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Abstract: In this paper, we study the effects of the shield tunnel construction on the deformation of
an existing pipeline parallel to and above the new shield tunnel. We propose an analytical solution to
predict the spatiotemporal deformation of the existing pipeline and consider different force patterns
of the shield tunnelling, i.e., ground volume loss, support pressure, frictional force, and torsional
force. The proposed method is validated by the monitoring data of Subway Line 3 of Nanchang
and provides a reasonable estimation of the pipeline’s deformation. The parametric analyses are
performed to study the influences on the pipeline’s deformation. The main advantage of our paper is
that the spatiotemporal characteristics of the existing pipeline’s deformation are analysed, provid-
ing longitudinal deformation curve (LDC), deformation development curve (DDC), and grouting
reinforcement curve (GRC). Compared with the perpendicular undercrossing project, both LDC and
DDC have the same profiles and maximum values and move forward as a whole with the shield
tunnel advance. Thus, the spatiotemporal deformation of the overall pipeline can be extrapolated
from the deformation of two known points on the pipeline. The spatiotemporal characteristic curves
combined with LDC, DDC, and GRC can suggest feasible, effective, and economical construction and
grouting schemes to control the pipeline’s deformation after the deformation control standards have
been determined.

Keywords: tunnel-soil interaction; spatiotemporal deformation; parallel under-crossing; construction
process; subgrade reaction analysis

1. Introduction

The shield method was widely used to build tunnels in densely urban areas due to its
fast construction speed and high safety. As more and more shield tunnels are built, some
new tunnels will be inevitably excavated beneath some existing pipelines. To ensure the
safety and serviceability of the existing pipelines, some researchers have systematically
studied the mechanical behaviours of existing pipelines. The researchers commonly used
field measurements [1–5], laboratory test methods [6–8], numerical simulations [9–11], and
analytical methods.

The analytical method is convenient and straightforward to study the tunnel-soil-
pipeline interaction (TSPI). The main analytical method consists of the elastic continuum
approach [12–15] and the subgrade reaction analysis [16–21]. In these methods, the existing
pipelines are regarded as equivalent beams resting on elastic foundation models (Winkler
model, Pasternak model, Kerr model). These foundation models consist of closely spaced
linear springs and shear layers to model the TSPI. A series of springs provide subgrade re-
action forces to prevent the existing pipeline from deforming. The subgrade reaction forces
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depend on the tunnelling-induced ground movements that are significant for predicting
the existing pipeline’s deformation.

The empirical and analytical methods have been commonly employed to estimate
the tunnelling-induced ground movements. Peck [22] proposed an empirical solution to
represent the tunnelling-induced ground deformation trough. Based on Peck’s solution,
relative researchers have proposed modified solutions, considering the influences of ground
conditions and buried depths. Compared with the empirical solution, the analytical
solution has a rigorous framework. Mindlin’s solution [23], virtual image method [24],
and complex variable solution [25] are commonly used to predict the ground movements.
These analytical methods have inspired further investigations about tunnelling-induced
ground movements [26–31]. Li et al. [32,33] proposed analytical solutions of ground
movements due to curved shield tunnelling.

Most previous studies have focused on the final deformation of ground and existing
pipelines, regardless of the deformation in the construction process with spatiotemporal
characteristics. As a result, the analytical predictions cannot be used during tunnel construc-
tion to suggest appropriate measures to control the structural deformation. Moreover, the
applied forces of the shield machine to the surrounding soil are also frequently ignored in
analytical methods. The tunnel construction process, applied forces, and backfill grouting
should be considered to analyse the spatiotemporal deformation of existing pipelines.

This paper aims to analyse the spatiotemporal characteristics of an existing pipeline’
deformation using the virtual image method, Mindlin’s solution, and subgrade reaction
analysis. The virtual image method and Mindlin’s solution calculate the ground defor-
mation induced by the ground volume loss, the supporting pressure at tunnel face, the
frictional force of shield shell, and the torsional force of cutter head. Subsequently, the sub-
grade reaction analysis calculates the deformation of existing pipelines. The spatiotemporal
deformation considers the shield tunnel construction and grouting processes. Moreover, the
mechanical behaviour of the existing pipelines due to the shield tunnelling parallel beneath
in Nanchang subway Line 3 is investigated to validate our proposed method. The influ-
ences of the shield tunnel construction factors on the existing pipeline’s deformation are
carried out. Besides, we provide the longitudinal deformation curve (LDC), deformation
development curve (DDC), and grouting reinforcement curve (GRC). The spatiotemporal
characteristic curves combined with LDC, DDC, and GRC can give feasible, effective, and
economical construction and grouting schemes to control the deformation. Figure 1 shows
the flow chart of this paper to express a clear research framework.
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2. Tunnel-Soil-Pipeline Interaction

Figure 2 briefly illustrates the interaction between the shield tunnel, the soil, and the
existing pipeline. The spatiotemporal deformation of the ground and the existing pipeline
is related to the force patterns during the shield tunnel construction. All the force patterns
can be categorised as ground volume loss, support pressure at the tunnel face, the frictional
force of the shield shell, and the torsional force of the cutter head.

We utilise the virtual image method, Mindlin’s solution, and subgrade reaction analy-
sis to predict the existing pipeline’s deformation considering the spatiotemporal charac-
teristics of shield tunnel construction. The virtual image method calculates the free-field
ground movements induced by ground volume loss. Mindlin’s solution calculates the
free-field ground movements mainly induced by the support pressure at the tunnel face, the
frictional force of the shield shell, and the torsional force of the cutter head. The subgrade
reaction analysis is adopted to estimate the deformation of the existing pipeline, in which
the free-field ground movements are regarded as the additional pressure acting on the
existing pipeline.
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2.1. Free-Field Movements Induced by Ground Volume Loss

Sagaseta [24] proposed the virtual image method to predict the displacements and
stress fields due to a point sink in the elastic half-space. Based on the cavity expan-
sion/contraction theory and superposition method, the closed-form solutions of the dis-
placement and stress related to the ground volume loss are given by Jin, et al. [34]:

ux =
Vx
4π

[
1

R3
1
+

3 − 4µ

R3
2

− 6z(z + H)

R5
2

] (1)
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uy =
Vy
4π

[
1

R3
1
+

3 − 4µ

R3
2

− 6z(z + H)

R5
2

] (2)

uz =
V
4π

[
z − H

R3
1

+
2z
R3

2
− (3 − 4µ)(z + H)

R3
2

− 6z(z + H)2

R5
2

] (3)

where ux, uy, and uz are the three-dimensional displacement components; µ is the Poisson’s
ratio; H is the distance between the ground surface and point sink; V is the ground volume
loss; the parameters R1 and R2 are expressed as:

R1 =

√
x2 + y2 + (z − H)2 (4)

R2 =

√
x2 + y2 + (z + H)2 (5)

The ground volume loss should be integrated along the direction of tunnel construction
shown in Figure 2 to analyse the spatiotemporal characteristic of ground movements.
According to Equations (1)–(3), the three-dimensional ground movements can be given by
integrating the Green functions along the direction of tunnel construction from L1 to L2:

uV
x =

∫ L2

L1

ug(x, z) fx(x, y − η, z)dη (6)

uV
y =

∫ L2

L1

ug(x, z) fy(x, y − η, z)dη (7)

uV
z =

∫ L2

L1

ug(x, z) fz(x, y − η, z)dη (8)

where L1 and L2 are the distance from the intersection point O (Figure 2) to the launching
shaft of the new tunnel and the shield tunnel face, respectively; u(x, z) is the ground loss
distribution of the inner tunnel boundary; f x, f y, and f z are the Green functions determined
by assuming V = 1 in Equations (1)–(3). It means the ground movement induced by unit
volume loss; dη is the unit length of tunnel excavation.

If the ground loss distribution is uniform radial, ug(x, z) will be a constant u0. However, Lo-
ganathan and Poulos [35] indicated that the ground loss distribution is a non-uniform
pattern instead of a uniform one and proposed the formula:

ug(x, z) =
4gR + g2

4R2 exp(− 1.38x2

(H + R)2 − 0.69z2

H2 ) (9)

V =
4gR + g2

4R2 (10)

where g is the gap parameter; R is the radius of the shield tunnel; V is the equivalent ground
loss parameter.

The gap parameter g is related to the tunnelling machine and lining geometry, the 3D
elastoplastic ground movement at the tunnel face, and the over-excavation of soil around
the tunnel shield periphery. Some scholars [36–38] have investigated how to determine the
parameter g reasonably.

2.2. Free-Field Movements Induced by Different Force Patterns

Mindlin [23] proposed the analytical solutions of the displacements and stress fields
induced by a vertical or horizontal load in an elastic half-space (shown in Figure 3). The ver-
tical displacement and vertical stress induced by a vertical load (horizontal load) can be
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given by Equations (11) and (12), respectively. The other solutions can be detailed in
relative research.

uz =
P

16πG(1−µ)

[
3−4µ

R1
+ 8µ2−12µ+5

R2
+ (z−c)2

R1
3 + (3−4µ)(z+c)2−2dc

R2
3 + 6cz(z+c)2

R2
5

]

σz =
P

8π(1−µ)

 − (1−2µ)(z−c)
R1

3 + (1−2µ)(z−c)
R2

3 − 3(z−c)3

R1
5

− 3(3−4µ)z(z+c)2−3c(z+c)(5z−c)
R2

5 + 30cz(z+c)3

R2
7

 (11)

uz =
Qx

16πG(1−µ)

[
z−c
R1

3 + (3−4µ)(z−c)
R2

3 − 6cz(z+c)
R2

5 + 4(1−µ)(1−2µ)
R2(R2+z+c)

]

σz =
Qx

8π(1−µ)

 1−2µ

R1
3 − (1−2µ)

R2
3 − 3(z−c)2

R1
5 − 3(3−4µ)(z+c)2

R2
5

+ 6c
R2

5

(
c + (1 − 2µ)(z + c) + 5z(z+c)2

R2
2

)  (12)
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Integrating Mindlin’s solutions can represent the free-field movements induced by
different force patterns. As shown in Figure 4, the force patterns consist of the support
pressure at the tunnel face, the frictional force of the shield shell, and the torsional force of
the cutter head. The analytical solutions of these three force patterns are as follows:
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Figure 4. Free-field ground movements induced by different force patterns: (a) support pressure at
tunnel face; (b) frictional force of shield shell; (c) torsional force of cutter head.

2.2.1. Support Pressure at Tunnel Face

Figure 4a shows that the support pressure is perpendicular to the shield tunnel face
during the excavation. An element at the tunnel face is removed to perform the force
analysis. The coordinate of the element is (r, 0). The equivalent concentrated force dP, the
shadow area of the element in Figure 4a, can be expressed as prdrdθdη. According to the
A-A section, dη is the distance of shield tunnel excavation.

The coordinate of any point load P within the tunnel face will be (rcos(θ), 0, H-rsin(θ)).
During the shield tunnel excavation, the Cartesian coordinate system will translate η along
the Y-axis. Thus, the coordinate of any point load during the shield tunnel excavation will
be (rcos(θ), η, H-rsin(θ)). Based on Mindlin’s solution, the parameters R1 and R2 shown in
Figure 4a will be rewritten, respectively:

R1 =

√
(x − r cos(θ))2 + (y − η)2 + (z − H + r sin(θ))2 (13)

R2 =

√
(x − r cos(θ))2 + (y − η)2 + (z + H − r sin(θ))2 (14)

The support pressure is a horizontal load along Y-axis. So, the x in Equation (12)
should be replaced with y-η. The displacements and stress fields induced by the support
pressure can be obtained using the triple integrals. The domain of the triple integrals is
a cylindrical region that the tunnel face passes. According to Equation (12), the vertical
displacement and vertical stress with shield tunnel advance are given, respectively.

uz =
∫ R

0

∫ 2π
0

∫ L2
L1

p(y−η)rdrdθdη
16πG(1−µ)

[
z−c
R1

3 + (3−4µ)(z−c)
R2

3 − 6cz(z+c)
R2

5 + 4(1−µ)(1−2µ)
R2(R2+z+c)

]
(15)

σz =
∫ R

0

∫ 2π

0

∫ L2

L1

p(y − η)rdrdθdη

8π(1 − µ)

 1−2µ

R1
3 − (1−2µ)

R2
3 − 3(z−c)2

R1
5 − 3(3−4µ)(z+c)2

R2
5

+ 6c
R2

5

(
c + (1 − 2µ)(z + c) + 5z(z+c)2

R2
2

)  (16)

2.2.2. Frictional Force of Shield Shell

As shown in Figure 4b, the frictional force of the shield shell is a horizontal force
during the shield tunnel excavation. The element force dP, the shadow area of the element
in Figure 4b, can be expressed as pRdθdη. The frictional force is along the tunnel periphery.
Thus, the coordinate of any point load P along the tunnel periphery will be (Rcos(θ), η,
H-Rsin(θ)). The parameters R1 and R2 shown in Figure 4b will be rewritten, respectively:

R1 =

√
(x − R cos(θ))2 + (y − η)2 + (z − H + R sin(θ))2 (17)
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R2 =

√
(x − R cos(θ))2 + (y − η)2 + (z + H − R sin(θ))2 (18)

Due to the shield tunnel excavation along the Y-axis, the frictional force is a horizontal
load along the Y-axis. The Cartesian coordinate system will translate η along the Y-axis.
So, the x in Equation (12) should be replaced with y-η. Compared with the support pressure
in Section 2.2.1, the displacements and stress fields are obtained by double integrals.
The domain of the integral is a cylindrical surface instead of a cylinder. According to
Equation (12), the vertical displacement and vertical stress are given, respectively.

uz =
∫ 2π

0

∫ L2
L1

p(y−η)Rdθdη
16πG(1−µ)

[
z−c
R1

3 + (3−4µ)(z−c)
R2

3 − 6cz(z+c)
R2

5 + 4(1−µ)(1−2µ)
R2(R2+z+c)

]
(19)

σz =
∫ 2π

0

∫ L2

L1

p(y − η)Rdθdη

8π(1 − µ)

 1−2µ
R1

3 − (1−2µ)
R2

3 − 3(z−c)2

R1
5 − 3(3−4µ)(z+c)2

R2
5

+ 6c
R2

5

(
c + (1 − 2µ)(z + c) + 5z(z+c)2

R2
2

)  (20)

2.2.3. Torsional Force of Cutter Head

As shown in Figure 4c, the torsional force of the cutter head is parallel to the tunnel
face during the shield tunnel excavation. The torsional force direction is clockwise or
anti-clockwise. The expression of the element load dP of the torsional force, the shadow
area of the element in Figure 4c, is the same as that of the support pressure. The coordinates
of any point load of these two cases are the same. The parameters R1 and R2 are obtained
by Equations (13) and (14).

The torsional force direction is assumed to be clockwise. The torsional force P can be
divided into horizontal and vertical components.

ph = P sin(θ)
pv = P cos(θ)

(21)

The direction of the horizontal component is along the X-axis, and the Cartesian
coordinate system will translate rcos(θ) along the X-axis. So, the x in Equation (12) should
be replaced with x-rcos(θ). The displacements and stress fields induced by the horizontal
component of torsional force can be obtained through the triple integrals. The domain of the
triple integrals is a cylindrical region. According to Equation (12), the vertical displacement
and vertical stress are given, respectively.

uh
z =

∫ R
0

∫ 2π
0

∫ L2
L1

ph(x−r cos(θ))rdrdθdη
16πG(1−µ)

[
z−c
R1

3 + (3−4µ)(z−c)
R2

3 − 6cz(z+c)
R2

5 + 4(1−µ)(1−2µ)
R2(R2+z+c)

]
(22)

σh
z =

∫ R
0

∫ 2π
0

∫ L2
L1

ph(x−r cos(θ))rdrdθdη
8π(1−µ)

 1−2µ

R1
3 − (1−2µ)

R2
3 − 3(z−c)2

R1
5 − 3(3−4µ)(z+c)2

R2
5

+ 6c
R2

5

(
c + (1 − 2µ)(z + c) + 5z(z+c)2

R2
2

)  (23)

Moreover, the direction of the vertical component is along the Z-axis. The displace-
ments and stress fields induced by the vertical component of torsional force can be ob-
tained by the triple integrals, of which the domain is a cylindrical region. According to
Equation (11), the vertical displacement and vertical stress are given, respectively.

uv
z =

∫ R
0

∫ 2π
0

∫ L2
L1

pvrdrdθdη
16πG(1−µ)

[
3−4µ

R1
+ 8µ2−12µ+5

R2
+ (z−c)2

R1
3 + (3−4µ)(z+c)2−2dc

R2
3 + 6cz(z+c)2

R2
5

]
(24)

σv
z =

∫ R

0

∫ 2π

0

∫ L2

L1

pvrdrdθdη

8π(1 − µ)

 − (1−2µ)(z−c)
R1

3 + (1−2µ)(z−c)
R2

3 − 3(z−c)3

R1
5

− 3(3−4µ)z(z+c)2−3d(z+c)(5z−c)
R2

5 + 30cz(z+c)3

R2
7

 (25)



Appl. Sci. 2022, 12, 500 8 of 20

Finally, the vertical displacement and stress induced by the torsional force of the cutter
head are:

uz = uh
z + uv

z
σz = σh

z + σv
z

(26)

2.3. Tunnel-Soil-Pipeline Interaction Based on Subgrade Reaction Analysis

The subgrade reaction analysis is a primary method to study the tunnel-soil-pipeline
interaction. This method regards the existing pipeline as a Euler-Bernoulli beam or Timo-
shenko beam resting on an elastic foundation model. The foundation model is commonly
composed of the simplest Winkler model [39] and the two-parameter Pasternak model [40].
The closely spaced linear springs in the Winkler model represent the subgrade reaction
forces. The subgrade reaction forces on the springs are expressed as:

qk = kk(uz(x)− w(x)) (27)

where kk is the coefficient of subgrade reaction in the Winkler model; w(x) is the deformation
of the existing pipelines.

Compared with the Winkler model, the two-parameter Pasternak model is more
accurate because a shear layer on the spaced springs can model the interaction between the
spaced springs. The subgrade reaction forces on the springs are expressed as:

qp = kp[uz(x)− w(x)] + Gc
d2w(x)

dx2 (28)

where kp is the coefficient of subgrade reaction in the Pasternak model; Gc is the shear
stiffness of the shear layer.

Some related researchers have proposed the governing equations of the subgrade
reaction analysis for the Euler-Bernoulli beam on the Winkler model (EW) and the Euler-
Bernoulli beam on the Pasternak model (EP).

EI d4w(x)
dx4 + kkw(x) = kkuz(x) for ET

EI d4w(x)
dx4 − Gc

d2w(x)
dx2 + kpw(x) = kpuz(x) for EP

(29)

Substituting uz(x) calculated in Sections 2.1 and 2.2 into the Equation (29), the defor-
mation of the existing pipeline can be predicted with the shield tunnel construction process.

The coefficient of subgrade reaction k and the shear stiffness of shear layer Gc are two
main parameters. Many published papers estimated k using different methods [41–44].
The solution proposed by Yu et al. [45] is commonly used because it considers the buried depth.

k = 3.08
λ

Es
1−µ2

8
√

EsB4

EI

λ =

{
2.18 when z0

B ≤ 0.5

1 + 1
1.7z0/B when z0

B > 0.5

(30)

where Es is the elastic modulus of the soil; B is the diameter of the existing pipeline; z0 is
the buried depth of the existing pipeline.

Tanahashi [46] proposed an empirical solution to estimate Gc:

Gc =
Esht

6(1 + v)
(31)

where ht is the elastic layer’ depth, approximately 2.5B suggested by Xu [47].
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3. Application of Proposed Method on Nanchang Subway Line 3
3.1. Project Overview and Monitored Data

Figure 5 shows a plan view of Nanchang Subway Lines. Construction began on Sub-
way Line 1 in 2010, then Lines 2 and 3 were designed in turn. Subway Line 3 was completed
in 2020. The total length of Subway Line 3 is 28.5 km, with 22 subway stations from Yin San
Jiao Bei Station to Jing Dong Road Station. The stations are mainly excavated by using the
cut and cover method and are basically located in medium sand and moderately weathered
argillaceous siltstone.

To validate our proposed method, we chose the running tunnel from Jing Jia Shan
Station to Shi Zi Street Station. Figure 6 shows a plan view of the running tunnel of
Nanchang Subway Line 3. The total length of the running tunnel is 1369.16 m (from
DK34+260 to DK35+630). The running tunnel consists of left and right tunnels, excavated
by using the shield method. The left and right shield tunnels excavate adjacent to numerous
existing buildings and parallel beneath reinforced concrete pipelines. A region from −50 m
to 50 m is used in comparison between the analytical and monitoring results.

Figure 7 illustrates a cross-sectional view of the existing pipeline and the new shield
tunnels, part of the Nanchang Subway Line 3. The external and the internal radius of the
segmental lining are 3.0 m and 2.7 m, respectively. The overburden depth of the shield
tunnels is about 15.6 m. The vertical clearance between the shield tunnels and the existing
pipeline is about 11.3 m. The external diameter and the width of the existing reinforced
concrete pipeline are 0.96 m and 0.08 m, respectively.

After launching from the Shi Zi Street Station, the deformation of the ground surface
and pipeline was monitored. The ground surface deformation was measured by total
station and bolt-like mark, type TCR1201+ and No. 667556. A magnetic extensometer
and probe measured the deformation of the existing pipeline. The monitoring points
arrangements for the ground surface and existing pipeline can also be found in Figure 7.
The monitoring points are set up every 5 m along the tunnel direction.

3.2. Calculated Deformation of Ground Surface and Pipeline

The ground surface deformation and pipeline deformation are calculated by our
proposed method. The input parameters for the calculation are shown in Table 1. To ensure
the stability of the tunnel face, the support pressure is greater than the earth pressure.
A differential value of 10 kPa is selected to obtain the deformation induced by support
pressure at the tunnel face. The earth pressure also represents the normal force between
the shield shell and the soil. The coefficient of the frictional force is 0.3 for medium sand.
The ground deformation is calculated by using the Gaussian integration method to obtain
the numerical results. The pipeline deformation is obtained by the finite difference method.

Table 1. Input parameters.

zg (m) zp (m) H (m) R (m) V l (%) S (m) µ Es (MPa) EI (GPam3) ∆P (kPa) T (kNm)

0.0 4.0 15.6 3.0 1.5 9.0 0.3 20.0 200.0 10.0 2500

Note: zg and zp are the depths of the ground surface and the pipeline, respectively; S is the length of the shield
shell; ∆P is the differential value of support pressure; T is the torsional force of the cutter head.

Figure 8 shows the different components of the ground surface deformation induced
by the shield tunnelling. Y-axis is taken as the shield tunnel construction direction, and the
tunnel face is located at y = 0. The maximum ground surface deformation induced by the
ground volume loss, support pressure, frictional force, and torsional force are 8.29, 0.79,
0.89, and 1.77 mm, respectively. The ground volume loss causes most of the deformation
behind the shield tail. A tiny protrusion before the tunnel face is induced by the support
pressure at the tunnel face and the frictional force of the shield shell. The torsional force of
the cutter head produces an antisymmetric deformation of which one side is concave, and
the other side is convex.
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Figure 7. Monitoring section I-I.

Jin et al. [34] have indicated that the deformation induced by the torsional force was so
small that it needs no more attention. However, the conclusion neglects the spatiotemporal
characteristic of the tunnel construction. Due to the superposition of the deformation during
the shield tunnelling, more attention should be paid to the deformation induced by different
force patterns. Moreover, the pipeline and ground surface have similar longitudinal
deformation profiles induced by the shield tunnelling. The magnitudes of the pipeline
deformation are larger than those of the ground surface. The relevant description of the
pipeline deformation is omitted.

3.3. Comparison between Analytical and Monitoring Results

Figure 9a shows the longitudinal profiles of the ground surface deformation induced
by different force patterns during the shield tunnelling. The deformation induced by the
torsional force is not drawn because the value is minimal at x = 0. A superposition of
all the deformation components is shown in Figure 9b as well as the monitoring data of
the ground surface. The analytical deformation develops rapidly near the tunnel face,
then eventually increases to a stable value of 9.11 mm far away from the tunnel face.
The maximum monitoring data of the ground surface is about 8.0 mm, which is 12% less
than the analytical results proposed by our method.
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(a) Displacement induced by ground volume loss (b) Displacement induced by support pressure

(c) Displacement induced by frictional force (d) Displacement induced by torsional force

Figure 8. Ground deformations induced by different forces: (a) Displacement induced by ground
volume loss; (b) displacement induced by support pressure; (c) displacement induced by frictional
force; (d) displacement induced by torsional force.
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Figure 9. Longitudinal profiles of ground surface deformation during shield tunnelling: (a) surface
deformation during tunnelling; (b) analytical results and monitoring data.

Moreover, Figure 10a illustrates the longitudinal profiles of the ground deformation at
the pipeline’s elevation (zp = 4 m) induced by the ground volume loss, support pressure,
and frictional force. According to the subgrade reaction analysis in Section 2.3, the pipeline
deformation is calculated and drawn in Figure 10b, as well as the monitoring data of the
pipeline. The maximum value proposed by our method is 9.6 mm, 11.5% more than the
maximum value of the monitoring data. Based on Figures 9 and 10, the analytical results
agree well with the monitoring data, confirming that our proposed method is applicable.
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Figure 10. Longitudinal profiles of pipeline deformation during shield tunnelling: (a) ground
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Figure 11 shows the pipeline deformation and monitoring data with shield tunnel
advance. The shield tunnel is excavated ahead from y = −20 m to −10 m and to 0 m.
The longitudinal profiles of the pipeline deformation are similar and move forward as a
whole. The predicted deformation before the tunnel face matches well with the monitoring
data. In contrast, the deformation is larger than the stable value of the monitoring data
after the tunnel face. The differences between the analytical results and the monitoring
data mainly come from two aspects: (a) the soil in the multiple layers has different types
instead of a uniform and elastic medium. (b) the grouting implementation enhances the soil
properties and reduces the pipeline deformation. Although the analytical results diverge
from the monitoring data, the proposed method gives a relatively feasible estimation of the
pipeline deformation considering the tunnel advancing.
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4. Parametric Analysis

During the shield tunnel advances, the ground volume loss, the support pressure at
the tunnel face, the frictional force of the shield shell, and the torsional force of the cutter
head affect the pipeline’s deformation. Therefore, further parametric analysis is performed
in this section to study the influences. The input parameters are listed in Table 1.

4.1. Ground Volume Loss

The ground volume loss ratio is set to be 1.0%, 3.0%, and 5.0%, respectively. Figure 12
shows the ground deformation at the pipeline’s elevation and the pipeline’s deformation.
The pipeline’s deformation increases significantly with the increased ground volume loss.
Reducing the ground volume loss is significant in controlling the pipeline’s deformation
during tunnel construction.
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4.2. Support Pressure

Figure 13 shows the ground deformation at the pipeline’s elevation and the pipeline’s
deformation with different support pressures at the tunnel face. The divergence of the
support pressure ∆P ranges from 10 kPa to 50 kPa. The ground deformation is larger
than the pipeline’s deformation. The pipeline’s deformation near the tunnel face increases
with the increase of ∆P. To prevent the pipeline’s uplift, the support pressure’s divergence
should be limited to a minor value.

4.3. Frictional Force

The longitudinal profiles of the pipeline’s deformation with different frictional forces
are shown in Figure 14. The coefficient of frictional force is set to be 0.2, 0.3, and 0.4.
The pipeline’s deformation increases with the increased coefficient of frictional force.
The pipeline’s deformation is antisymmetric and protruded before the tunnel face. Therefore, the
deformation induced by the frictional forces cannot be ignored. For reducing the relevant
deformation, a lubricant needs to be applied on the outer skin of the shield shell.
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4.4. Torsional Force

According to Figure 8d, the pipeline almost produces no deformation induced by
torsional forces because the pipeline is directly above the shield tunnel. The antisymmetric
deformation generates on the two sides of the shield tunnel. We select the deformation at
x = −10 to illustrate the effect of the torsional forces on the pipeline’s deformation shown
in Figure 15. The torsional forces are set to be 1000, 2500, and 4000 kN. The pipeline’s
deformation increases with the increase of the torsional forces.
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4.5. Equivalent Bending Stiffness of Pipeline

According to the pipeline’s deformation from Figures 12–15, the pipeline sometimes
generates rigid deformation, sometimes flexible deformation. The flexible deformation
is the coordinated deformation with the ground. Some previous studies indicated that
the deformation mechanism is relative to the equivalent bending stiffness. Figure 16
illustrates the effect of the equivalent bending stiffness on the pipeline’s deformation.
Smaller equivalent bending stiffness results in coordinated deformation with the ground,
whereas a larger one results in rigid deformation.
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5. Spatiotemporal Characteristics of Existing Pipeline’s Deformation
5.1. Three-Dimensional Deformation with Tunnel Construction and Grouting Processes

To study the spatiotemporal characteristics of the existing pipeline’s deformation
induced by the new shield tunnel parallel excavating beneath, Figure 17 draws the three-
dimensional deformation of the existing pipeline and the ground with shield tunnel ad-
vance. The X-axis is the pipeline’s length from −50 m to 50 m, and the Y-axis is the tunnel
face’s location from −30 m to 30 m. During the shield tunnel excavation, assume the coeffi-
cient of subgrade reaction is k before the tunnel face and increases to 2k behind the tunnel
face because the backfill grouting is carried out. The Z-axis is the resultant settlements
according to the construction and grouting processes.
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The front view shows the envelope of the longitudinal deformation curves (LDC) of the
overall existing pipeline, which consists of several S-curves (growth curves). For instance,
the solid purple line is the pipeline’s LDC when the new shield tunnel excavates to 0 m.
The LDC with different shield tunnel advances is plotted in Figure 18a. As the shield tunnel
constructs forward, the LDC with similar profiles moves forward as a whole. Following the
published conclusions [31,48], the deformation is categorised into four stages: advance
stage, rapid stage, gradual stage, and steady stage. Compared with the perpendicular
undercrossing project, the maximum deformation of the existing pipeline is roughly around
a specific constant with the tunnel advance. Therefore, the desired pipeline’s LDC at a
certain moment of excavation can be predicted based on the measured LDC, all else being
equal. When the actual monitored LDC changes significantly, the predicted LDC can be
used as an early warning value to alert engineers to control deformation.

The side view shows the envelope of the deformation development curves (DDC)
of all points on the pipeline. The envelope consists of several S-curves (growth curves).
For instance, the orange dotted line is the DDC for the monitored point at x = 0 as the shield
tunnel advances. The DDC for the different points on the existing pipeline is shown in
Figure 18b. Consistent with the conclusion proposed by Liu et al. [18], the deformation
changes rapidly within a certain range. The magnitude of deformation variation at each
point of the existing pipeline is essentially the same for the parallel undercrossing project,
whereas it is different for the perpendicular undercrossing project. Thus, the DDC of all the
points on the pipeline can be easily extrapolated from the DDC of two monitored points,
all other conditions being controlled.
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Figure 18. Existing pipeline’s deformation contours extracted from front view and side view: (a) Lon-
gitudinal Deformation Curve (LDC) extracted from front view; (b) deformation development curve
(DDC) extracted from side view.

The top view shows the existing pipeline’s settlement contours due to a new shield
tunnel parallel excavating beneath. The settlement at any point and any moment during the
tunnel advance can be obtained through the top view. The settlement changes significantly
around the diagonal, symmetrical about the diagonal.

5.2. Spatiotemporal Characteristic Curves Combined with LDC, DDC, and GRC

We can implement the backfill grouting and compensation grouting during the shield
tunnel excavation to reinforce the surrounding soil and control the existing pipeline’s
deformation. Therefore, the study on the spatiotemporal characteristics of the existing
pipeline’s deformation necessarily takes into account the effect of grouting reinforcement.
To simplify this issue, we assume that the effect of grouting reinforcement is reflected in
enhancing the coefficient of subgrade reaction. The coefficient of subgrade reaction before
the tunnel face is set to be k. The coefficient of subgrade reaction behind the tunnel face
increases to 1.5, 2, 2.5, and 3k, according to different grouting degrees. Subsequently, we
provide a straight line, called the grouting reinforcement curve (GRC), to represent the
linear relationship between the subgrade reaction force and the deformation based on
the Winkler foundation model. Figure 19 shows the spatiotemporal characteristic curves
combined with LDC, DDC, and GRC, respectively.
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and GRC.

Figure 19a shows the different LDC obtained by different backfill grouting when shield
tunnel excavates to 0 m. The overall pipeline’s deformation gradually decreases with the
increase of k. After giving a certain settlement control value, we can provide a reasonable
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grouting measure according to the spatiotemporal characteristic curves combined with
LDC and GRC. For instance, we choose the backfill grouting scheme in which the coefficient
of subgrade reaction increases to 2k (blue dotted line).

Figure 19b shows the different DDC at the monitored point of x = 0 obtained by differ-
ent backfill grouting. The control effectiveness of the grouting reinforcement is unobvious
before the tunnel face passes the monitored point, whereas the effectiveness is remarkable
after the tunnel face passes the monitored point. After giving a certain settlement control
value, we can provide a reasonable grouting measure to control the deformation at a certain
point according to the spatiotemporal characteristic curves combined with DDC and GRC.
For instance, by connecting the control value to the origin, the minimum coefficient of
subgrade reaction can be determined. Alternatively, by connecting the control value to the
settlement at any moment (solid red line), the minimum coefficient of subgrade reaction,
required after that moment, can be determined.

6. Conclusions

This paper proposes an analytical method to predict the deformation of the existing
pipeline parallel to and above the new shield tunnel. The pipeline’s deformation is induced
by different force patterns considering the shield tunnel construction process. The findings
are as follows:

1. Compared with the final deformation in previous research, our analyses focus on the
pipeline’s deformation during the tunnel construction and grouting reinforcement.
The importance of deformation control during tunnel construction is emphasised.

2. The influences of different force patterns on the spatiotemporal deformation during
the construction phase is considered in more detail. The force patterns consist of the
ground volume loss, support pressure at tunnel face, frictional force on shield shell,
and torsional force of cutter head.

3. The spatiotemporal deformation of the existing pipeline is studied considering the
shield tunnel advance. The calculated results agree well with the monitoring data of
the existing pipeline in Subway Line 3 of Nanchang. Our proposed method provides
a feasible estimation of the pipeline’s deformation with the tunnel advance.

4. The pipeline’s deformation increases with the increased ground volume loss, support
pressure, frictional force, and torsional force. Although most of the deformation
is induced by the ground volume loss, the effects of other force patterns on the
deformation should not be ignored.

5. We provide the longitudinal deformation curve (LDC), deformation development
curve (DDC), and grouting reinforcement curve (GRC) to represent the spatiotemporal
characteristics of the existing pipeline’s deformation. The deformation at any point
and any moment during the tunnel advance can be roughly extrapolated from the
monitored data of any two points.

6. The curves combined with LDC, DDC, and GRC are provided to represent the spa-
tiotemporal characteristics. It can be applied to suggest an appropriate construction
and grouting scheme during the shield tunnel construction.
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