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Abstract: In research on complex networks, mining relatively important nodes is a challenging
and practical work. However, little research has been done on mining relatively important nodes
in complex networks, and the existing relatively important node mining algorithms cannot take
into account the indicators of both precision and applicability. Aiming at the scarcity of relatively
important node mining algorithms and the limitations of existing algorithms, this paper proposes
a relatively important node mining method based on distance distribution and multi-index fusion
(DDMF). First, the distance distribution of each node is generated according to the shortest path
between nodes in the network; then, the cosine similarity, Euclidean distance and relative entropy are
fused, and the entropy weight method is used to calculate the weights of different indexes; Finally, by
calculating the relative importance score of nodes in the network, the relatively important nodes are
mined. Through verification and analysis on real network datasets in different fields, the results show
that the DDMF method outperforms other relatively important node mining algorithms in precision,
recall, and AUC value.

Keywords: complex network; distance distribution; multi-index fusion; relatively important node

1. Introduction

With the vigorous growth of network and information technology represented by
the Internet, human society has entered a new and complex era of networks. Information
mining in complex networks is important in theoretical research and offers great application
and socioeconomic values [1–4]. For example, if users can unearth important nodes or
edges in the spread network of a virus, then they can curb the spread of the virus in a
short time by isolating or cutting off the important nodes or edges in the virus network at
the beginning of the virus spread and thereby eliminate unnecessary economic losses [5].
Efficient information mining in complex networks has naturally become a key topic that
continues to attract the attention of many scholars.

The existing studies on complex network information mining are generally ranked
on the basis of the importance of all nodes and edges in the network [6–10]. However,
determining which nodes are the most important in the network relative to one or one group
of specific nodes presents an issue. This problem reminds us about the practical significance
of mining relatively important information in networks, especially very large-scale ones.

The relative importance of nodes refers to the importance of nodes relative to known
important nodes. It is also called proximity or similarity [11]. According to the key idea
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of relative importance, information mining in a complex network can be described as a
process in which the importance of a node in a network relative to a known important
node is quantified and the importance of a node relative to a known important node set is
calculated to identify the relatively important nodes in the network.

The central idea of relative importance can be widely used in many fields. For example,
potential criminals can be found using known criminal data in the field of criminal networks,
and terrorists in hiding can be captured on the basis of known terrorist data [12,13]. In
the bionetwork field, people susceptible to diseases can be identified for timely treatment
and isolation on the basis of relevant information on populations infected with known
infectious diseases. Unknown pathogenic genes may be determined according to known
pathogenic gene information in protein networks [14]. In the field of power grids, on
the premise that the information on important power generation units or circuit breakers
is known, finding relatively important power generation units, circuit breakers, etc. is
prioritized for protection, in order to effectively avoid large-area power outages caused by
successive faults. Mining relatively important nodes in complex networks obviously offers
great research significance and application value [15].

The node distance distribution in a complex network quantifies many types of topo-
logical information in the network, including the degree of nodes, average degree of the
network, diameter of the network, closeness centrality of nodes, and average path length
of the network [16]. Therefore, the study on the relative importance of nodes in a network
based on node distance distribution in the network will contribute to the accurate mining of
relatively important nodes in networks. In the current study, the distance distribution of all
nodes in a network is calculated. On the basis of known important node information, the
differences in distance distribution between known important nodes and target nodes are
measured from three dimensions, namely, direction, distance, and distribution. A relatively
important node mining method based on distance distribution and multi-index fusion
(DDMF) is proposed.

The DDMF method involves two main steps: First, the distance distribution of all
nodes (including known important nodes and target nodes) is calculated on the basis
of the shortest distance between nodes in the network. Then, the calculated results are
converted into vector form. Second, multi-index fusion is made for cosine similarity,
Euclidean distance, and relative entropy. The weights corresponding to different indexes
are calculated using the entropy weight method to obtain the relative importance scores
of the nodes. The nodes with high scores are regarded as a relatively important nodes in
the network.

Our key contribution is in proposing a novel method based on network topology to
find relatively important nodes in the network. The DDMF method not only fills the gap of
relatively important node algorithms in the scientific field of complex network theory, but
also provides a new idea for community detection and link prediction. Since the network
in real life exists in different kinds of fields, we also conduct some experiments on different
types of real network datasets to verify whether the method has practical application value
in real life. Experiments demonstrate that DDMF method outperforms other relatively
important node mining algorithms in terms of precision and applicability.

The remainder of this paper is organized as follows. In Section 2, works related to
the proposed method are given. Section 3 deals with detailed descriptions of the proposed
algorithm. The experimental results and analysis are presented in Section 4. Finally, we
summarize in Section 5.

2. Related Work

At present, many researchers in the field of complex networks focus on the mining
of important nodes in networks; that is, ranking the importance of all nodes in a network
as a whole. Existing research has primarily aimed to develop an identification algorithm
for influential nodes. Inspired by the heuristic scheme, Wang et al. [17] proposed the
price-performance-ratio PPRank method, selecting nodes in a given range and aiming to
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improve the performance of the diffusion. Yang et al. [18] proposed a method of ranking
node importance based on multi-criteria decision-making (MCDM). The weight of each
criterion is calculated by an entropy weighting method, which overcomes the impact of the
subjective factor. Li et al. [19] proposed a method of calculating the importance degree of
urban rail transit network nodes based on h-index, which considers the topology, passenger
volume, and passenger flow correlation of the urban rail network. Luo et al. [20] proposed
a relationship matrix resolving model to identify vital nodes based on community (IVNC),
as an attempt to identify influential nodes in OSNs.

However, the study on node mining based on relative importance remains limited.
The earliest study on relative importance in networks is that on a personalized variant HITS
algorithm [21]. Haveliwala [22] and Jennifier et al. [23] later proposed their own variant
PageRank algorithms, which consider the relative importance of nodes in a network. Alza-
abi et al. [24] defined the universal framework of mining algorithms for relatively important
nodes and proposed that the relative importance of nodes in a network relates to one node
set or one group of specified node sets. Wang et al. [25] proposed a path probabilistic
summation method, which defines the importance of any node relative to the nearest neigh-
bor node as the probability of jumping from the node to the nearest neighbor node in the
random walk process. Rodriguez et al. [26] proposed a cluster particle propagation method,
which is used to evaluate the relative importance of nodes. Magalingam et al. [27] used
shortest distance as a measurement indicator of relative importance. Langohr et al. [28]
used the reciprocal of the P norm of the shortest distance as a measurement indicator
of relative importance. In addition, some researchers have considered mining deep net-
work information by using network embedded learning methods [29–35]. For example,
some classical network-embedded learning algorithms have been used to mine relatively
important nodes in networks.

Although some algorithms have been employed to mine relatively important nodes
in networks, they suffer from problems that require immediate resolution, such as low
accuracy and narrow use range. Therefore, novel and efficient methods for mining relatively
important nodes need to be developed.

In the study of complex networks, the most classic and most widely used relative
importance calculation indicators include the Ksmar index [11], PPR index [21], and
Katz index [36]. Zhao et al. [37] proposed a relatively important node mining algorithm
based on neighbor layer diffuse (NLD) in 2021, which is the latest relatively important node
algorithm. In Section 4, we empirically compare our method with these methods using
various real world networks.

3. Relative Importance Measure Based on Distance Distribution and
Multi-index Fusion

To fully measure the impact of network structure information on the relative impor-
tance of nodes, this study proposes a relatively important node mining method based on
distance distribution and multi-index fusion, i.e., the DDMF method. In this section, we
first introduce the problem definition in complex networks and use a specific example
to explain what is the distance distribution. Then three indicators of cosine similarity,
Euclidean distance, and relative entropy are described in detail. Finally, we discuss how to
calculate the relative importance score of a node based on multi-index fusion.

3.1. Problem Definition

Under normal conditions, a complex network can be represented by G(V, E). Here, V
refers to the node in the network G and E refers to the edge of the network G. The network
G comprises n nodes. Among them, n nodes can be divided into important node set V1 and
unimportant node set V2. The important node set V1 has n1 nodes, while the unimportant
node set V2 has n2 nodes. The important node set V1 includes known important node set R
and unknown important node set U. The unimportant node set V2 and unknown important
node set U constitute target node set T, i.e., T = V2 ∪U.
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The key to finding the relatively important nodes in the target node set T is to first
calculate the importance of a node in the target node set T relative to a known important
node, and then calculate the importance of a node relative to all nodes in the known
important node set R.

The main contents of this work include the following: For the information of known
important node set R, the importance of any node in the target node set T relative to the
node in the known important node set R is analyzed and calculated. The expectation is
to find top− k relatively important nodes in the target node set T. The final results are
analyzed and evaluated on the basis of three evaluation indicators, namely, precision, recall,
and area under the curve (AUC).

3.2. Distance Distribution

Distance distribution in complex networks is usually represented by the shortest
path distribution between nodes. The node distance distribution in the network mainly
considers the number of nodes with different shortest path lengths to the current node;
thus, it can intuitively obtain the shortest path information of nodes in the network and
reflect many important topological information in the network [38].

The distance distribution of each node vi in the complex network can be represented
as Pi = {pi(j)}; the calculation formula of pi(j) is

pi(j) =
Ni(j)

n
(1)

where j represents the shortest path length with a value in the range of 0 ≤ j ≤ D(G). D(G)
refers to the diameter of the network G, and its value is the maximum distance between any
two nodes in the network G. Ni(j) represents the number of nodes with j of the shortest path
length to node vi in the network G; n represents the number of nodes in the network G.

Take a network Gexample as an example. The detailed calculation process of node
distance distribution in Gexample is introduced as follows. In Figure 1, the red nodes are the
nodes in the current study while the yellow, light green, blue, and pink nodes represent the
nodes that can be reached by taking one, two, three, and four steps consecutively, starting
from the nodes studied currently.
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Figure 1. The topology of the example network.

The number of nodes n in the sample network Gexample is 20, and the diameter
D(G) is 7. The distance distribution dimension mainly depends on the diameter of the
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network. Its value range is from 0 to D(G), with a total of D(G) + 1 cases. Therefore, the
distance distribution dimension d of each node in Gexample is 8. Provided that node 0 is
used as the starting research node, the set of nodes N(i) = {Ni(j)|0 ≤ j ≤ D(G)} that
can be reached by node 0 in turn can be obtained by calculating the shortest path length
between this node and other nodes in Gexample, that is, according to Formula (1) and N(i)
obtained through the above analysis, the distance distribution P0 of node 0 can be obtained
as: P0 = {0.05, 0.15, 0.30, 0.35, 0.15, 0, 0, 0}.

Similarly, the distance distribution of any node in the sample network Gexample can be
obtained. For a network G with n nodes, if the distance distribution of n nodes is known
P = {P0, P1, · · · , Pn−1}, then much important topology information in the network G can
be obtained on the basis of the distance distribution of nodes. For example, the degree ki
of any node vi in G, the average degree k of G, the average path length APL of G, and the
closeness centrality CCi corresponding to node vi.

For the network G with n nodes, a distance distribution matrix X = [xij] ∈ Rn×d is
established on the basis of the distance distribution information of all nodes in G; n refers
to the total number of nodes in the network G.

(1) Degree ki of node vi

ki = nxi1 (2)

(2) Average degree k of network G

k =
1
n

n−1

∑
i=0

nxi1 (3)

(3) Average path length APL of network G

APL =
2

n(n− 1)

n−1

∑
i=0

D(G)

∑
j=1

j× nxij (4)

(4) Closeness centrality CCi of node vi

CCi =
n

D(G)

∑
j=1

j× nxij

(5)

The analysis indicates that the distance distribution of nodes contains abundant network
topology information. Therefore, taking the distance distribution Pi of each node vi in the
network G as the main subject investigated and converting it into vector form, the difference
in the distance distribution between nodes in the known important node set R and the target
node set T is analyzed to find the relatively important nodes in the network G.

3.3. Introduction to Indicators

Cosine similarity is a measurement method for the difference between two individuals
and involves calculating the cosine value of the angle between two vectors in the vector
space, mainly focusing on the measurement of the difference between two individuals from
the dimension of direction. The basic idea is to covert the individual’s index data into the
vector space and then measure the difference between individuals by comparing the cosine
values of the angle in the inner product space between different individual vectors [39].



Appl. Sci. 2022, 12, 522 6 of 14

In a M-dimensional space, assuming that A and B are M-dimensional vectors, namely
A = [a1, a2, · · · , aM], B = [b1, b2, · · · , bM], then the cosine similarity CosAB can be
expressed as:

CosAB =

M
∑

i=1
(Ai × Bi)√

M
∑

i=1
(Ai)

2 ×
√

M
∑

i=1
(Bi)

2

=
A · B
|A| × |B| (6)

where the value range of CosAB is [–1, 1], that is, CosAB ∈ [−1, 1].
In this work, the distance distribution of nodes in the network is converted into vector

form; that is, in the network G with n nodes, the vectors of distance distribution of any
node x and node y can be expressed as Px and Py, respectively. Then, the formula for the
cosine similarity between nodes can be represented as:

DCos
(

Px‖Py
)
=

Px · Py

|Px| ×
∣∣Py
∣∣ (7)

Cxy =
1 + DCos

(
Px‖Py

)
2

(8)

Normalization is performed for the cosine similarity between nodes DCos(Px‖Py)
based on Equation (8), and Cxy is obtained. Among them, Cxy ∈ [0, 1].

Euclidean distance, also called Euclidean metric, originates from the distance formula
between two points in Euclidean geometry [40]. It is mainly used to measure the real
distance between two points in M-dimension space; that is, focusing on the numerical
difference between individuals.

In a M-dimensional space, assuming that A and B are M-dimensional vectors, namely
A = [a1, a2, · · · , aM], B = [b1, b2, · · · , bM], then the Euclidean distance EucAB can be ex-
pressed as:

EucAB =

√√√√ M

∑
i=1

(ai − bi)
2 (9)

Similarly, the distance distribution of nodes in the network G is first converted into vec-
tor form. Then, the Euclidean distance between any node x and node y can be represented
as Eucxy:

Exy =
Eucxy

Eucmax
(10)

Normalization is performed for Euclidean distance Eucxy between node x and node y
based on Equation (10), and Exy is obtained. Among them, Exy ∈ [0, 1].

From information theory, relative entropy, also called KL divergence or information
divergence, is generally used to measure the difference between two probability distribu-
tions [41]. In this work, the difference in the distance distribution between different nodes
in the network is calculated from the dimension of distribution to effectively find relatively
important nodes in the network.

For the network G with n nodes, the distance distributions of node x and node y are Px
and Py, respectively. Then, relative entropy can be defined as the difference in the distance
distribution between the two nodes. The formula is as follows:

DKL
(

Px‖Py
)
=

D(G)

∑
j=0

px(j) ln
px(j)
py(j)

(11)

If relative entropy DKL(Px‖Py) is small, then the difference in the distance distribution
between node x and node y is small. The denominator of the logarithmic function cannot
be 0. Therefore, in px(j) = 0 or py(j) = 0, the values of ln px(j)

py(j) are uniformly set to 0.
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In addition, relative entropy is an asymmetric measure. Therefore, this study sym-
metrically converts the relative entropy between node distance distributions. The specific
formula is as follows:

Qxy =
DKL

(
Px‖Py

)
+ DKL

(
Py‖Px

)
2

(12)

Rxy = 1−
Qxy

Qmax
=

Qmax −Qxy

Qmax
(13)

The relative entropy in asymmetric form is converted into symmetric form Qxy in
Equation (12). On the basis of Equation (13), normalization processing is implemented for
the relative entropy in symmetric form, then Rxy is obtained. Among them, Rxy ∈ [0, 1].

This study aims to find relatively important nodes in the network G by calculating the
relative entropy of the distance distribution of nodes in the known important node set R
and target node set T. If the relative entropy is small, then the difference in the distance
distribution between different nodes is small. That is, the nodes with a smaller relative
entropy in the target node set T compared to the known important node set R are more
likely to be relatively important nodes in the network G.

3.4. Relative Importance Score Based on Multi-index Fusion

To fully integrate the advantages of cosine similarity, Euclidean distance, and rela-
tive entropy in the direction, distance, and distribution dimensions, this study performs
the multi-index fusion of cosine similarity, Euclidean distance, and relative entropy and
calculates the weights of the different indexes by using the entropy weight method [42]
to maximize the advantages of the different indexes. The entropy weight method is an
objective weighting method that is widely used and often depends on the discreteness of
data. It mainly weighs different indexes according to the amount of information of different
evaluation indexes.

Cosine similarity, Euclidean distance, and relative entropy are mainly considered in
this work. Thus, weight allocation becomes necessary. A relative importance score matrix,
Z = [ztg] ∈ R|T|×3, is defined herein.

zt1 =

|R|
∑

r=1
Ctr

|R| , t = 1, 2, · · · , |T| (14)

zt2 =

|R|
∑

r=1
Etr

|R| , t = 1, 2, · · · , |T| (15)

zt3 =

|R|
∑

r=1
Rtr

|R| , t = 1, 2, · · · , |T| (16)

where zt1, zt2 and zt3 represent the arithmetic mean of cosine similarity, Euclidean distance
and relative entropy between the t− th node in the target node set T and all nodes in the
known important node set R respectively. |T| refers to the number of nodes in the target
node set T, |R| refers to the number of nodes in the known important node set R, and g
refers to the number of indexes, g = 1, 2, 3.

Based on the relative importance score matrix, the entropy corresponding to cosine
similarity, Euclidean distance, and relative entropy can be further calculated. The formulas
are as follows:

eg = − 1
ln|T|

|T|

∑
t=1

ptg ln(ptg) (17)
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ptg =
ztg

|T|
∑

t=1
ztg

(18)

where eg represents the entropy of the index in the g column and ptg represents the
proportion of the index in the g column of the t − th node in the target node set T in
this column of indexes.

After the entropies of different indexes are obtained, the weight coefficient ωg of
each index can be further calculated. The weights corresponding to different indicators
determine the relative importance scores of the target nodes in the network. The specific
formula is:

ωg =
1− eg

3
∑

g=1
(1− eg)

(19)

where 1− eg refers to information entropy redundancy. At the same time, ωg should meet
the restrictive conditions of ∑ ωg = 1, g = 1, 2, 3.

Therefore, the relative importance score of t− th node in the target node set T can be
expressed as:

st = ω1zt1 + ω2zt2 + ω3zt3 (20)

Finally, the relative importance scores of all nodes in the target node set T are
sorted in descending order, and the nodes with high scores can be regarded as relatively
important nodes.

The calculation of the relative importance scores of the nodes in a network by using
the DDMF method consists of the following steps:

First, on the basis of the information of the shortest distance between nodes in the
network G, the distance distribution vectors of all nodes in the network G are calculated,
along with all the nodes of the known important node set R and target node set T.

Second, the differences in the distance distribution of the nodes between the known
important node set R and the target node set T are determined. The cosine similarity,
Euclidean distance, and relative entropy of the distance distribution of the two node sets
are then calculated and normalized.

Finally, multi-index fusion is made for cosine similarity, Euclidean distance, and
relative entropy, and the weights corresponding to different indexes are calculated using
the entropy weight method. The relative importance scores of all the nodes in the target
node set T are further obtained. The nodes with high scores are regarded as relatively
important nodes.

4. Experimental Results and Analysis

The data of four real networks are used to analyze and verify the accuracy of the
DDMF method. The Node2vec algorithm [43] is a network-embedded learning algorithm
that cannot be directly used to calculate the relative importance scores of nodes. Therefore,
the NMF index is obtained on the basis of the improvement of the Node2vec algorithm.
The basic idea of the NMF index is as follows: first, the Node2vec algorithm is adopted
to generate the embedded vector of the network. Second, the multi-index fusion is made
for the obtained vectors so as to calculate the relative importance scores of the nodes. The
multi-index fusion method of the NMF index is consistent with proposed DDMF method.

The comparative algorithms included the Ksmar index, PPR index, Katz index, NLD
algorithm, and NMF index obtained on the basis of the Node2vec algorithm improvement.

4.1. Datasets

Experimental analysis is performed for the selected algorithms by using four classical
real network datasets. The selected datasets are of different sizes and come from differ-
ent network fields as much as possible, including virus networks, gene networks, and
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protein networks. The weight and direction of each network linking edge are ignored in
this experiment.

(1) The international aviation network where the SARS virus spread [44] comprises
224 nodes and 2247 edges. The nodes represent the countries where flights arrived while the
edges represent the routes between two countries. The important node set of the network
is defined as the countries where the SARS virus spread at the early stage.

(2) The Genepath human gene signaling network [45] comprises 6306 nodes and
57,340 edges. Nodes represent genes while edges represent the relationship between nodes.
The important node set of the network is defined as the Alzheimer’s disease gene.

(3) The mouse protein interaction network [46] comprises 1187 nodes and 1557 edges.
Nodes represent mouse proteins while edges represent the interaction between proteins.
The important node set of the network is defined as mouse protein kinase.

(4) The yeast protein network [47] comprises 5093 nodes and 24,743 edges. The nodes
represent proteins while edges represent the relationship between proteins. The important
node set of the network is defined as the important protein of the yeast network.

The basic topology characteristics of the four real networks used in this work are
shown in Table 1.

Table 1. Basic topological characteristics of real networks.

Dataset n m n1 k C

SARS 224 2247 18 20.06 0.65
Genepath 6306 57,340 51 18.19 0.32

Mouse 1187 1557 67 2.62 0.09
Yeast 5093 24,743 1167 9.72 0.1

Here, n refers to the number of nodes in the network, m refers to the number of edges
in the network, n1 refers to the number of important nodes in the network, k refers to the
average degree of the network, and C refers to the average clustering coefficient of the
network.

4.2. Evaluation Indexes

Precision, recall, and AUC are the three evaluation indexes used to quantify the
relatively important nodes obtained by several algorithms in this work.

Precision is mainly used to measure whether the top− L nodes in the results by the
algorithm are predicted correctly. It is specifically defined as the proportion of correct
predictions in top− L nodes among the predicted results. The formula is defined as:

precision =
Nr

L
(21)

where Nr refers to the frequency at which the top− L nodes predicted by the algorithm
occurred in the unknown important node set U.

Recall is mainly used to measure how many of the top− L nodes predicted by the
algorithm are correctly predicted. It is specifically defined as the proportion of the number
of unknown important nodes nr found in the top− L nodes in the prediction results relative
to all nodes in the unknown important node set U. The formula is defined as:

recall =
nr

|U| (22)

AUC is mainly used to measure the precision of the algorithm as a whole. The formula
is defined as:

AUC =
0.5N1 + N2

N
(23)
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The specific calculation process for AUC is as follows: one node is selected from the
unknown important node set U, and another is selected from the unimportant node set
V2 in each experiment, and the relative importance scores of the two nodes are compared.
If the two nodes receive the same score, then the score is recorded as 0.5 point; if the
relative importance score of the node selected from the unknown important node set U is
greater than that from the unimportant node set V2, then the score is recorded as 1 point.
N represents the number of all node combinations from the two sets U and V2. After N
independent experiments, the final AUC value is the sum of the scores of N experiments.
Among them, the frequencies of getting 0.5 point and 1 point are N1 and N2, respectively.

4.3. Experimental Analysis

The core goal of this work is to find relatively important nodes from the target node set
T. Therefore, the major subjects investigated from the four real networks selected, that is,
all nodes of target node set T, need to be determined. From the important node set V1, 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% of the nodes are selected and used as known
important nodes. The experiment in this paper treats the proportion of nodes equally; that
is, the number of experiments corresponding to different proportion of nodes is the same.
Different algorithms are used to find the relatively important nodes in the network. At
the same time, precision, recall, and AUC values corresponding to different algorithms
are calculated, and their values obtained from the experiments are averaged. Finally, the
proposed DDMF method is used and compared with other comparative algorithms in
terms of the three evaluation indexes.

The parameters of five other comparative algorithms are adjusted to be close to the
optimal ones in the four networks. The specific values are as follows: K = 3 is taken from
the Ksmar indexes, S = 0.75 is taken from the PPR indexes, and ϕ = 0.0001 is taken from
the Katz indexes. In the NMF algorithm, random walk length walk_length is valued as 10,
embedded vector length size is set to 128, and hyperparameters p, q ∈ {0.25, 0.50, 1, 2, 4}.
In the NLD algorithm, the selection method of known important nodes hub is the same as
that of the DDMF method. The experimental results of the three evaluation indexes are
shown in Figures 2 and 3 and Table 2.

In this study, different proportions of nodes are selected from the important node set
V1 as the known important nodes R. The precision, recall, and AUC values are calculated
by six relatively important node mining algorithms on the basis of experiments. The
average value of 50 times in the experimental results is used as the final experimental result.
Figure 2 shows the precision values of six relative importance node mining methods in the
four networks. The X axis represents the proportion of nodes in the target node set T while
the Y axis represents the precision of different node proportions. Figure 3 shows the recall
rates of the six relative importance node mining algorithms in the four networks. The X
axis represents the proportion of nodes in the target node set T while the Y axis represents
the recall rates of different node proportions. Table 2 shows the AUC values obtained by
the six relative importance node mining algorithms in the four networks.

The experimental results show that with the increase in the number of nodes in
the target node set T, the precision of the algorithm decreases gradually while the recall
rate increases gradually. In order to better simulate the actual situation of different real-
world networks and to reduce accidental error, the important nodes of different batches
are selected in different proportions from the important node set. Then the relatively
important nodes corresponding to the important nodes of these different batches are
calculated and mined. By calculating the arithmetic average of the relatively important
nodes of different batches, the final relatively important nodes are obtained. In terms of
precision, the proposed DDMF method is obviously better than the other five comparative
algorithms in the SARS and Genepath networks, and all of them perform well in the
mouse and yeast networks. In terms of recall, the DDMF method performs well in the
SARS and mouse networks. Specifically, its recall, under multiple node proportions, is
better than those of the comparative algorithms. The DDMF method ranks second for
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the Genepath and yeast networks. In terms of the AUC, the DDMF method outperforms
the others in the SARS, Genepath, and mouse networks and ranks second in the yeast
network. In sum, the proposed DDMF method performs well in terms of all the evaluation
indexes in the SARS, Genepath, and mouse networks and comes in second place in the
yeast network. Specifically, the proportion of the important nodes in the yeast network is
relatively large. Therefore, some errors may occur in calculating the distance distribution
of important nodes.

In general, the proposed DDMF method achieves excellent performance in real and
complex network datasets, especially in terms of the evaluation of precision and AUC. It
is obviously better than several comparative algorithms. At the same time, the selected
datasets come from different fields. The results indicate that the DDMF method is char-
acterized by high precision and wide applicability in mining relatively important nodes
in networks.
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Table 2. AUC results in four networks.

Dataset Ksmar PPR Katz NMF NLD DDMF

SARS 0.686 0.683 0.650 0.635 0.667 0.692
Genepath 0.545 0.526 0.482 0.568 0.565 0.675

Mouse 0.696 0.693 0.685 0.654 0.669 0.737
Yeast 0.596 0.582 0.564 0.686 0.665 0.669

5. Conclusions

A relatively important node mining method based on DDMF is proposed in this
work. The DDMF method is mainly based on the distance distribution information of
nodes. Starting from known important nodes, it aims to find relatively important nodes in
a network. The detailed comparative experiments with five other algorithms for mining
relatively important nodes in four real networks reveal that the DDMF method performs
well in terms of precision and applicability. Moreover, the DDMF method can not only be
used to mine the relatively important nodes in a network, but also be considered as a new
idea for community detection and link prediction.
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Mining relatively important nodes in complex networks is a challenging task with
practical value. The DDMF method can be effectively used to find relatively important
nodes in networks and provides a new idea and direction for the related work of network
information mining in the future. With that being said, the limitation of the DDMF method
can be summarized as something that it only considers mining relatively important nodes
in single-layer networks. In the future, our relatively important nodes mining method can
be applied to complex and diversified multilayer networks. Random walk could also be
considered as a direction in future research.
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