.7◦ 45.1◦ 54.3◦ 71.1◦ 58.6◦ - -
[27] 274 × 282 0.4–9.8 GHz - 74◦ - - - - 74◦

[28] 100 × 90 3–6 GHz - 55◦ - - 55◦ - -
proposed 82 × 55 2.5–8.5 GHz 65.9◦ 65.2◦ 59.4◦ 55.4◦ 44◦ 46.7◦ 66.2◦
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To strengthen the directional radiation capability of the antenna and meet the require-
ment that the beam width has to be less than 10◦, the Vivaldi antennae with improved
beam width were arranged into an 8-element array. To reduce the feed ports, a power
divider was used to feed the antenna array. The antenna array model is shown in Figure 7
and the array antenna parameters are shown in Table 5.
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Table 5. Array antenna parameters (mm).

Parameter Value

L 440
W 146
D1 16
D2 35
L1 239
L2 385
L3 17.5
l1 3.2
l2 1
θ 60◦

The single element is 82 mm long and 55 mm wide. The power divider is a microstrip
T-branch power divider which is enlarged in the Figure 7. The length below the T-shaped
knot is 16 mm, which is about λ/4, and the width is 3.2 mm. The width on both sides is
1 mm, and the width of the antenna unit feeder is also 1 mm. The distance between the
last-level power divider line and the leftmost side of the antenna array is 239 mm, and the
other levels of power divider are distributed in a symmetrical structure. The length of each
level of power division microstrip line is 16 mm and the width is 1 mm. Three positioning
points were marked, and a hole with an inner diameter of 6 mm was drilled so that the
antenna array can be assembled on the turntable support.

The final model of the designed narrow-beam eight-element antenna array was sim-
ulated and measured, and the simulated and measured E-plane radiation patterns of the
antenna at different frequencies were obtained as shown in Figure 8. As shown in Figure 9a,
the original Vivaldi antenna works in the frequency range from 2.5 to 4 GHz. The return
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loss is less than −10 dB in the whole band, except that 3.9 GHz is about −9.5 dB. The main
lobe beam width at 2, 3, 4 GHz respectively is shown in Table 6. The HPBW in the E-plane
of the proposed array are shown in Table 6. The HPBW are all less than 10◦, and the gains
are greater than 10 dBi, which are shown in Figure 9b.

Table 6. Narrow beam Vivaldi 8-element array E-plane pattern main lobe width.

Frequency/GHz HPBW (Measured)/◦ HPBW (Simulated)/◦

2 GHz 9.8◦ 8.3◦

3 GHz 7◦ 5.6◦

4 GHz 4◦ 4.2◦

Phase linearity within the operational bandwidth is an important aspect of wideband
antenna design. It is observed from Figure 9c that the group delay response of the trans-
mitting antenna is almost flat, which indicates distortionless transmission. The maximum
group delay of the receiving array antenna is within 2 ns, which is acceptable.
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3. Verification and Discussion
3.1. Detection System Positioning Test

A miniaturized and easily fabricated ultra-wideband (UWB) antenna system for
long-distance electromagnetic detection is proposed. The transmitting antenna is the ultra-
wideband wide beam antenna discussed in Section 2.1, and the photograph is shown in
Figure 10a. The receiving antenna is the ultra-wideband narrow beam eight-element array
designed in Section 2.2 and the photograph is shown in Figure 10b, which was placed
on a turntable support. The distance between the two antennas was fixed. During the
test, the transmitting and receiving antennas were connected to two ports of the E5071C
vector network analyzer (VNA) to form the Ultra-wideband Vivaldi antenna system for
long-distance electromagnetic detection.

We measured the distance, w, between the two antennas. The VNA transmits electro-
magnetic wave signals through the transmitting antenna through port one. The receiving
antenna has a smaller beam width. We placed it on the rotating table and connected it to
port two of the VNA, and the schematic diagram of the experiment is shown in Figure 11.
We observed the S21 parameter of the VNA and adjusted the angle of the rotating table
to find out the azimuth angle θ of the target. We maintained the azimuth angle and then
changed the VNA to time-domain. We then measured the time difference T from the
moment when the transmitting antenna sends a signal to the moment when the receiving
antenna receives the signal, and the sum distance. Then, the target position can be obtained.
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3.2. Analysis of the Test Results

The TDT test results are shown in Figure 12. The peak point one was at 17.65 ns—5.295 m,
because two antennae were coupled. The peak point two is at 202.3 ns—60.69 m, where the
signal was reflected by the target. In Figure 11, L2 is the distance between the transmitting
antenna and the target, and L2 is the distance between the receiving antenna and the
target. The measured L2 was 30.31 m, and the measured L1 was 30.2 m with w = 4.2 m.
Undoubtedly, the measured L1 + L2 = 60.51 m. Considering the electromagnetic wave
travel difference, which is determined by the difference between the cable port and the
electromagnetic wave feed port, thus, the tested L1 + L2 = 59.6 m.
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The actual and tested position map of the target are plotted in Figure 13. The two blue
square dots at the bottom are the transmitting antenna and the receiving antenna. The
coordinates (3.278, 30.13) is the measured target point, and (3.138, 29.86) is the estimated
result point of the test. It can be seen from the results that the error of the coordinate values
of x and y of this test result are both less than 0.3 m, which meets the actual application
requirements.
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4. Conclusions

In this article, an UWB Vivaldi antenna system for long-distance electromagnetic
detection has been proposed. In the frequency range of 2.5~4 GHz, the transmitting antenna
was an ultra-wide bandwidth beam Vivaldi antenna with HPBW above 90◦ in the frequency
range 2.5–5 GHz. The receiving antenna was an ultra-wideband narrow-beam Vivaldi
antenna array. The array unit maintained HPBW less than 70◦ in the frequency range
between 2.5 GHz and 8 GHz, and the receiving antenna was a eight-element Vivaldi
array with HPBW less than 10◦ in the frequency range of 2.5~4 GHz. It was verified by
experiments that after detecting their frequency and time-domain behaviors, the detection
system can achieve measurement covering a radius of 30 m.
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